Skip to main content
Top
Published in: Peer-to-Peer Networking and Applications 4/2020

06-05-2020

Research on secure transmission and storage of energy IoT information based on Blockchain

Authors: Hou Rui, Liu Huan, Hu Yang, Zhao YunHao

Published in: Peer-to-Peer Networking and Applications | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, the scale of the energy Internet of Things has been rapidly increased, and the number of IoT device connections has grown exponentially. Massive device access makes the network more open and complex, and brings huge information security risks. Privacy and transmission storage issues have become one of the important factors restricting the development of the energy Internet of Things. In view of the security status of the Internet of Things, how to solve the problem of trust, security and privacy in the energy Internet of Things through the decentralization, transparency and credibility of the blockchain. Firstly, the blockchain technology is analyzed, and the blockchain consensus mechanism and smart contract technology are combined with the mechanisms of identity verification and access authorization to solve the security problem in the Internet of Things application. Secondly, the blockchain is used as the underlying universality of the energy Internet of Things. Technology, providing a trusted infrastructure, building a blockchain-based end-to-end IoT security framework in conjunction with network and trusted hardware; finally implementing distributed storage and tamper resistance of data in the data blockchain, and improving the utility Byzantine fault-tolerant (PBFT) mechanism consensus algorithm, improve data registration efficiency; realize resource and data transactions in the transaction blockchain, and improve transaction efficiency and privacy protection through improved algorithm based on partial blind signature algorithm. The results show that the framework is safe, effective and feasible, and can cope with most scenarios in the energy Internet of Things.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Guo W, Zhou S, Chen Y et al (2016) Simultaneous information and energy flow for IoT relay systems with crowd harvesting[J]. IEEE Commun Mag 54(11):143–149CrossRef Guo W, Zhou S, Chen Y et al (2016) Simultaneous information and energy flow for IoT relay systems with crowd harvesting[J]. IEEE Commun Mag 54(11):143–149CrossRef
2.
go back to reference Chiu WY, Sun H, Thompson J et al (2017) IoT and information processing in smart energy applications[J]. IEEE Commun Mag 55(10):44–44CrossRef Chiu WY, Sun H, Thompson J et al (2017) IoT and information processing in smart energy applications[J]. IEEE Commun Mag 55(10):44–44CrossRef
3.
go back to reference Rauniyar A, Engelstad P, Østerb ON (2018) RF energy harvesting and information transmission based on power splitting and NOMA for IoT relay systems[C]. 2018 IEEE 17th international symposium on network computing and applications (NCA). IEEE, pp. 1–8 Rauniyar A, Engelstad P, Østerb ON (2018) RF energy harvesting and information transmission based on power splitting and NOMA for IoT relay systems[C]. 2018 IEEE 17th international symposium on network computing and applications (NCA). IEEE, pp. 1–8
4.
go back to reference Das GS (2017) Forecasting the energy demand of Turkey with a NN based on an improved Particle Swarm Optimization. Neural Comput Appl 28(S-1):539–549CrossRef Das GS (2017) Forecasting the energy demand of Turkey with a NN based on an improved Particle Swarm Optimization. Neural Comput Appl 28(S-1):539–549CrossRef
5.
go back to reference Garg A, Shankhwar K, Jiang D, Vijayaraghavan V, Panda BN, Panda SS (2018) An evolutionary framework in modelling of multi-output characteristics of the bone drilling process. Neural Comput & Applic 29(11):1233–1241CrossRef Garg A, Shankhwar K, Jiang D, Vijayaraghavan V, Panda BN, Panda SS (2018) An evolutionary framework in modelling of multi-output characteristics of the bone drilling process. Neural Comput & Applic 29(11):1233–1241CrossRef
6.
go back to reference Maghsudi S, Hossain E (2016) Distributed cell association for energy harvesting IoT devices in dense small cell networks: a mean-field multi-armed bandit approach[J]. IEEE Access:99 Maghsudi S, Hossain E (2016) Distributed cell association for energy harvesting IoT devices in dense small cell networks: a mean-field multi-armed bandit approach[J]. IEEE Access:99
7.
go back to reference Sharad S, Bhagavathi Sivakumar P, Anantha Narayanan V (2015) A novel IoT-based energy management system for large scale data centers[J]. Front Inf Technol Electron Eng 15(4):265–274 Sharad S, Bhagavathi Sivakumar P, Anantha Narayanan V (2015) A novel IoT-based energy management system for large scale data centers[J]. Front Inf Technol Electron Eng 15(4):265–274
8.
go back to reference Bottaccioli L, Aliberti A, Ugliotti F et al. (2017) Building energy modelling and monitoring by integration of IoT devices and building information models[C]. Computer software & applications conference, pp. 975–980 Bottaccioli L, Aliberti A, Ugliotti F et al. (2017) Building energy modelling and monitoring by integration of IoT devices and building information models[C]. Computer software & applications conference, pp. 975–980
9.
go back to reference Brundu FG, Patti E, Osello A et al (2016) IoT software infrastructure for energy management and simulation in smart cities[J]. IEEE Trans Ind Inform 13(2):832–840CrossRef Brundu FG, Patti E, Osello A et al (2016) IoT software infrastructure for energy management and simulation in smart cities[J]. IEEE Trans Ind Inform 13(2):832–840CrossRef
10.
go back to reference Caparra G, Centenaro M, Laurenti N et al. (2016) Energy-based anchor node selection for IoT physical layer authentication[C]. IEEE International Conference on Communications, pp. 336–347 Caparra G, Centenaro M, Laurenti N et al. (2016) Energy-based anchor node selection for IoT physical layer authentication[C]. IEEE International Conference on Communications, pp. 336–347
11.
go back to reference Kawabata H, Ishibashi K, Vuppala S et al (2016) Robust relay selection for large-scale energy-harvesting IoT networks[J]. IEEE Internet Things J 4(2):384–392CrossRef Kawabata H, Ishibashi K, Vuppala S et al (2016) Robust relay selection for large-scale energy-harvesting IoT networks[J]. IEEE Internet Things J 4(2):384–392CrossRef
12.
go back to reference Wang W, Yang H, Zhang Y et al (2017) IoT-enabled real-time energy efficiency optimisation method for energy-intensive manufacturing enterprises[J]. Int J Comput Integr Manuf:1–18 Wang W, Yang H, Zhang Y et al (2017) IoT-enabled real-time energy efficiency optimisation method for energy-intensive manufacturing enterprises[J]. Int J Comput Integr Manuf:1–18
13.
go back to reference Etelapera M, Vecchio M, Giaffreda R (2014) Improving energy efficiency in IoT with re-configurable virtual objects[C]. Internet of Things, pp 154–161 Etelapera M, Vecchio M, Giaffreda R (2014) Improving energy efficiency in IoT with re-configurable virtual objects[C]. Internet of Things, pp 154–161
14.
go back to reference Chen Y, Ding S, Xu Z, Zheng H, Yang S (2019) Blockchain-based medical records secure storage and medical service framework. J Medical Systems 43(1):5:1–5:9CrossRef Chen Y, Ding S, Xu Z, Zheng H, Yang S (2019) Blockchain-based medical records secure storage and medical service framework. J Medical Systems 43(1):5:1–5:9CrossRef
15.
go back to reference Ni Z, Bhat RV, Motani M (2018) On dual-path energy-harvesting receivers for IoT with batteries having internal resistance[J]. IEEE Internet Things J 5(4):2741–2752CrossRef Ni Z, Bhat RV, Motani M (2018) On dual-path energy-harvesting receivers for IoT with batteries having internal resistance[J]. IEEE Internet Things J 5(4):2741–2752CrossRef
16.
go back to reference Al-Ali AR, Zualkernan IA, Rashid M et al (2018) A smart home energy management system using IoT and big data analytics approach[J]. IEEE Trans Consum Electron 63(4):426–434CrossRef Al-Ali AR, Zualkernan IA, Rashid M et al (2018) A smart home energy management system using IoT and big data analytics approach[J]. IEEE Trans Consum Electron 63(4):426–434CrossRef
17.
go back to reference Shen J, Wang A, Wang C et al (2017) An efficient centroid-based routing protocol for energy management in WSN-assisted IoT[J]. IEEE Access 5:18469–18479CrossRef Shen J, Wang A, Wang C et al (2017) An efficient centroid-based routing protocol for energy management in WSN-assisted IoT[J]. IEEE Access 5:18469–18479CrossRef
18.
go back to reference Kibria MG, Jarwar MA, Ali S et al. (2017) Web objects based energy efficiency for smart home IoT service provisioning[C]. Ninth international conference on ubiquitous & future networks, pp. 52–61 Kibria MG, Jarwar MA, Ali S et al. (2017) Web objects based energy efficiency for smart home IoT service provisioning[C]. Ninth international conference on ubiquitous & future networks, pp. 52–61
19.
go back to reference Tunc C, Akar N. Markov fluid queue model of an energy harvesting IoT device with adaptive sensing[J]. Perform Eval, 2017, 111:1–16 Tunc C, Akar N. Markov fluid queue model of an energy harvesting IoT device with adaptive sensing[J]. Perform Eval, 2017, 111:1–16
20.
go back to reference Huang Y, Liu M, Liu Y (2018) Energy-efficient SWIPT in IoT distributed antenna systems[J]. IEEE Internet Things J 5(4):2646–2656CrossRef Huang Y, Liu M, Liu Y (2018) Energy-efficient SWIPT in IoT distributed antenna systems[J]. IEEE Internet Things J 5(4):2646–2656CrossRef
21.
go back to reference Reefke H, Sundaram D (2018) Sustainable supply chain management: decision models for transformation and maturity. Decis Support Syst 113:56–72CrossRef Reefke H, Sundaram D (2018) Sustainable supply chain management: decision models for transformation and maturity. Decis Support Syst 113:56–72CrossRef
Metadata
Title
Research on secure transmission and storage of energy IoT information based on Blockchain
Authors
Hou Rui
Liu Huan
Hu Yang
Zhao YunHao
Publication date
06-05-2020
Publisher
Springer US
Published in
Peer-to-Peer Networking and Applications / Issue 4/2020
Print ISSN: 1936-6442
Electronic ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-019-00856-7

Other articles of this Issue 4/2020

Peer-to-Peer Networking and Applications 4/2020 Go to the issue

Premium Partner