Skip to main content
Top
Published in: International Journal of Data Science and Analytics 1/2024

02-09-2022 | Regular Paper

Reservoir consisting of diverse dynamical behaviors and its application in time series classification

Authors: Mohammad Modiri, Mohammad Mehdi Ebadzadeh, Mohammad Mehdi Homayounpour

Published in: International Journal of Data Science and Analytics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Time series classification (TSC) has been tackled through a wide range of algorithms. Seminal reservoir computing (s-RC) is composed of a recurrent neural network with random parameters serves as a dynamical memory and is a well-known end-to-end neural networks (NNs) that have been applied to TSC problems. Although the s-RC architecture is suited for dynamic (temporal) data processing, nevertheless choosing the proper design of reservoir plays a crucial role in the efficiency of reservoir computing (RC) in comparison to state-of-the-art fully trainable NNs. In contrast with a large body of researches that has been focused on the aspect of sparsity in the design of RC, in this article, the role of a variety of dynamical behaviors (e.g. stability, periodicity, high-periodicity, and chaos) in RC design is empirically investigated in terms of the richness of the developed dynamical (temporal) representations. Finally, it is shown that RCs with rich dynamical behaviors outperform RCs with a limited spectrum of dynamic behavior in TSC tasks. To evaluate the TSC adaptability of the newly proposed RC framework and state-of-the-art NN-based methods, different experiments on 15 multivariate time series datasets (UCR and UEA datasets) were performed. Our findings divulge that the proposed framework outperforms other RC methods in learning capacity and accuracy and attains classification accuracy comparable with the best fully trainable deep neural networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Discov. 33, 917–963 (2019)MathSciNetCrossRef Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Discov. 33, 917–963 (2019)MathSciNetCrossRef
2.
go back to reference Abanda, A., Mori, U., Lozano, J.A.: A review on distance based time series classification. Data Min. Knowl. Discov. 33, 378–412 (2019)MathSciNetCrossRef Abanda, A., Mori, U., Lozano, J.A.: A review on distance based time series classification. Data Min. Knowl. Discov. 33, 378–412 (2019)MathSciNetCrossRef
3.
go back to reference Hartmann, C., Ressel, F., Hahmann, M., Habich, D., Lehner, W.: CSAR: the cross-sectional autoregression model for short and long-range forecasting. Int. J. Data Sci. Anal. 8, 165–181 (2019)CrossRef Hartmann, C., Ressel, F., Hahmann, M., Habich, D., Lehner, W.: CSAR: the cross-sectional autoregression model for short and long-range forecasting. Int. J. Data Sci. Anal. 8, 165–181 (2019)CrossRef
4.
go back to reference Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)CrossRef Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)CrossRef
5.
go back to reference Felzenszwalb, P.F., Zabih, R.: Dynamic programming and graph algorithms in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 721–740 (2011)CrossRef Felzenszwalb, P.F., Zabih, R.: Dynamic programming and graph algorithms in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 721–740 (2011)CrossRef
6.
go back to reference Dilmi, M.D., Barthès, L., Mallet, C., Chazottes, A.: Iterative multiscale dynamic time warping (IMs-DTW): a tool for rainfall time series comparison. Int. J. Data Sci. Anal. 9, 65–79 (2019) Dilmi, M.D., Barthès, L., Mallet, C., Chazottes, A.: Iterative multiscale dynamic time warping (IMs-DTW): a tool for rainfall time series comparison. Int. J. Data Sci. Anal. 9, 65–79 (2019)
7.
go back to reference Xu, Y., Yan, C., Feng, J., Ying, G., Dunwei, G.: SVMs classification based two-side cross domain collaborative filtering by inferring intrinsic user and item features. Knowl. Based Syst. 141, 80–91 (2018)CrossRef Xu, Y., Yan, C., Feng, J., Ying, G., Dunwei, G.: SVMs classification based two-side cross domain collaborative filtering by inferring intrinsic user and item features. Knowl. Based Syst. 141, 80–91 (2018)CrossRef
8.
go back to reference Baydogan, M.G., Runger, G., Tuv, E.: A bag-of-features framework to classify time series. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2796–2802 (2013)CrossRef Baydogan, M.G., Runger, G., Tuv, E.: A bag-of-features framework to classify time series. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2796–2802 (2013)CrossRef
9.
go back to reference Arantes, J.D.S., Arantes, M.D.S., Fröhlich, H.B., Siret, L., Bonnard, R.: A novel unsupervised method for anomaly detection in time series based on statistical features for industrial predictive maintenance. Int. J. Data Sci. Anal. 12, 383–404 (2021)CrossRef Arantes, J.D.S., Arantes, M.D.S., Fröhlich, H.B., Siret, L., Bonnard, R.: A novel unsupervised method for anomaly detection in time series based on statistical features for industrial predictive maintenance. Int. J. Data Sci. Anal. 12, 383–404 (2021)CrossRef
10.
go back to reference Schäfer, P.: The BOSS is concerned with time series classification in the presence of noise. Data Min. Knowl. Discov. 29, 1505–1530 (2015)MathSciNetCrossRef Schäfer, P.: The BOSS is concerned with time series classification in the presence of noise. Data Min. Knowl. Discov. 29, 1505–1530 (2015)MathSciNetCrossRef
11.
go back to reference Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2014) Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2014)
12.
go back to reference Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 31(3), 606–660 (2016)MathSciNetCrossRef Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 31(3), 606–660 (2016)MathSciNetCrossRef
13.
go back to reference Ngan, C.-K.: Time Series Analysis: Data, Methods, and Applications. IntechOpen, London (2019)CrossRef Ngan, C.-K.: Time Series Analysis: Data, Methods, and Applications. IntechOpen, London (2019)CrossRef
14.
go back to reference Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNet Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNet
15.
16.
go back to reference Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: International Joint Conference on Neural Networks (IJCNN), Anchorage (2017) Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: International Joint Conference on Neural Networks (IJCNN), Anchorage (2017)
17.
go back to reference Serra, J., Pascual, A., Karatzoglou, A.: Towards a universal neural network encoder for time series. In: Falomir, Z., Gibert, K., Plaza, E. (eds.) Artificial Intelligence Research and Development: Current Challenges, New Trends and Applications, pp. 308–120. IOS Press, Amsterdam (2018) Serra, J., Pascual, A., Karatzoglou, A.: Towards a universal neural network encoder for time series. In: Falomir, Z., Gibert, K., Plaza, E. (eds.) Artificial Intelligence Research and Development: Current Challenges, New Trends and Applications, pp. 308–120. IOS Press, Amsterdam (2018)
18.
go back to reference Sutskever, I., Martens, J., Hinton, G.: Generating text with recurrent neural networks. In: Proceeding ICML 11 Proceedings of the 28th International Conference on International, Washington (2011) Sutskever, I., Martens, J., Hinton, G.: Generating text with recurrent neural networks. In: Proceeding ICML 11 Proceedings of the 28th International Conference on International, Washington (2011)
19.
go back to reference Maya, S., Ueno, K., Nishikawa, T.: dLSTM: a new approach for anomaly detection using deep learning with delayed prediction. Int. J. Data Sci. Anal. 6, 137–164 (2019)CrossRef Maya, S., Ueno, K., Nishikawa, T.: dLSTM: a new approach for anomaly detection using deep learning with delayed prediction. Int. J. Data Sci. Anal. 6, 137–164 (2019)CrossRef
20.
go back to reference Tanisaro, P., Heidemann, G.: Time series classification using time warping invariant echo state networks. In: IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, pp. 831–836 (2016) Tanisaro, P., Heidemann, G.: Time series classification using time warping invariant echo state networks. In: IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, pp. 831–836 (2016)
21.
go back to reference Kasabov, N.: NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 52, 62–76 (2014)CrossRef Kasabov, N.: NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 52, 62–76 (2014)CrossRef
22.
go back to reference Austin, D., Sanzgiri, A., Sankaran, K., Woodard, R., Lissack, A., Seljan, S.: Classifying sensitive content in online advertisements with deep learning. Int. J. Data Sci. Anal. 10, 265–276 (2020)CrossRef Austin, D., Sanzgiri, A., Sankaran, K., Woodard, R., Lissack, A., Seljan, S.: Classifying sensitive content in online advertisements with deep learning. Int. J. Data Sci. Anal. 10, 265–276 (2020)CrossRef
23.
go back to reference Rumelhart, D., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Holyoak, K.J. (ed.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge (1987) Rumelhart, D., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Holyoak, K.J. (ed.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge (1987)
24.
go back to reference Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)CrossRef Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)CrossRef
25.
go back to reference Zhang, G., Zhang, C., Zhang, W.: Evolutionary echo state network for long-term time series prediction: on the edge of chaos. Appl. Intell. 5, 893–904 (2019) Zhang, G., Zhang, C., Zhang, W.: Evolutionary echo state network for long-term time series prediction: on the edge of chaos. Appl. Intell. 5, 893–904 (2019)
26.
go back to reference Jaeger, H.: Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the Echo State Network Approach. German National Research Center for Information, Zurich (2002) Jaeger, H.: Tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the Echo State Network Approach. German National Research Center for Information, Zurich (2002)
27.
go back to reference Lukoševičius, M.: Neural networks: tricks of the trade. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) A Practical Guide to Applying Echo State Networks, pp. 659–686. Springer, Berlin (2012) Lukoševičius, M.: Neural networks: tricks of the trade. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) A Practical Guide to Applying Echo State Networks, pp. 659–686. Springer, Berlin (2012)
28.
go back to reference Jiang, F., Berry, H., Schoenauer, M.: Supervised and evolutionary learning of echo state networks. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) Parallel Problem Solving from Nature (PPSN). Springer, Berlin (2008) Jiang, F., Berry, H., Schoenauer, M.: Supervised and evolutionary learning of echo state networks. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) Parallel Problem Solving from Nature (PPSN). Springer, Berlin (2008)
29.
go back to reference Rodan, A., Tino, P.: Minimum complexity echo state network. IEEE Trans. Neural Netw. 200(1), 131–144 (2010)CrossRef Rodan, A., Tino, P.: Minimum complexity echo state network. IEEE Trans. Neural Netw. 200(1), 131–144 (2010)CrossRef
30.
go back to reference Jaeger, H.: The echo state approach to analysing and training recurrent neural networks-with an erratum note. National Research Center for Information Technology GMD Technical, vol. 148, No. 34, p. 13 (2001) Jaeger, H.: The echo state approach to analysing and training recurrent neural networks-with an erratum note. National Research Center for Information Technology GMD Technical, vol. 148, No. 34, p. 13 (2001)
31.
go back to reference Gallicchio, C.: Sparsity in reservoir computing neural networks. In: 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), pp. 1–7 (2020) Gallicchio, C.: Sparsity in reservoir computing neural networks. In: 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), pp. 1–7 (2020)
32.
go back to reference Schrauwen, B., Verstraeten, D., Campenhout, J.V.: An overview of reservoir computing: theory, applications and implementations. In: Proceedings of the 15th European Symposium on Artificial Neural Networks, pp. 471–482 (2007) Schrauwen, B., Verstraeten, D., Campenhout, J.V.: An overview of reservoir computing: theory, applications and implementations. In: Proceedings of the 15th European Symposium on Artificial Neural Networks, pp. 471–482 (2007)
33.
go back to reference Xue, Y., Yang, L., Haykin, S.: Decoupled echo state networks with lateral inhibition. Neural Netw. 20(3), 365–376 (2007)CrossRef Xue, Y., Yang, L., Haykin, S.: Decoupled echo state networks with lateral inhibition. Neural Netw. 20(3), 365–376 (2007)CrossRef
34.
go back to reference Kasabov, N., Dhoble, K., Nuntalid, N., Indiveri, G.: Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Netw. 41, 188–201 (2013)CrossRef Kasabov, N., Dhoble, K., Nuntalid, N., Indiveri, G.: Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Netw. 41, 188–201 (2013)CrossRef
35.
go back to reference Kasabov, N., Scott, N.M., Tu, E., Marks, S., Sengupta, N., Capecci, E., Othman, M.: Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Netw. 78, 1–14 (2016)CrossRef Kasabov, N., Scott, N.M., Tu, E., Marks, S., Sengupta, N., Capecci, E., Othman, M.: Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Netw. 78, 1–14 (2016)CrossRef
36.
go back to reference Thorpe, S., Jacques, G.: Rank order coding. In: Bower, J.M. (ed.) Computational Neuroscience, pp. 113–118. Springer US, Boston (1998)CrossRef Thorpe, S., Jacques, G.: Rank order coding. In: Bower, J.M. (ed.) Computational Neuroscience, pp. 113–118. Springer US, Boston (1998)CrossRef
37.
go back to reference Caporale, N., Dan, Y.: Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008)CrossRef Caporale, N., Dan, Y.: Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008)CrossRef
38.
go back to reference Modiri, M., Homayounpour, M.M., Ebadzadeh, M.M.: Reservoir weights learning based on adaptive dynamic programming and its application in time series classification. Neural Comput. Appl. 34(2), 1–17 (2022) Modiri, M., Homayounpour, M.M., Ebadzadeh, M.M.: Reservoir weights learning based on adaptive dynamic programming and its application in time series classification. Neural Comput. Appl. 34(2), 1–17 (2022)
39.
go back to reference Grossberg, S.: Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions. Biol. Cybern. 23, 187–202 (1976)MathSciNetCrossRef Grossberg, S.: Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions. Biol. Cybern. 23, 187–202 (1976)MathSciNetCrossRef
40.
go back to reference Grossberg, S.: Adaptive resonance theory: how a brain learns to consciously attend, learn, and recognize a changing world. Neural Netw. 37, 1–47 (2013)CrossRef Grossberg, S.: Adaptive resonance theory: how a brain learns to consciously attend, learn, and recognize a changing world. Neural Netw. 37, 1–47 (2013)CrossRef
41.
go back to reference Ashby, W.R.: An Introduction to Cybernetics. Chapman and Hall, London (1956)CrossRef Ashby, W.R.: An Introduction to Cybernetics. Chapman and Hall, London (1956)CrossRef
42.
go back to reference Jaeger, H.: The Echo State Approach to Analysing and Training Recurrent Neural Networks. German National Research Center for Information Technology, Bonn (2001) Jaeger, H.: The Echo State Approach to Analysing and Training Recurrent Neural Networks. German National Research Center for Information Technology, Bonn (2001)
43.
go back to reference Maass, W., Nachtschlaeger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)CrossRef Maass, W., Nachtschlaeger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)CrossRef
44.
go back to reference Gallicchio, C., Micheli, A., Pedrelli, L.: Deep reservoir computing: a critical experimental analysis. Neurocomputing 268, 87–99 (2017)CrossRef Gallicchio, C., Micheli, A., Pedrelli, L.: Deep reservoir computing: a critical experimental analysis. Neurocomputing 268, 87–99 (2017)CrossRef
45.
go back to reference Li, Q., Wu, Z., Ling, R., Feng, L., Liu, K.: Multi-reservoir echo state computing for solar irradiance prediction: a fast yet efficient deep learning approach. Appl. Soft Comput. J. 95, 106481 (2020)CrossRef Li, Q., Wu, Z., Ling, R., Feng, L., Liu, K.: Multi-reservoir echo state computing for solar irradiance prediction: a fast yet efficient deep learning approach. Appl. Soft Comput. J. 95, 106481 (2020)CrossRef
46.
go back to reference Alalshekmubarak, A., Smith, L.S.: A novel approach combining recurrent neural network and support vector machines for time series classification. In: Innovations in Information Technology (IIT), pp. 42–47 (2013) Alalshekmubarak, A., Smith, L.S.: A novel approach combining recurrent neural network and support vector machines for time series classification. In: Innovations in Information Technology (IIT), pp. 42–47 (2013)
47.
go back to reference Bianchi, F., Scardapane, S., Løkse, S., Jenssen, R.: Bidirectional deep-readout echo state networks. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges (2018) Bianchi, F., Scardapane, S., Løkse, S., Jenssen, R.: Bidirectional deep-readout echo state networks. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges (2018)
48.
go back to reference Tanaka, G., Yamane, T., Heroux, J.B., Nakane, R., Kanazawa, N., Takeda, S., Hirose, A.: Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019)CrossRef Tanaka, G., Yamane, T., Heroux, J.B., Nakane, R., Kanazawa, N., Takeda, S., Hirose, A.: Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019)CrossRef
49.
go back to reference Hebb, D.O.: The Organization of Behavior: A Neuropsychological. Wiley, New York (1949) Hebb, D.O.: The Organization of Behavior: A Neuropsychological. Wiley, New York (1949)
50.
go back to reference Gerstner, W., Kistler, W.: Spiking Neuron Models—Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)CrossRef Gerstner, W., Kistler, W.: Spiking Neuron Models—Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)CrossRef
51.
go back to reference Figari, M., Altosole, M.: Dynamic behaviour and stability of marine propulsion systems. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 221(4), 187–205 (2007) Figari, M., Altosole, M.: Dynamic behaviour and stability of marine propulsion systems. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 221(4), 187–205 (2007)
52.
go back to reference Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)CrossRef Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)CrossRef
53.
go back to reference Canavier, C., Baxter, D., Clark, J., Byrne, J.: Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity. J. Neurophysiol. 69(6), 2252–2257 (1993)CrossRef Canavier, C., Baxter, D., Clark, J., Byrne, J.: Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity. J. Neurophysiol. 69(6), 2252–2257 (1993)CrossRef
55.
57.
go back to reference Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
58.
go back to reference Fawaz, H.I., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D.F., Weber, J., Webb, G.I., Idoumghar, L., Muller, P.-A., Petitjean, F.: InceptionTime: finding AlexNet for time series classification series classification. Data Min. Knowl. Disc. 34, 1936–1962 (2020)MathSciNetCrossRef Fawaz, H.I., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D.F., Weber, J., Webb, G.I., Idoumghar, L., Muller, P.-A., Petitjean, F.: InceptionTime: finding AlexNet for time series classification series classification. Data Min. Knowl. Disc. 34, 1936–1962 (2020)MathSciNetCrossRef
59.
go back to reference Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston (2015) Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston (2015)
60.
go back to reference Middlehurst, M., Large, J., Flynn, M., Lines, J., Bostrom, A., Bagnall, A.: HIVE-COTE 2.0: a new meta ensemble for time series classification. Mach. Learn. 110, 3211–3243 (2021)MathSciNetCrossRef Middlehurst, M., Large, J., Flynn, M., Lines, J., Bostrom, A., Bagnall, A.: HIVE-COTE 2.0: a new meta ensemble for time series classification. Mach. Learn. 110, 3211–3243 (2021)MathSciNetCrossRef
61.
go back to reference Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Disc. 28(1), 851–881 (2014)MathSciNetCrossRef Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Disc. 28(1), 851–881 (2014)MathSciNetCrossRef
62.
go back to reference Middlehurst, M., Vickers, W., Bagnall, A.: Scalable dictionary classifiers for time series classification. In: Proceedings of Intelligent Data Engineering and Automated Learning, Lecture Notes in Computer Science (2019) Middlehurst, M., Vickers, W., Bagnall, A.: Scalable dictionary classifiers for time series classification. In: Proceedings of Intelligent Data Engineering and Automated Learning, Lecture Notes in Computer Science (2019)
63.
go back to reference Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Disc. 20, 1454–1495 (2020)MathSciNetCrossRef Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Disc. 20, 1454–1495 (2020)MathSciNetCrossRef
64.
go back to reference Middlehurst, M., Large, J., Bagnall, A.: The canonical interval forest (CIF) classifier for time series classification. In: IEEE International Conference on Big Data (Big Data) (2020) Middlehurst, M., Large, J., Bagnall, A.: The canonical interval forest (CIF) classifier for time series classification. In: IEEE International Conference on Big Data (Big Data) (2020)
65.
go back to reference Large, J., Lines, J., Bagnall, A.: A probabilistic classifier ensemble weighting scheme based on cross-validated accuracy estimates. Data Min. Knowl. Disc. 33, 1674–1709 (2019)MathSciNetCrossRef Large, J., Lines, J., Bagnall, A.: A probabilistic classifier ensemble weighting scheme based on cross-validated accuracy estimates. Data Min. Knowl. Disc. 33, 1674–1709 (2019)MathSciNetCrossRef
Metadata
Title
Reservoir consisting of diverse dynamical behaviors and its application in time series classification
Authors
Mohammad Modiri
Mohammad Mehdi Ebadzadeh
Mohammad Mehdi Homayounpour
Publication date
02-09-2022
Publisher
Springer International Publishing
Published in
International Journal of Data Science and Analytics / Issue 1/2024
Print ISSN: 2364-415X
Electronic ISSN: 2364-4168
DOI
https://doi.org/10.1007/s41060-022-00360-x

Other articles of this Issue 1/2024

International Journal of Data Science and Analytics 1/2024 Go to the issue

Premium Partner