Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 5-8/2019

16-07-2019 | ORIGINAL ARTICLE

Residual stress prediction in ultrasonic vibration–assisted milling

Authors: Yixuan Feng, Fu-Chuan Hsu, Yu-Ting Lu, Yu-Fu Lin, Chorng-Tyan Lin, Chiu-Feng Lin, Ying-Cheng Lu, Steven Y. Liang

Published in: The International Journal of Advanced Manufacturing Technology | Issue 5-8/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the current study, an analytical predictive model on residual stress after ultrasonic vibration–assisted milling is proposed in an effort to provide an accurate and reliable reference. Three types of tool-workpiece separation criteria are checked based on the tool center instantaneous position and velocity. Type I criterion examines the instantaneous velocity of tool tip under combined effects of feed movement and vibration. Type II criterion examines the position of tool center. Type III criterion describes the smaller chip size due to the overlaps between current and previous tool paths as a result of vibration. If none of these criterions is satisfied, the mechanical and thermal stresses are nonzero. The residual stress is then predicted through the calculation of stress distribution in loading process, incremental stress change considering kinematic hardening in plasticity, and the elastic stress release during relaxation process. The proposed predictive residual stress model in ultrasonic vibration–assisted milling is validated through comparison with experimental measurements on AISI 316L alloy. The proposed predictive model is able to match the measured residual stress with high accuracy of 6.4% average error and 23.6% maximum error among all cases. In addition, a sensitivity analysis is conducted. Higher axial depth of milling results in less compressive residual stress. Moreover, both higher ultrasonic vibration amplitude and higher spindle rotation frequency result in more compressive residual stress for AISI 316L alloy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen W, Huo D, Shi Y, Hale JM (2018) State-of-the-art review on vibration-assisted milling: principle, system design, and application. Int J Adv Manuf Technol 97(5-8):2033–2049CrossRef Chen W, Huo D, Shi Y, Hale JM (2018) State-of-the-art review on vibration-assisted milling: principle, system design, and application. Int J Adv Manuf Technol 97(5-8):2033–2049CrossRef
2.
go back to reference Xu W-X, Zhang L-C (2015) Ultrasonic vibration-assisted machining: principle, design and application. Adv Manuf 3(3):173–192CrossRef Xu W-X, Zhang L-C (2015) Ultrasonic vibration-assisted machining: principle, design and application. Adv Manuf 3(3):173–192CrossRef
3.
go back to reference Mirkoohi E, Bocchini P, Liang SY (2019) Inverse analysis of residual stress in orthogonal cutting. J Manuf Process 38:462–471CrossRef Mirkoohi E, Bocchini P, Liang SY (2019) Inverse analysis of residual stress in orthogonal cutting. J Manuf Process 38:462–471CrossRef
4.
go back to reference Salvati E, Zhang H, Fong KS, Song X, Korsunsky AM (2017) Separating plasticity-induced closure and residual stress contributions to fatigue crack retardation following an overload. J Mech Phys Solids 98:222–235CrossRef Salvati E, Zhang H, Fong KS, Song X, Korsunsky AM (2017) Separating plasticity-induced closure and residual stress contributions to fatigue crack retardation following an overload. J Mech Phys Solids 98:222–235CrossRef
5.
go back to reference Daniel M Understanding the effect of residual stresses on surface integrity and how to measure them by a non destructive method. ASEE Conferences: Pittsburgh, Pennsylvania. Daniel M Understanding the effect of residual stresses on surface integrity and how to measure them by a non destructive method. ASEE Conferences: Pittsburgh, Pennsylvania.
6.
go back to reference Juijerm P, Altenberger I, Scholtes B (2006) Fatigue and residual stress relaxation of deep rolled differently aged aluminium alloy AA6110. Mater Sci Eng A 426(1):4–10CrossRef Juijerm P, Altenberger I, Scholtes B (2006) Fatigue and residual stress relaxation of deep rolled differently aged aluminium alloy AA6110. Mater Sci Eng A 426(1):4–10CrossRef
7.
go back to reference Liu CR, Barash MM (1982) Variables governing patterns of mechanical residual stress in a machined surface. J Eng Ind 104(3):257–264CrossRef Liu CR, Barash MM (1982) Variables governing patterns of mechanical residual stress in a machined surface. J Eng Ind 104(3):257–264CrossRef
8.
go back to reference Sridhar BR, Devananda G, Ramachandra K, Bhat R (2003) Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834. J Mater Process Technol 139(1):628–634CrossRef Sridhar BR, Devananda G, Ramachandra K, Bhat R (2003) Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834. J Mater Process Technol 139(1):628–634CrossRef
9.
go back to reference Nestler A, Schubert A (2014) Surface properties in ultrasonic vibration assisted turning of particle reinforced aluminium matrix composites. Procedia CIRP 13:125–130CrossRef Nestler A, Schubert A (2014) Surface properties in ultrasonic vibration assisted turning of particle reinforced aluminium matrix composites. Procedia CIRP 13:125–130CrossRef
10.
go back to reference Sharma V, Pandey PM (2016) Recent advances in ultrasonic assisted turning: a step towards sustainability. Cogent Engineering, 3(1). Sharma V, Pandey PM (2016) Recent advances in ultrasonic assisted turning: a step towards sustainability. Cogent Engineering, 3(1).
11.
go back to reference Xiangyu Z, Zhenghui L, He S, Deyuan Z (2018) Surface quality and residual stress study of high-speed ultrasonic vibration turning Ti-6Al-4V alloys. Procedia CIRP 71:79–82CrossRef Xiangyu Z, Zhenghui L, He S, Deyuan Z (2018) Surface quality and residual stress study of high-speed ultrasonic vibration turning Ti-6Al-4V alloys. Procedia CIRP 71:79–82CrossRef
12.
go back to reference Lu Z, et al. (2010) Study on residual stresses in ultrasonic torsional vibration assisted micro-milling. 7657: p. 76571F. Lu Z, et al. (2010) Study on residual stresses in ultrasonic torsional vibration assisted micro-milling. 7657: p. 76571F.
13.
go back to reference Hu HJ, Sun YZ, Lu ZS (2011) Simulation of residual stress in ultrasonic vibration assisted micro-milling. Adv Mater Res 188:381–384CrossRef Hu HJ, Sun YZ, Lu ZS (2011) Simulation of residual stress in ultrasonic vibration assisted micro-milling. Adv Mater Res 188:381–384CrossRef
14.
go back to reference Ren W et al. (2018) Research on homogenization and surface integrity of Ti-6Al-4V alloy by longitudinal-torsional coupled ultrasonic vibration ball-end milling. Preprints (2018090032). Ren W et al. (2018) Research on homogenization and surface integrity of Ti-6Al-4V alloy by longitudinal-torsional coupled ultrasonic vibration ball-end milling. Preprints (2018090032).
15.
go back to reference Lu X, Wang H, Jia Z, Feng Y, Liang SY (2019) Coupled thermal and mechanical analyses of micro-milling Inconel 718. Proc Inst Mech Eng B J Eng Manuf 233(4):1112–1126CrossRef Lu X, Wang H, Jia Z, Feng Y, Liang SY (2019) Coupled thermal and mechanical analyses of micro-milling Inconel 718. Proc Inst Mech Eng B J Eng Manuf 233(4):1112–1126CrossRef
16.
go back to reference Pan Z et al. (2017) Turning force prediction of AISI 4130 considering dynamic recrystallization. (50725): p. V001T02A040 Pan Z et al. (2017) Turning force prediction of AISI 4130 considering dynamic recrystallization. (50725): p. V001T02A040
17.
go back to reference Pan Z, Feng Y, Lu YT, Lin YF, Hung TP, Hsu FC, Liang SY (2017) Force modeling of Inconel 718 laser-assisted end milling under recrystallization effects. Int J Adv Manuf Technol 92(5-8):2965–2974CrossRef Pan Z, Feng Y, Lu YT, Lin YF, Hung TP, Hsu FC, Liang SY (2017) Force modeling of Inconel 718 laser-assisted end milling under recrystallization effects. Int J Adv Manuf Technol 92(5-8):2965–2974CrossRef
18.
go back to reference Pan Z, Feng Y, Lu YT, Lin YF, Hung TP, Hsu FC, Lin CF, Lu YC, Liang SY (2017) Microstructure-sensitive flow stress modeling for force prediction in laser assisted milling of Inconel 718. Manufacturing Rev 4:6CrossRef Pan Z, Feng Y, Lu YT, Lin YF, Hung TP, Hsu FC, Lin CF, Lu YC, Liang SY (2017) Microstructure-sensitive flow stress modeling for force prediction in laser assisted milling of Inconel 718. Manufacturing Rev 4:6CrossRef
19.
go back to reference Feng Y, Lu YT, Lin YF, Hung TP, Hsu FC, Lin CF, Lu YC, Liang SY (2018) Inverse analysis of the cutting force in laser-assisted milling on Inconel 718. Int J Adv Manuf Technol 96(1):905–914CrossRef Feng Y, Lu YT, Lin YF, Hung TP, Hsu FC, Lin CF, Lu YC, Liang SY (2018) Inverse analysis of the cutting force in laser-assisted milling on Inconel 718. Int J Adv Manuf Technol 96(1):905–914CrossRef
20.
go back to reference Ning J, Nguyen V, Liang SY (2018) Analytical modeling of machining forces of ultra-fine-grained titanium. Int J Adv Manuf Technol Ning J, Nguyen V, Liang SY (2018) Analytical modeling of machining forces of ultra-fine-grained titanium. Int J Adv Manuf Technol
21.
go back to reference Feng Y, Pan Z, Liang SY (2018) Temperature prediction in Inconel 718 milling with microstructure evolution. Int J Adv Manuf Technol 95(9-12):4607–4621CrossRef Feng Y, Pan Z, Liang SY (2018) Temperature prediction in Inconel 718 milling with microstructure evolution. Int J Adv Manuf Technol 95(9-12):4607–4621CrossRef
22.
go back to reference Feng Y, Hung TP, Lu YT, Lin YF, Hsu FC, Lin CF, Lu YC, Liang SY (2019) Analytical prediction of temperature in laser-assisted milling with laser preheating and machining effects. Int J Adv Manuf Technol 100(9):3185–3195CrossRef Feng Y, Hung TP, Lu YT, Lin YF, Hsu FC, Lin CF, Lu YC, Liang SY (2019) Analytical prediction of temperature in laser-assisted milling with laser preheating and machining effects. Int J Adv Manuf Technol 100(9):3185–3195CrossRef
23.
go back to reference Ning J, Liang S (2018) Prediction of temperature distribution in orthogonal machining based on the mechanics of the cutting process using a constitutive model. J Manuf Mater Process 2(2):37 Ning J, Liang S (2018) Prediction of temperature distribution in orthogonal machining based on the mechanics of the cutting process using a constitutive model. J Manuf Mater Process 2(2):37
24.
go back to reference Ning J, Liang SY (2019) Predictive modeling of machining temperatures with force–temperature correlation using cutting mechanics and constitutive relation. Materials 12(2):284CrossRef Ning J, Liang SY (2019) Predictive modeling of machining temperatures with force–temperature correlation using cutting mechanics and constitutive relation. Materials 12(2):284CrossRef
25.
go back to reference Ning J, Liang S (2018) Evaluation of an analytical model in the prediction of machining temperature of AISI 1045 steel and AISI 4340 steel. J Manuf Mater Process 2(4):74 Ning J, Liang S (2018) Evaluation of an analytical model in the prediction of machining temperature of AISI 1045 steel and AISI 4340 steel. J Manuf Mater Process 2(4):74
26.
go back to reference Ning J, Liang SY (2019) A comparative study of analytical thermal models to predict the orthogonal cutting temperature of AISI 1045 steel. Int J Adv Manuf Technol 102(9):3109–3119CrossRef Ning J, Liang SY (2019) A comparative study of analytical thermal models to predict the orthogonal cutting temperature of AISI 1045 steel. Int J Adv Manuf Technol 102(9):3109–3119CrossRef
27.
go back to reference Mirkoohi E, Bocchini P, Liang SY (2019) Analytical temperature predictive modeling and non-linear optimization in machining. Int J Adv Manuf Technol 102(5):1557–1566CrossRef Mirkoohi E, Bocchini P, Liang SY (2019) Analytical temperature predictive modeling and non-linear optimization in machining. Int J Adv Manuf Technol 102(5):1557–1566CrossRef
28.
go back to reference Pan Z et al (2017) Turning induced residual stress prediction of AISI 4130 considering dynamic recrystallization. Mach Sci Technol 22(3):507–521CrossRef Pan Z et al (2017) Turning induced residual stress prediction of AISI 4130 considering dynamic recrystallization. Mach Sci Technol 22(3):507–521CrossRef
29.
go back to reference Feng Y, et al. (2018) Analytical and numerical predictions of machining-induced residual stress in milling of Inconel 718 considering dynamic recrystallization. (51388): p. V004T03A023 Feng Y, et al. (2018) Analytical and numerical predictions of machining-induced residual stress in milling of Inconel 718 considering dynamic recrystallization. (51388): p. V004T03A023
30.
go back to reference Feng Y, Hung TP, Lu YT, Lin YF, Hsu FC, Lin CF, Lu YC, Liang SY (2019) Residual stress prediction in laser-assisted milling considering recrystallization effects. Int J Adv Manuf Technol 102(1):393–402CrossRef Feng Y, Hung TP, Lu YT, Lin YF, Hsu FC, Lin CF, Lu YC, Liang SY (2019) Residual stress prediction in laser-assisted milling considering recrystallization effects. Int J Adv Manuf Technol 102(1):393–402CrossRef
31.
go back to reference Feng Y, et al. (2019) Inverse analysis of the residual stress in laser–assisted milling. Preprints Feng Y, et al. (2019) Inverse analysis of the residual stress in laser–assisted milling. Preprints
32.
go back to reference Maurotto A, Wickramarachchi CT (2016) Experimental investigations on effects of frequency in ultrasonically-assisted end-milling of AISI 316L: a feasibility study. Ultrasonics 65:113–120CrossRef Maurotto A, Wickramarachchi CT (2016) Experimental investigations on effects of frequency in ultrasonically-assisted end-milling of AISI 316L: a feasibility study. Ultrasonics 65:113–120CrossRef
33.
go back to reference Abdur-Rasheed A (2011) A fundamental study of vibration assisted machining. Adv Mater Res 264-265:1702–1707CrossRef Abdur-Rasheed A (2011) A fundamental study of vibration assisted machining. Adv Mater Res 264-265:1702–1707CrossRef
34.
go back to reference Oxley PLB (1989) The mechanics of machining, an analytical approach to assessing machinability. ELLIS HORWOOD LIMITED 242 Oxley PLB (1989) The mechanics of machining, an analytical approach to assessing machinability. ELLIS HORWOOD LIMITED 242
35.
go back to reference Feng Y, et al. (2019) Force prediction in ultrasonic vibration-assisted milling. Preprints Feng Y, et al. (2019) Force prediction in ultrasonic vibration-assisted milling. Preprints
36.
go back to reference Waldorf DJ (2006) A simplified model for ploughing forces in turning. J Manuf Process 8(2):76–82CrossRef Waldorf DJ (2006) A simplified model for ploughing forces in turning. J Manuf Process 8(2):76–82CrossRef
37.
go back to reference Shao Y, Fergani O, Li B, Liang SY (2016) Residual stress modeling in minimum quantity lubrication grinding. Int J Adv Manuf Technol 83(5):743–751CrossRef Shao Y, Fergani O, Li B, Liang SY (2016) Residual stress modeling in minimum quantity lubrication grinding. Int J Adv Manuf Technol 83(5):743–751CrossRef
38.
go back to reference Chen B-Q, Hashemzadeh M, Guedes Soares C (2017) Validation of numerical simulations with X-ray diffraction measurements of residual stress in butt-welded steel plates. Ships and Offshore Structures 13(3):273–282CrossRef Chen B-Q, Hashemzadeh M, Guedes Soares C (2017) Validation of numerical simulations with X-ray diffraction measurements of residual stress in butt-welded steel plates. Ships and Offshore Structures 13(3):273–282CrossRef
39.
go back to reference Gürgen S, Çakır FH, Sofuoğlu MA, Orak S, Kuşhan MC, Li H (2019) Multi-criteria decision-making analysis of different non-traditional machining operations of Ti6Al4V. Soft Comput 23(13):5259–5272CrossRef Gürgen S, Çakır FH, Sofuoğlu MA, Orak S, Kuşhan MC, Li H (2019) Multi-criteria decision-making analysis of different non-traditional machining operations of Ti6Al4V. Soft Comput 23(13):5259–5272CrossRef
40.
go back to reference Sofuoğlu MA, Çakır FH, Gürgen S, Orak S, Kuşhan MC (2018) Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning. Int J Adv Manuf Technol 95(1):83–97CrossRef Sofuoğlu MA, Çakır FH, Gürgen S, Orak S, Kuşhan MC (2018) Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning. Int J Adv Manuf Technol 95(1):83–97CrossRef
Metadata
Title
Residual stress prediction in ultrasonic vibration–assisted milling
Authors
Yixuan Feng
Fu-Chuan Hsu
Yu-Ting Lu
Yu-Fu Lin
Chorng-Tyan Lin
Chiu-Feng Lin
Ying-Cheng Lu
Steven Y. Liang
Publication date
16-07-2019
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 5-8/2019
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04109-y

Other articles of this Issue 5-8/2019

The International Journal of Advanced Manufacturing Technology 5-8/2019 Go to the issue

Premium Partners