Skip to main content
Top

2015 | OriginalPaper | Chapter

4. Resistivity up to Melting and the Recording of Melting Area

Author : Alexander Savvatimskiy

Published in: Carbon at High Temperatures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Clue experimental data (starting with 1963 year, and up to 1996) by Francis Bundy (USA) are discussed in detail (under heating graphite by milliseconds electrical current pulse). Francis Bundy was the first who obtain imparted energy and resistivity of carbon near melting point. Bundy—may be the first who has been constructed phase diagram for carbon simultaneously with his experimental activity during many years. In spite of the fact that Bundy did not measure temperature, a thorough analysis of the experimental data (resistivity and enthalpy at different pressures, up to 100 kbar) gives him an advantage before other investigators. Experimental investigation of graphite at high temperatures under heating by pulse of electrical current within microseconds time interval actively started at the Institute for High Temperatures (IVTAN) in 1972, in Moscow, in the group headed by S.V. Lebedev (the pioneer of electrical explosion method). Specimens were made of isotropic graphite of low initial density, and of anisotropic pyrolytical graphite UPV-1T (like HOPG) of the high density. At the initial stage only resistivity and input energy were measured, but restricted volume around the specimen was used that gives a possibility to investigate heated graphite at high pressure. This method gives the estimation of the start of melting (in kJ/g units) and the heat of graphite melting (10 kJ/g) was obtained long before obtaining nearly the same value (10.5 kJ/g) under the temperature measurements. Next experiments of milliseconds heating by electrical current by M. Sheindlin with co-workers (Joint Institute for High Temperatures) are discussed. A special high-pressure chamber and fast pyrometer were used that give a start of graphite melting at ~ 5000 K at elevated pressure. It was obtained the dependence of emissivity for anisotropic graphite UPV1-TMO against temperature. The total error for temperature measurement ±4 %, error for emissivity measurements ±6 %. The original data of Ared Cezairliyan (USA) was obtained that the addition of oxygen into the chamber leads to an increase of the detected temperature of melting (oxygen reacts with the steam, forming a transparent carbon monoxide). It confirms that carbon vapor (sublimate) plays a leading role in underestimation of melting temperature measuring for graphite. The whole temperature plateau under graphite melting was obtained (for the first time) under microseconds heating of low density graphite as in Austria by Gernot Pottlacher as in Los Alsmos, USA by Robert Hixon. But the difficulties has appeared with the specimen density measurements because of low initial graphite density. The last point of this chapter devoted to the difficulties in recording melting temperature under laser heating.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F.P. Bundy, Melting of graphite at very high pressure. J. Chem. Phys 38, 618–630 (1963)CrossRef F.P. Bundy, Melting of graphite at very high pressure. J. Chem. Phys 38, 618–630 (1963)CrossRef
2.
go back to reference F.P. Bundy, Direct conversion of graphite to diamond in static pressure apparatus. J. Chem. Phys. 38(3), 631–643 (1963)CrossRef F.P. Bundy, Direct conversion of graphite to diamond in static pressure apparatus. J. Chem. Phys. 38(3), 631–643 (1963)CrossRef
3.
go back to reference I.I. Kornilov, New Materials and Investigation Methods of Metals and Alloys (Metallurgy, Moscow, 1966) (in Russian) I.I. Kornilov, New Materials and Investigation Methods of Metals and Alloys (Metallurgy, Moscow, 1966) (in Russian)
4.
go back to reference F.P. Bundy, R.H. Wentorf, Direct transformation of hexagonal Boron Nitride to denser forms. J. Chem. Phys 38, 1733815 (1963). (6 pages) F.P. Bundy, R.H. Wentorf, Direct transformation of hexagonal Boron Nitride to denser forms. J. Chem. Phys 38, 1733815 (1963). (6 pages)
5.
go back to reference M. Togaya, S. Sugiyama, E. Mizuhara, Melting line of graphite, in AIP, Conference Proceedings 1994, vol. 309, pt.1, pp. 255–258 M. Togaya, S. Sugiyama, E. Mizuhara, Melting line of graphite, in AIP, Conference Proceedings 1994, vol. 309, pt.1, pp. 255–258
6.
go back to reference F.P. Bundy, W.A. Basset, M.S. Weathers, R.J. Hemley, H.K. Mao, A.F. Goncharov, Review article: The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34(2), 141–153 (1996)CrossRef F.P. Bundy, W.A. Basset, M.S. Weathers, R.J. Hemley, H.K. Mao, A.F. Goncharov, Review article: The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34(2), 141–153 (1996)CrossRef
7.
go back to reference A.V. Baitin, A.A. Lebedev, S.V. Romanenko, V.N. Senchenko, M.A. Sheindlin, The melting point and optical properties of solid and liquid carbon at pressures up to 2 kbar. High Temp. -High Press 21, 157–170 (1990) A.V. Baitin, A.A. Lebedev, S.V. Romanenko, V.N. Senchenko, M.A. Sheindlin, The melting point and optical properties of solid and liquid carbon at pressures up to 2 kbar. High Temp. -High Press 21, 157–170 (1990)
8.
go back to reference J.W. Shaner, Bull. Am. Phys. Soc. 32, 608 (1987) J.W. Shaner, Bull. Am. Phys. Soc. 32, 608 (1987)
9.
go back to reference S.V. Lebedev, A.I. Savvatimskiy, The electrical resistivity of graphite in a wide range of condensed state. High Temp. 24(5), 671–678 (1986) S.V. Lebedev, A.I. Savvatimskiy, The electrical resistivity of graphite in a wide range of condensed state. High Temp. 24(5), 671–678 (1986)
10.
go back to reference V.N. Korobenko, A.I. Savvatimski, R. Cheret, Graphite melting and properties of liquid carbon. Int. J. Thermophys. 20(4), 1247–1256 (1999)CrossRef V.N. Korobenko, A.I. Savvatimski, R. Cheret, Graphite melting and properties of liquid carbon. Int. J. Thermophys. 20(4), 1247–1256 (1999)CrossRef
11.
go back to reference V.N. Korobenko, A.I. Savvatimskiy, Blackbody design for high temperature (1800 to 5500 K) of metals and carbon in liquid states under fast heating. Temperature: its measurement and control in science and industry, in AIP Conference Proceedings, ed. by D.C. Ripple, 2003, vol. 7, Part 2, pp. 783–788 V.N. Korobenko, A.I. Savvatimskiy, Blackbody design for high temperature (1800 to 5500 K) of metals and carbon in liquid states under fast heating. Temperature: its measurement and control in science and industry, in AIP Conference Proceedings, ed. by D.C. Ripple, 2003, vol. 7, Part 2, pp. 783–788
12.
go back to reference A.M. Knyazkov, A.I. Savvatimskiy, Electrical resistivity of liquid carbon during rapid heating of dense isotropic graphite in different environments. High Temp. 48(2), 192–197 (2010) A.M. Knyazkov, A.I. Savvatimskiy, Electrical resistivity of liquid carbon during rapid heating of dense isotropic graphite in different environments. High Temp. 48(2), 192–197 (2010)
13.
go back to reference A.I. Savvatimskiy, A.M. Kondratyev, S.V. Onufriev, Experiments on the graphite melting under heating by electrical current pulse, Izvestia Vuzov. Chem. Chem. Technol. 56(7), 53–56 (2013). (in Russian) A.I. Savvatimskiy, A.M. Kondratyev, S.V. Onufriev, Experiments on the graphite melting under heating by electrical current pulse, Izvestia Vuzov. Chem. Chem. Technol. 56(7), 53–56 (2013). (in Russian)
14.
go back to reference M. Togaya, Electrical property changes of liquid carbon under high pressures. J. Phys.: Conf. Ser. 215, 012–081 (2010) M. Togaya, Electrical property changes of liquid carbon under high pressures. J. Phys.: Conf. Ser. 215, 012–081 (2010)
15.
go back to reference A.M. Malvezzi, N. Bloembergen, C.Y. Huang, Phys. Rev. Letters 57, 146 (1986)CrossRef A.M. Malvezzi, N. Bloembergen, C.Y. Huang, Phys. Rev. Letters 57, 146 (1986)CrossRef
16.
go back to reference A.I. Savvatimskiy, V.E. Fortov, R. Cheret, Thermophysical properties of liquid metals and graphite, and diamond production under fast heating. High Temp.-High Press 30, 1–18 (1998)CrossRef A.I. Savvatimskiy, V.E. Fortov, R. Cheret, Thermophysical properties of liquid metals and graphite, and diamond production under fast heating. High Temp.-High Press 30, 1–18 (1998)CrossRef
17.
go back to reference M.S. Pirani, in Elektrothermie; die elektrische Erzeugung und technische Verwerdung hoher Temperaturen, ed. by M. S Pirani (J. Springer, Berlin, 1930) M.S. Pirani, in Elektrothermie; die elektrische Erzeugung und technische Verwerdung hoher Temperaturen, ed. by M. S Pirani (J. Springer, Berlin, 1930)
18.
go back to reference A.I. Savvatimskiy, V.N. Korobenko, High-temperature properties of metals for nuclear industry (zirconium, hafnium and iron during melting and in the liquid state). MEI Publishing House, 2012, 216 pp. ISBN 978-5-383-00800-3 (in Russian) A.I. Savvatimskiy, V.N. Korobenko, High-temperature properties of metals for nuclear industry (zirconium, hafnium and iron during melting and in the liquid state). MEI Publishing House, 2012, 216 pp. ISBN 978-5-383-00800-3 (in Russian)
19.
go back to reference V.M. Batenin, F.V. Bunkin, N.V. Karlov, V.A. Kirillin, L.P. Pitaevskii, A.M. Prokhorov, A.A. Rukhadze, A.I. Savvatimsky, E. FortovV, A.E. Sheindlin, In memory of Sergei Vladimirovich Lebedev. Phys. Usp. 161(3), 181–183 (1991)CrossRef V.M. Batenin, F.V. Bunkin, N.V. Karlov, V.A. Kirillin, L.P. Pitaevskii, A.M. Prokhorov, A.A. Rukhadze, A.I. Savvatimsky, E. FortovV, A.E. Sheindlin, In memory of Sergei Vladimirovich Lebedev. Phys. Usp. 161(3), 181–183 (1991)CrossRef
20.
go back to reference W.G. Chace, H.K. Moore H.K. (eds.) Exploding wires, vol. 1. (Plenum, New York, 1959) W.G. Chace, H.K. Moore H.K. (eds.) Exploding wires, vol. 1. (Plenum, New York, 1959)
21.
go back to reference S.V. Lebedev, Phenomena in tungsten wires before their explosion under high current action. JEPT 27(5), 605–614 (1954) S.V. Lebedev, Phenomena in tungsten wires before their explosion under high current action. JEPT 27(5), 605–614 (1954)
22.
go back to reference S.V. Lebedev, A.I. Savvatimskiy, The density of liquid tungsten, at which the sharp drop in conductivity takes place in the process of electrical explosion. High Temp. 8(3), 494–500 (1970) S.V. Lebedev, A.I. Savvatimskiy, The density of liquid tungsten, at which the sharp drop in conductivity takes place in the process of electrical explosion. High Temp. 8(3), 494–500 (1970)
23.
go back to reference G.R. Gathers, J.W. Shaner, D.A. Young, High temperature carbon equation of state, UCRL- 51644. Livermor 1974, 1–13 (1974) G.R. Gathers, J.W. Shaner, D.A. Young, High temperature carbon equation of state, UCRL- 51644. Livermor 1974, 1–13 (1974)
24.
go back to reference V.A. Petrov, I.I. Petrova, VYa. Chekhovskoi et al., High Temp.-High Press 2(2), 155 (1970) V.A. Petrov, I.I. Petrova, VYa. Chekhovskoi et al., High Temp.-High Press 2(2), 155 (1970)
25.
go back to reference A. Cezairliyan, F. Righini, Measurements of heat capacity, electrical resistivity and hemispherical total emittance of two grades of graphite in the range 1,500 to 3,000 K by a pulse heating technique. Rev. Int. Hautes Temp. et Refract 12, 124 (1975) A. Cezairliyan, F. Righini, Measurements of heat capacity, electrical resistivity and hemispherical total emittance of two grades of graphite in the range 1,500 to 3,000 K by a pulse heating technique. Rev. Int. Hautes Temp. et Refract 12, 124 (1975)
26.
go back to reference S.E. Vyatkin, A.N. Deev, V.G. Nagorny et al., Nuclear Graphite (Atomizdat, Moscow, 1967), p. 279. (in Russian) S.E. Vyatkin, A.N. Deev, V.G. Nagorny et al., Nuclear Graphite (Atomizdat, Moscow, 1967), p. 279. (in Russian)
27.
go back to reference S. Dushman, Scientific foundations of vacuum technology, 2nd edn. (Wiley, New York, 1962) S. Dushman, Scientific foundations of vacuum technology, 2nd edn. (Wiley, New York, 1962)
28.
go back to reference A.R. Ubbelohde, Melting and Crystal Structure (Publishing Company MIR, Moscow, 1969), p. 420 A.R. Ubbelohde, Melting and Crystal Structure (Publishing Company MIR, Moscow, 1969), p. 420
29.
go back to reference H.R. Leider, O.H. Krikorian, D.A. Young, Thermodynamic properties of carbon up to the critical point. Carbon 11, 555–563 (1973)CrossRef H.R. Leider, O.H. Krikorian, D.A. Young, Thermodynamic properties of carbon up to the critical point. Carbon 11, 555–563 (1973)CrossRef
30.
go back to reference S.V. Lebedev, Phenomena in tungsten wires prior to their explosion by a high current. JEPT 27(511), 605–614 (1954) S.V. Lebedev, Phenomena in tungsten wires prior to their explosion by a high current. JEPT 27(511), 605–614 (1954)
31.
go back to reference S.V. Lebedev, A.I. Savvatimskiy, in Investigation of Metals and Graphite Under Conditions of Rapid Electric Heating, ed. by A.E. Sheindlin, V.E. Fortov. Thermal Physics Reviews, Section B, vol 5, part 3 (Harwood Academic Publishers GmbH, Yverdon, 1993), pp. 1–79 S.V. Lebedev, A.I. Savvatimskiy, in Investigation of Metals and Graphite Under Conditions of Rapid Electric Heating, ed. by A.E. Sheindlin, V.E. Fortov. Thermal Physics Reviews, Section B, vol 5, part 3 (Harwood Academic Publishers GmbH, Yverdon, 1993), pp. 1–79
32.
go back to reference S.V. Lebedev, A.I. Savvatimskiy, Metals during rapid heating by dense currents. Sov. Phys. Usp. 27, 749–771 (1984) S.V. Lebedev, A.I. Savvatimskiy, Metals during rapid heating by dense currents. Sov. Phys. Usp. 27, 749–771 (1984)
33.
go back to reference M.A. Sheindlin, V.N. Senchenko, Experimental study of the thermodynamic properties of graphite near the melting point. Sov. Phys. Dokl. 33, 142–145 (1988) M.A. Sheindlin, V.N. Senchenko, Experimental study of the thermodynamic properties of graphite near the melting point. Sov. Phys. Dokl. 33, 142–145 (1988) 
34.
go back to reference A. Cezairliyan, P. Miiller, Measurement of the radiance temperature (at 655 nm) of melting graphite near its triple point by a pulse-heating technique. Int. J. Thermophys. 11(4), 643–651 (1990)CrossRef A. Cezairliyan, P. Miiller, Measurement of the radiance temperature (at 655 nm) of melting graphite near its triple point by a pulse-heating technique. Int. J. Thermophys. 11(4), 643–651 (1990)CrossRef
35.
go back to reference L.N. Latyev, V.A. Petrov, V.Y. Chekhovskoi, E.N. Shestakov, Radiative Properties of Solid Materials, ed. by A.E. Sheindlin. Handbook, 471 pp (Energiya, Moscow, 1974) (in Russian) L.N. Latyev, V.A. Petrov, V.Y. Chekhovskoi, E.N. Shestakov, Radiative Properties of Solid Materials, ed. by A.E. Sheindlin. Handbook, 471 pp (Energiya, Moscow, 1974) (in Russian)
36.
go back to reference A.V. Kostanovskii, M.G. Zeodinov, M.E. Kostanovskaya, Experimental determination of the emissivity of isotropic graphite at temperatures above 2300 K. High Temp. 39(1),159–161 (2001) A.V. Kostanovskii, M.G. Zeodinov, M.E. Kostanovskaya, Experimental determination of the emissivity of isotropic graphite at temperatures above 2300 K. High Temp. 39(1),159–161 (2001)
37.
go back to reference G. Pottlacher, R.S. Hixon, S. Melnitzky, E. Kaschnitz, M.A. Winkler, H. Jager, Thermophysical properties of POCO AXF-5Q graphite up to melting. Thermochim. Acta 218, 183–193 (1993)CrossRef G. Pottlacher, R.S. Hixon, S. Melnitzky, E. Kaschnitz, M.A. Winkler, H. Jager, Thermophysical properties of POCO AXF-5Q graphite up to melting. Thermochim. Acta 218, 183–193 (1993)CrossRef
38.
go back to reference G.A. Mesyatz, D.I. Proskurovsky, Pulsed Electrical Discharge in Vacuum, 256 pp. (Nauka, Novosibirsk, 1984) (in Russian) G.A. Mesyatz, D.I. Proskurovsky, Pulsed Electrical Discharge in Vacuum, 256 pp. (Nauka, Novosibirsk, 1984) (in Russian)
39.
go back to reference B.A. Koval, D.I. Proskurovsky, V.F. Tregubov, E.B. Yankelevich, JTP. Lett. 5(10), 603 (1979). (in Russian) B.A. Koval, D.I. Proskurovsky, V.F. Tregubov, E.B. Yankelevich, JTP. Lett. 5(10), 603 (1979). (in Russian)
40.
go back to reference E.I. Asinovsky, A.V. Kirillin, A.V. Kostanovskii, Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures. Phys. Uspekhi. 45, 869–882 (2002) E.I. Asinovsky, A.V. Kirillin, A.V. Kostanovskii, Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures. Phys. Uspekhi. 45, 869–882 (2002)
41.
go back to reference YuS Virgilev, Thermal conductivity of structural carbon materials. Inorg. Mater. 30(3), 353–362 (1994). (in Russian) YuS Virgilev, Thermal conductivity of structural carbon materials. Inorg. Mater. 30(3), 353–362 (1994). (in Russian) 
42.
go back to reference V.N. Korobenko, PhD dissertation for the degree of candidate of physical and mathematical sciences. Experimental study of the properties of liquid metals and carbon at high temperatures (Institute for High Temperatures RAS, Moscow, 2001) (in Russian) V.N. Korobenko, PhD dissertation for the degree of candidate of physical and mathematical sciences. Experimental study of the properties of liquid metals and carbon at high temperatures (Institute for High Temperatures RAS, Moscow, 2001) (in Russian)
43.
go back to reference M. Musella, C. Ronchi, M. Brykin, M. Sheindlin, The molten state of graphite: an experimental study. J. Appl. Phys. 84(5), 2530–2537 (1998)CrossRef M. Musella, C. Ronchi, M. Brykin, M. Sheindlin, The molten state of graphite: an experimental study. J. Appl. Phys. 84(5), 2530–2537 (1998)CrossRef
44.
go back to reference G.I. Kerley, L. Chhabildas, Multicomponent-Multiphase Equation of State for Carbon, Sandia Report: SAND2001–2619 (Sandia National Laboratories, USA, 2001), pp. 1–50CrossRef G.I. Kerley, L. Chhabildas, Multicomponent-Multiphase Equation of State for Carbon, Sandia Report: SAND2001–2619 (Sandia National Laboratories, USA, 2001), pp. 1–50CrossRef
45.
go back to reference V.N. Korobenko, A.I. Savvatimskiy, Electrical resistivity of liquid carbon. High Temp. 36(5), 701–707 (1998) V.N. Korobenko, A.I. Savvatimskiy, Electrical resistivity of liquid carbon. High Temp. 36(5), 701–707 (1998)
46.
go back to reference A.V. Kirillin, M.D. Kovalenko, S.V. Romanenko, L.M. Heifetz, M.A. Sheindlin, Apparatus and methods for examining the properties of refractory substances at high temperatures and pressures by stationary laser heating. High Temp. 24(2), 286–290 (1986) A.V. Kirillin, M.D. Kovalenko, S.V. Romanenko, L.M. Heifetz, M.A. Sheindlin, Apparatus and methods for examining the properties of refractory substances at high temperatures and pressures by stationary laser heating. High Temp. 24(2), 286–290 (1986)
47.
go back to reference E.I. Asinovsky, A.V. Kirillin, A.V. Kostanovskii, V.E. Fortov, Melting parameters of carbon. High Temp. 36(5), 716–721 (1998) E.I. Asinovsky, A.V. Kirillin, A.V. Kostanovskii, V.E. Fortov, Melting parameters of carbon. High Temp. 36(5), 716–721 (1998)
48.
go back to reference A.Y. Basharin, V.E. Fortov, Parameters of the triple point of graphite, in Abstracts of the 14th Symposium on Thermophysical Properties, ed. by W.M. Haynes, B.A. Stevenson, National Institute of Standards and Technology (NIST), Boulder, USA, 2000, p. 159, 25–30 June 2000 A.Y. Basharin, V.E. Fortov, Parameters of the triple point of graphite, in Abstracts of the 14th Symposium on Thermophysical Properties, ed. by W.M. Haynes, B.A. Stevenson, National Institute of Standards and Technology (NIST), Boulder, USA, 2000, p. 159, 25–30 June 2000
49.
go back to reference A.Y. Basharin, M.V. Brykin, M. Marin, I.S. Pakhomov, S.F. Sitnikov, Ways to improve the measurement accuracy in the experimental determination of the melting temperature of graphite. High Temp. 42(1), 60–67 (2004) A.Y. Basharin, M.V. Brykin, M. Marin, I.S. Pakhomov, S.F. Sitnikov, Ways to improve the measurement accuracy in the experimental determination of the melting temperature of graphite. High Temp. 42(1), 60–67 (2004)
50.
go back to reference A.Y. Basharin, I.S. Pakhomov, M.A. Scheindlin, The optical properties of polished pyrographite. High Temp.-High Press. 23, 543 (1991) A.Y. Basharin, I.S. Pakhomov, M.A. Scheindlin, The optical properties of polished pyrographite. High Temp.-High Press. 23, 543 (1991)
Metadata
Title
Resistivity up to Melting and the Recording of Melting Area
Author
Alexander Savvatimskiy
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-21350-7_4

Premium Partners