Skip to main content
Top
Published in: Acta Mechanica 12/2023

21-09-2023 | Original Paper

Resonance analysis of vibration isolation system with quasi-zero stiffness and quadratic damping under base excitation

Authors: Jiangchuan Niu, Wanjie Zhang, Xiangyue Zhang

Published in: Acta Mechanica | Issue 12/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The transmissibility of the forced resonance for the nonlinear vibration isolation system (VIS) coupled with quasi-zero stiffness (QZS) and quadratic damping under base excitation are investigated. By utilizing the averaging method, the approximate analytical solutions of primary resonance (PR) and 1/3 subharmonic resonance (SR) for the nonlinear vibration isolator with QZS and quadratic damping are acquired. Employing Lyapunov's first method, the stability conditions of steady-state solutions for the nonlinear VIS with QZS and quadratic damping are determined. According to the derived conditions for the existence of subharmonic resonance, it is proved that when the considered nonlinear VIS has subharmonic resonance, it only exists within a certain excitation frequency range. The accuracy of the approximate analytical solutions for the amplitude-frequency response, force transmissibility, and relative displacement transmissibility of the PR and SR of the nonlinear VIS is confirmed by comparing them with the numerical results. The effects of QZS and quadratic damping on transmissibility of both force and relative displacement of nonlinear VIS have been discussed. The analysis results indicate that by choosing the appropriate QZS parameter or quadratic damping coefficient, the subharmonic resonance of the nonlinear VIS under a certain base excitation can be completely eliminated. When the amplitude of the base excitation increases to the extent that the system exhibits significant resonance behavior, for the same coefficient value, the nonlinear VIS coupled with QZS and quadratic damping can achieve smaller initial vibration isolation frequency and better amplitude suppression effect than that with linear damping.
Literature
1.
go back to reference Yang, J., Xiong, Y.P., Xing, J.T.: Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound Vib. 332(1), 167–183 (2013) Yang, J., Xiong, Y.P., Xing, J.T.: Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound Vib. 332(1), 167–183 (2013)
2.
go back to reference Lu, Z.Q., Gu, D.H., Ding, H., Lacarbonara, W., Chen, L.Q.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Process. 136, 106490 (2020) Lu, Z.Q., Gu, D.H., Ding, H., Lacarbonara, W., Chen, L.Q.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Process. 136, 106490 (2020)
3.
go back to reference Ding, H., Lu, Z.Q., Chen, L.Q.: Nonlinear isolation of transverse vibration of pre-pressure beams. J. Sound Vib. 442, 738–751 (2019) Ding, H., Lu, Z.Q., Chen, L.Q.: Nonlinear isolation of transverse vibration of pre-pressure beams. J. Sound Vib. 442, 738–751 (2019)
4.
go back to reference Smirnov, V., Mondrus, V.: Comparison of linear and nonlinear vibration isolation system under random excitation. Procedia Eng. 153, 673–678 (2016) Smirnov, V., Mondrus, V.: Comparison of linear and nonlinear vibration isolation system under random excitation. Procedia Eng. 153, 673–678 (2016)
5.
go back to reference Yang, T., Cao, Q., Hao, Z.: A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mech. Syst. Signal Process. 155, 107636 (2021) Yang, T., Cao, Q., Hao, Z.: A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mech. Syst. Signal Process. 155, 107636 (2021)
7.
go back to reference Santhosh, B.: Dynamics and performance evaluation of an asymmetric nonlinear vibration isolation mechanism. J. Braz. Soc. Mech. Sci. Eng. 40, 169 (2018) Santhosh, B.: Dynamics and performance evaluation of an asymmetric nonlinear vibration isolation mechanism. J. Braz. Soc. Mech. Sci. Eng. 40, 169 (2018)
8.
go back to reference Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008) Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)
9.
go back to reference Lu, Z.Q., Chen, L.Q.: Some recent progresses in nonlinear passive isolations of vibrations. Chin. J. Theor. Appl. Mech. 49(3), 550–564 (2017) Lu, Z.Q., Chen, L.Q.: Some recent progresses in nonlinear passive isolations of vibrations. Chin. J. Theor. Appl. Mech. 49(3), 550–564 (2017)
10.
go back to reference Ji, J.C., Luo, Q., Ye, K.: Vibration control based metamaterials and origami structures: a state-of-the-art review. Mech. Syst. Signal Process. 161, 107945 (2021) Ji, J.C., Luo, Q., Ye, K.: Vibration control based metamaterials and origami structures: a state-of-the-art review. Mech. Syst. Signal Process. 161, 107945 (2021)
11.
go back to reference Jing, X.: The X-structure/mechanism approach to beneficial nonlinear design in engineering. Appl. Math. Mech. (English Edition) 43(7), 979–1000 (2022) Jing, X.: The X-structure/mechanism approach to beneficial nonlinear design in engineering. Appl. Math. Mech. (English Edition) 43(7), 979–1000 (2022)
12.
go back to reference Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007) Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007)
13.
go back to reference Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009) Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009)
14.
go back to reference Zhou, X., Sun, X., Zhao, D., Yang, X., Tang, K.: The design and analysis of a novel passive quasi-zero stiffness vibration isolator. J. Vib. Eng. Technol. 9, 225–245 (2021) Zhou, X., Sun, X., Zhao, D., Yang, X., Tang, K.: The design and analysis of a novel passive quasi-zero stiffness vibration isolator. J. Vib. Eng. Technol. 9, 225–245 (2021)
15.
go back to reference Wen, G., He, J., Liu, J., Lin, Y.: Design, analysis and semi-active control of a quasi-zero stiffness vibration isolation system with six oblique springs. Nonlinear Dyn. 106, 309–321 (2021) Wen, G., He, J., Liu, J., Lin, Y.: Design, analysis and semi-active control of a quasi-zero stiffness vibration isolation system with six oblique springs. Nonlinear Dyn. 106, 309–321 (2021)
16.
go back to reference Shaw, A.D., Gatti, G., Gonçalves, P.J.P., Tang, B., Brennan, M.J.: Design and test of an adjustable quasi-zero stiffness device and its use to suspend masses on a multi-modal structure. Mech. Syst. Signal Process. 152, 107354 (2021) Shaw, A.D., Gatti, G., Gonçalves, P.J.P., Tang, B., Brennan, M.J.: Design and test of an adjustable quasi-zero stiffness device and its use to suspend masses on a multi-modal structure. Mech. Syst. Signal Process. 152, 107354 (2021)
17.
go back to reference Wang, K., Zhou, J., Chang, Y., Ouyang, H., Xu, D., Yang, Y.: A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dyn. 101, 755–773 (2020) Wang, K., Zhou, J., Chang, Y., Ouyang, H., Xu, D., Yang, Y.: A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dyn. 101, 755–773 (2020)
18.
go back to reference Suman, S., Balaji, P.S., Selvakumar, K., Kumaraswamidhas, L.A.: Nonlinear vibration control device for a vehicle suspension using negative stiffness mechanism. J. Vib. Eng. Technol. 9, 957–966 (2021) Suman, S., Balaji, P.S., Selvakumar, K., Kumaraswamidhas, L.A.: Nonlinear vibration control device for a vehicle suspension using negative stiffness mechanism. J. Vib. Eng. Technol. 9, 957–966 (2021)
19.
go back to reference Chen, T., Zheng, Y., Song, L., Gao, X., Li, Z.: Design of a new quasi-zero-stiffness isolator system with nonlinear positive stiffness configuration and its novel features. Nonlinear Dyn. 111, 5141–5163 (2023) Chen, T., Zheng, Y., Song, L., Gao, X., Li, Z.: Design of a new quasi-zero-stiffness isolator system with nonlinear positive stiffness configuration and its novel features. Nonlinear Dyn. 111, 5141–5163 (2023)
20.
go back to reference Zhao, F., Ji, J., Ye, K., Luo, Q.: An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. 192, 106093 (2021) Zhao, F., Ji, J., Ye, K., Luo, Q.: An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. 192, 106093 (2021)
21.
go back to reference Robertson, W.S., Kidner, M.R.F., Cazzolato, B.S., Zander, A.C.: Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J. Sound Vib. 326(1–2), 88–103 (2009) Robertson, W.S., Kidner, M.R.F., Cazzolato, B.S., Zander, A.C.: Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J. Sound Vib. 326(1–2), 88–103 (2009)
22.
go back to reference Zheng, Y., Zhang, X., Luo, Y., Yan, B., Ma, C.: Design and experiment of a high-static–low-dynamic stiffness isolator using a negative stiffness magnetic spring. J. Sound Vib. 360, 31–52 (2016) Zheng, Y., Zhang, X., Luo, Y., Yan, B., Ma, C.: Design and experiment of a high-static–low-dynamic stiffness isolator using a negative stiffness magnetic spring. J. Sound Vib. 360, 31–52 (2016)
24.
go back to reference Yuan, S., Sun, Y., Zhao, J., Meng, K., Wang, M., Pu, H., Peng, Y., Luo, J., Xie, S.: A tunable quasi-zero stiffness isolator based on a linear electromagnetic spring. J. Sound Vib. 482, 115449 (2020) Yuan, S., Sun, Y., Zhao, J., Meng, K., Wang, M., Pu, H., Peng, Y., Luo, J., Xie, S.: A tunable quasi-zero stiffness isolator based on a linear electromagnetic spring. J. Sound Vib. 482, 115449 (2020)
25.
go back to reference Wang, M., Su, P., Liu, S., Chai, K., Wang, B., Lu, J.: Design and analysis of electromagnetic quasi-zero stiffness vibration isolator. J. Vib. Eng. Technol. 11, 153–164 (2023) Wang, M., Su, P., Liu, S., Chai, K., Wang, B., Lu, J.: Design and analysis of electromagnetic quasi-zero stiffness vibration isolator. J. Vib. Eng. Technol. 11, 153–164 (2023)
26.
go back to reference Ma, Z., Zhou, R., Yang, Q., Lee, H.P., Chai, K.: A semi-active electromagnetic quasi-zero-stiffness vibration isolator. Int. J. Mech. Sci. 252, 108357 (2023) Ma, Z., Zhou, R., Yang, Q., Lee, H.P., Chai, K.: A semi-active electromagnetic quasi-zero-stiffness vibration isolator. Int. J. Mech. Sci. 252, 108357 (2023)
27.
go back to reference An, J., Chen, G., Deng, X., Xi, C., Wang, T., He, H.: Analytical study of a pneumatic quasi-zero-stiffness isolator with mistuned mass. Nonlinear Dyn 108, 3297–3312 (2022) An, J., Chen, G., Deng, X., Xi, C., Wang, T., He, H.: Analytical study of a pneumatic quasi-zero-stiffness isolator with mistuned mass. Nonlinear Dyn 108, 3297–3312 (2022)
28.
go back to reference Xu, X., Liu, H., Jiang, X., et al.: Uncertainty analysis and optimization of quasi-zero stiffness air suspension based on polynomial chaos method. Chin. J. Mech. Eng. 35, 93 (2022) Xu, X., Liu, H., Jiang, X., et al.: Uncertainty analysis and optimization of quasi-zero stiffness air suspension based on polynomial chaos method. Chin. J. Mech. Eng. 35, 93 (2022)
29.
go back to reference Wang, Q., Zhou, J., Wang, K., Xu, D., Wen, G.: Design and experimental study of a compact quasi-zero-stiffness isolator using wave springs. Sci. China Technol. Sci. 64, 2255–2271 (2021) Wang, Q., Zhou, J., Wang, K., Xu, D., Wen, G.: Design and experimental study of a compact quasi-zero-stiffness isolator using wave springs. Sci. China Technol. Sci. 64, 2255–2271 (2021)
30.
go back to reference Jiang, Y., Song, C., Ding, C., Xu, B.: Design of magnetic-air hybrid quasi-zero stiffness vibration isolation system. J. Sound Vib. 477, 115346 (2020) Jiang, Y., Song, C., Ding, C., Xu, B.: Design of magnetic-air hybrid quasi-zero stiffness vibration isolation system. J. Sound Vib. 477, 115346 (2020)
31.
go back to reference Zhang, Z., Zhang, Y.W., Ding, H.: Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn. 100, 2121–2139 (2020) Zhang, Z., Zhang, Y.W., Ding, H.: Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn. 100, 2121–2139 (2020)
32.
go back to reference Liu, Y., Ji, W., Xu, L., Gu, H., Song, C.: Dynamic characteristics of quasi-zero stiffness vibration isolation system for coupled dynamic vibration absorber. Arch Appl Mech 91, 3799–3818 (2021) Liu, Y., Ji, W., Xu, L., Gu, H., Song, C.: Dynamic characteristics of quasi-zero stiffness vibration isolation system for coupled dynamic vibration absorber. Arch Appl Mech 91, 3799–3818 (2021)
33.
go back to reference Zeng, Y., Ding, H., Du, R.H., Chen, L.Q.: A suspension system with quasi-zero stiffness characteristics and inerter nonlinear energy sink. J. Vib. Control 28(1–2), 143–158 (2022)MathSciNet Zeng, Y., Ding, H., Du, R.H., Chen, L.Q.: A suspension system with quasi-zero stiffness characteristics and inerter nonlinear energy sink. J. Vib. Control 28(1–2), 143–158 (2022)MathSciNet
34.
go back to reference Yan, B., Yu, N., Wu, C.: A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms. Appl. Math. Mech.-Engl. Ed. 43, 1045–1062 (2022)MATH Yan, B., Yu, N., Wu, C.: A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms. Appl. Math. Mech.-Engl. Ed. 43, 1045–1062 (2022)MATH
35.
go back to reference Ma, H., Yan, B.: Nonlinear damping and mass effects of electromagnetic shunt damping for enhanced nonlinear vibration isolation. Mech. Syst. Signal Process. 146, 107010 (2021) Ma, H., Yan, B.: Nonlinear damping and mass effects of electromagnetic shunt damping for enhanced nonlinear vibration isolation. Mech. Syst. Signal Process. 146, 107010 (2021)
36.
go back to reference Huang, D., Xu, W., Xie, W., Liu, Y.: Dynamical properties of a forced vibration isolation system with real-power nonlinearities in restoring and damping forces. Nonlinear Dyn. 81, 641–658 (2015) Huang, D., Xu, W., Xie, W., Liu, Y.: Dynamical properties of a forced vibration isolation system with real-power nonlinearities in restoring and damping forces. Nonlinear Dyn. 81, 641–658 (2015)
37.
go back to reference Ho, C., Lang, Z.Q., Billings, S.A.: Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities. J. Sound Vib. 333(12), 2489–2504 (2014) Ho, C., Lang, Z.Q., Billings, S.A.: Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities. J. Sound Vib. 333(12), 2489–2504 (2014)
38.
go back to reference Dong, G., Zhang, Y., Luo, Y., Xie, S., Zhang, X.: Enhanced isolation performance of a high-static–low-dynamic stiffness isolator with geometric nonlinear damping. Nonlinear Dyn. 93, 2339–2356 (2018) Dong, G., Zhang, Y., Luo, Y., Xie, S., Zhang, X.: Enhanced isolation performance of a high-static–low-dynamic stiffness isolator with geometric nonlinear damping. Nonlinear Dyn. 93, 2339–2356 (2018)
39.
go back to reference Gao, X., Teng, H.D.: Dynamics and isolation properties for a pneumatic near-zero frequency vibration isolator with nonlinear stiffness and damping. Nonlinear Dyn. 102, 2205–2227 (2020) Gao, X., Teng, H.D.: Dynamics and isolation properties for a pneumatic near-zero frequency vibration isolator with nonlinear stiffness and damping. Nonlinear Dyn. 102, 2205–2227 (2020)
40.
go back to reference Lv, Q., Yao, Z.: Analysis of the effects of nonlinear viscous damping on vibration isolator. Nonlinear Dyn. 79, 2325–2332 (2015)MathSciNet Lv, Q., Yao, Z.: Analysis of the effects of nonlinear viscous damping on vibration isolator. Nonlinear Dyn. 79, 2325–2332 (2015)MathSciNet
41.
go back to reference Cheng, C., Li, S., Wang, Y., Jiang, X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87, 2267–2279 (2017) Cheng, C., Li, S., Wang, Y., Jiang, X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87, 2267–2279 (2017)
42.
go back to reference Liu, Y., Xu, L., Song, C., Gu, H., Ji, W.: Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping. Arch. Appl. Mech. 89, 1743–1759 (2019) Liu, Y., Xu, L., Song, C., Gu, H., Ji, W.: Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping. Arch. Appl. Mech. 89, 1743–1759 (2019)
43.
go back to reference Peng, Z.K., Meng, G., Lang, Z.Q., Zhang, W.M., Chu, F.L.: Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method. Int. J. Non-Linear Mech. 47(10), 1073–1080 (2012) Peng, Z.K., Meng, G., Lang, Z.Q., Zhang, W.M., Chu, F.L.: Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method. Int. J. Non-Linear Mech. 47(10), 1073–1080 (2012)
44.
go back to reference Lu, Z., Brennan, M., Ding, H., Chen, L.: High-static-low-dynamic-stiffness vibration isolation enhanced by damping nonlinearity. Sci. China Technol. Sci. 62, 1103–1110 (2019) Lu, Z., Brennan, M., Ding, H., Chen, L.: High-static-low-dynamic-stiffness vibration isolation enhanced by damping nonlinearity. Sci. China Technol. Sci. 62, 1103–1110 (2019)
45.
go back to reference Liu, C., Yu, K.: Superharmonic resonance of the quasi-zero-stiffness vibration isolator and its effect on the isolation performance. Nonlinear Dyn. 100, 95–117 (2020) Liu, C., Yu, K.: Superharmonic resonance of the quasi-zero-stiffness vibration isolator and its effect on the isolation performance. Nonlinear Dyn. 100, 95–117 (2020)
46.
go back to reference Wang, R.: Random vibrations of nonlinearly damped locomotive and rolling stock. J. Southwest Jiaotong Univ. 03, 101–112 (1985) Wang, R.: Random vibrations of nonlinearly damped locomotive and rolling stock. J. Southwest Jiaotong Univ. 03, 101–112 (1985)
47.
48.
go back to reference Guan, J., Zuo, J., Zhao, W., Gomi, N., Zhao, X.: Study on hydraulic dampers using a foldable inverted spiral origami structure. Vibration 5, 711–731 (2022) Guan, J., Zuo, J., Zhao, W., Gomi, N., Zhao, X.: Study on hydraulic dampers using a foldable inverted spiral origami structure. Vibration 5, 711–731 (2022)
49.
go back to reference Niu, J., Zhang, W., Shen, Y., Wang, J.: Subharmonic resonance of quasi-zero-stiffness vibration isolation system with dry friction damper. Chin. J. Theor. Appl. Mech. 55(4), 1092–1101 (2022) Niu, J., Zhang, W., Shen, Y., Wang, J.: Subharmonic resonance of quasi-zero-stiffness vibration isolation system with dry friction damper. Chin. J. Theor. Appl. Mech. 55(4), 1092–1101 (2022)
50.
go back to reference Pierre, C., Ferri, A.A., Dowell, E.H.: Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method. J. Appl. Mech. 52(4), 958–964 (1985)MATH Pierre, C., Ferri, A.A., Dowell, E.H.: Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method. J. Appl. Mech. 52(4), 958–964 (1985)MATH
Metadata
Title
Resonance analysis of vibration isolation system with quasi-zero stiffness and quadratic damping under base excitation
Authors
Jiangchuan Niu
Wanjie Zhang
Xiangyue Zhang
Publication date
21-09-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 12/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03714-z

Other articles of this Issue 12/2023

Acta Mechanica 12/2023 Go to the issue

Premium Partners