Skip to main content
Top

2015 | OriginalPaper | Chapter

Responsive Polymers as Sensors, Muscles, and Self-Healing Materials

Authors : Qiang Matthew Zhang, Michael J. Serpe

Published in: Polymer Mechanochemistry

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Responsive polymer-based materials can adapt to their surrounding environment by expanding and shrinking. This swelling and shrinking (mechanotransduction) can result in a number of functions. For example, the response can be used to lift masses, move objects, and can be used for sensing certain species in a system. Furthermore, responsive polymers can also yield materials capable of self-healing any damage affecting their mechanical properties. In this chapter we detail many examples of how mechanical responses can be triggered by external electric and/or magnetic fields, hygroscopicity, pH, temperature, and many other stimuli. We highlight how the specific responses can be used for artificial muscles, self-healing materials, and sensors, with particular focus on detailing the polymer response yielding desired effects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Derby CD (2007) Escape by inking and secreting: marine molluscs avoid predators through a rich array of chemicals and mechanisms. Biol Bull 213:274CrossRef Derby CD (2007) Escape by inking and secreting: marine molluscs avoid predators through a rich array of chemicals and mechanisms. Biol Bull 213:274CrossRef
2.
go back to reference Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962CrossRef Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962CrossRef
3.
go back to reference Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655CrossRef Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655CrossRef
4.
go back to reference Ionov L (2010) Actively-moving materials based on stimuli-responsive polymers. J Mater Chem 20:3382CrossRef Ionov L (2010) Actively-moving materials based on stimuli-responsive polymers. J Mater Chem 20:3382CrossRef
5.
go back to reference Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3CrossRef Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3CrossRef
6.
go back to reference Stuart MAC, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101CrossRef Stuart MAC, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101CrossRef
7.
go back to reference Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278CrossRef Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278CrossRef
8.
go back to reference Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199CrossRef Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199CrossRef
9.
go back to reference Zhang J, Zhang M, Tang K, Verpoort F, Sun T (2014) Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis. Small 10:32CrossRef Zhang J, Zhang M, Tang K, Verpoort F, Sun T (2014) Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis. Small 10:32CrossRef
10.
go back to reference Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5:1519CrossRef Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5:1519CrossRef
11.
go back to reference Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173CrossRef Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173CrossRef
12.
13.
go back to reference Ahn S-k, Kasi RM, Kim S-C, Sharma N, Zhou Y (2008) Stimuli-responsive polymer gels. Soft Matter 4:1151CrossRef Ahn S-k, Kasi RM, Kim S-C, Sharma N, Zhou Y (2008) Stimuli-responsive polymer gels. Soft Matter 4:1151CrossRef
14.
go back to reference Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275CrossRef Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275CrossRef
15.
go back to reference Schild H (1992) Poly (N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163CrossRef Schild H (1992) Poly (N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163CrossRef
16.
go back to reference Maeda Y, Nakamura T, Ikeda I (2001) Changes in the hydration states of poly (N-alkylacrylamide) s during their phase transitions in water observed by FTIR spectroscopy. Macromolecules 34:1391CrossRef Maeda Y, Nakamura T, Ikeda I (2001) Changes in the hydration states of poly (N-alkylacrylamide) s during their phase transitions in water observed by FTIR spectroscopy. Macromolecules 34:1391CrossRef
17.
go back to reference Idziak I, Avoce D, Lessard D, Gravel D, Zhu X (1999) Thermosensitivity of aqueous solutions of poly (N,N-diethylacrylamide). Macromolecules 32:1260CrossRef Idziak I, Avoce D, Lessard D, Gravel D, Zhu X (1999) Thermosensitivity of aqueous solutions of poly (N,N-diethylacrylamide). Macromolecules 32:1260CrossRef
18.
go back to reference Lutz JF (2008) Polymerization of oligo (ethylene glycol)(meth) acrylates: toward new generations of smart biocompatible materials. J Polym Sci A Polym Chem 46:3459CrossRef Lutz JF (2008) Polymerization of oligo (ethylene glycol)(meth) acrylates: toward new generations of smart biocompatible materials. J Polym Sci A Polym Chem 46:3459CrossRef
19.
go back to reference Hoogenboom R (2009) Poly (2‐oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed 48:7978CrossRef Hoogenboom R (2009) Poly (2‐oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed 48:7978CrossRef
20.
go back to reference Dai S, Ravi P, Tam KC (2009) Thermo-and photo-responsive polymeric systems. Soft Matter 5:2513CrossRef Dai S, Ravi P, Tam KC (2009) Thermo-and photo-responsive polymeric systems. Soft Matter 5:2513CrossRef
21.
go back to reference Zhang QM, Li X, Islam MR, Wei M, Serpe MJ (2014) Light switchable optical materials from azobenzene crosslinked poly (N-isopropylacrylamide)-based microgels. J Mater Chem C 2:6961CrossRef Zhang QM, Li X, Islam MR, Wei M, Serpe MJ (2014) Light switchable optical materials from azobenzene crosslinked poly (N-isopropylacrylamide)-based microgels. J Mater Chem C 2:6961CrossRef
22.
go back to reference Liu D, Chen W, Sun K, Deng K, Zhang W, Wang Z, Jiang X (2011) Resettable, multi‐readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew Chem Int Ed 50:4103CrossRef Liu D, Chen W, Sun K, Deng K, Zhang W, Wang Z, Jiang X (2011) Resettable, multi‐readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew Chem Int Ed 50:4103CrossRef
23.
go back to reference Zhang QM, Xu W, Serpe MJ (2014) Optical devices constructed from multiresponsive microgels. Angew Chem Int Ed 53:4827CrossRef Zhang QM, Xu W, Serpe MJ (2014) Optical devices constructed from multiresponsive microgels. Angew Chem Int Ed 53:4827CrossRef
24.
go back to reference Schumers JM, Fustin CA, Gohy JF (2010) Light‐responsive block copolymers macromol. Rapid Commun 31:1588CrossRef Schumers JM, Fustin CA, Gohy JF (2010) Light‐responsive block copolymers macromol. Rapid Commun 31:1588CrossRef
25.
go back to reference Kumar S, Dory YL, Lepage M, Zhao Y (2011) Surface-grafted stimuli-responsive block copolymer brushes for the thermo-, photo-and pH-sensitive release of dye. Macromolecules 44:7385CrossRef Kumar S, Dory YL, Lepage M, Zhao Y (2011) Surface-grafted stimuli-responsive block copolymer brushes for the thermo-, photo-and pH-sensitive release of dye. Macromolecules 44:7385CrossRef
26.
go back to reference Yan B, Boyer J-C, Branda NR, Zhao Y (2011) Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J Am Chem Soc 133:19714CrossRef Yan B, Boyer J-C, Branda NR, Zhao Y (2011) Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J Am Chem Soc 133:19714CrossRef
27.
go back to reference May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497CrossRef May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497CrossRef
28.
go back to reference Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991CrossRef Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991CrossRef
29.
go back to reference Madden JD, Vandesteeg NA, Anquetil PA, Madden PG, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW (2004) Artificial muscle technology: physical principles and naval prospects. IEEE J Oceanic Eng 29:706CrossRef Madden JD, Vandesteeg NA, Anquetil PA, Madden PG, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW (2004) Artificial muscle technology: physical principles and naval prospects. IEEE J Oceanic Eng 29:706CrossRef
30.
go back to reference Madden JD, Schmid B, Hechinger M, Lafontaine SR, Madden PG, Hover FS, Kimball R, Hunter IW (2004) Application of polypyrrole actuators: feasibility of variable camber foils. IEEE J Oceanic Eng 29:738CrossRef Madden JD, Schmid B, Hechinger M, Lafontaine SR, Madden PG, Hover FS, Kimball R, Hunter IW (2004) Application of polypyrrole actuators: feasibility of variable camber foils. IEEE J Oceanic Eng 29:738CrossRef
31.
go back to reference Colgate JE, Lynch KM (2004) Mechanics and control of swimming: a review. IEEE J Oceanic Eng 29:660 Colgate JE, Lynch KM (2004) Mechanics and control of swimming: a review. IEEE J Oceanic Eng 29:660
32.
go back to reference Mirfakhrai T, Madden JD, Baughman RH (2007) Polymer artificial muscles. Mater Today 10:30CrossRef Mirfakhrai T, Madden JD, Baughman RH (2007) Polymer artificial muscles. Mater Today 10:30CrossRef
33.
go back to reference Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10CrossRef Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10CrossRef
34.
go back to reference Brochu P, Stoyanov H, Niu X, Pei Q (2013) All-silicone prestrain-locked interpenetrating polymer network elastomers: free-standing silicone artificial muscles with improved performance and robustness. Smart Mater Struct 22:055022CrossRef Brochu P, Stoyanov H, Niu X, Pei Q (2013) All-silicone prestrain-locked interpenetrating polymer network elastomers: free-standing silicone artificial muscles with improved performance and robustness. Smart Mater Struct 22:055022CrossRef
35.
go back to reference Zhang Z, Liu L, Fan J, Yu K, Liu Y, Shi L, Leng J (2008) In: The 15th international symposium on: smart structures and materials & nondestructive evaluation and health monitoring. International Society for Optics and Photonics p 692610 Zhang Z, Liu L, Fan J, Yu K, Liu Y, Shi L, Leng J (2008) In: The 15th international symposium on: smart structures and materials & nondestructive evaluation and health monitoring. International Society for Optics and Photonics p 692610
36.
go back to reference Lotz P, Matysek M, Lechner P, Hamann M, Schlaak HF (2008) In: The 15th international symposium on: smart structures and materials & nondestructive evaluation and health monitoring. International Society for Optics and Photonics p 692723 Lotz P, Matysek M, Lechner P, Hamann M, Schlaak HF (2008) In: The 15th international symposium on: smart structures and materials & nondestructive evaluation and health monitoring. International Society for Optics and Photonics p 692723
37.
go back to reference Pei Q, Rosenthal MA, Pelrine R, Stanford S, Kornbluth RD (2003) Smart structures and materials. International Society for Optics and Photonics p 281 Pei Q, Rosenthal MA, Pelrine R, Stanford S, Kornbluth RD (2003) Smart structures and materials. International Society for Optics and Photonics p 281
38.
go back to reference Tangboriboon N, Datsanae S, Onthong A, Kunanuruksapong R, Sirivat A (2013) Electromechanical responses of dielectric elastomer composite actuators based on natural rubber and alumina. J Elastom Plast 45:143CrossRef Tangboriboon N, Datsanae S, Onthong A, Kunanuruksapong R, Sirivat A (2013) Electromechanical responses of dielectric elastomer composite actuators based on natural rubber and alumina. J Elastom Plast 45:143CrossRef
39.
go back to reference Islam MR, Li X, Smyth K, Serpe MJ (2013) Polymer-based muscle expansion and contraction. Angew Chem Int Ed 52:10330 Islam MR, Li X, Smyth K, Serpe MJ (2013) Polymer-based muscle expansion and contraction. Angew Chem Int Ed 52:10330
40.
go back to reference Islam MR, Serpe MJ (2014) Poly (N-isopropylacrylamide) microgel-based thin film actuators for humidity sensing. RSC Adv 4:31937CrossRef Islam MR, Serpe MJ (2014) Poly (N-isopropylacrylamide) microgel-based thin film actuators for humidity sensing. RSC Adv 4:31937CrossRef
41.
go back to reference Li X, Serpe MJ (2014) Understanding and controlling the self-folding behavior of polymer-based muscles. Adv Funct Mater 24:4119 Li X, Serpe MJ (2014) Understanding and controlling the self-folding behavior of polymer-based muscles. Adv Funct Mater 24:4119
42.
go back to reference Jeon JH, Cheedarala RK, Kee CD, Oh IK (2013) Dry‐type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv Funct Mater 23:6007CrossRef Jeon JH, Cheedarala RK, Kee CD, Oh IK (2013) Dry‐type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv Funct Mater 23:6007CrossRef
43.
go back to reference Jo C, Pugal D, Oh I-K, Kim KJ, Asaka K (2013) Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog Polym Sci 38:1037CrossRef Jo C, Pugal D, Oh I-K, Kim KJ, Asaka K (2013) Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog Polym Sci 38:1037CrossRef
44.
go back to reference Palmre V, Pugal D, Kim KJ, Leang KK, Asaka K, Aabloo A (2014) Nanothorn electrodes for ionic polymer-metal composite artificial muscles. Sci Rep 4:6176CrossRef Palmre V, Pugal D, Kim KJ, Leang KK, Asaka K, Aabloo A (2014) Nanothorn electrodes for ionic polymer-metal composite artificial muscles. Sci Rep 4:6176CrossRef
45.
go back to reference Kumar D, Sharma R (1998) Advances in conductive polymers. Eur Polym J 34:1053CrossRef Kumar D, Sharma R (1998) Advances in conductive polymers. Eur Polym J 34:1053CrossRef
46.
go back to reference Khaldi A, Plesse C, Soyer C, Cattan E, Vidal F, Legrand C, Teyssié D (2011) Conducting interpenetrating polymer network sized to fabricate microactuators. Appl Phys Lett 98:164101CrossRef Khaldi A, Plesse C, Soyer C, Cattan E, Vidal F, Legrand C, Teyssié D (2011) Conducting interpenetrating polymer network sized to fabricate microactuators. Appl Phys Lett 98:164101CrossRef
47.
go back to reference Okuzaki H, Hosaka K, Suzuki H, Ito T (2010) Effect of temperature on humido-sensitive conducting polymer actuators. Sensor Actuat A Phys 157:96CrossRef Okuzaki H, Hosaka K, Suzuki H, Ito T (2010) Effect of temperature on humido-sensitive conducting polymer actuators. Sensor Actuat A Phys 157:96CrossRef
48.
go back to reference Ma M, Guo L, Anderson DG, Langer R (2013) Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339:186CrossRef Ma M, Guo L, Anderson DG, Langer R (2013) Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339:186CrossRef
49.
go back to reference Thomsen DL, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna BR (2001) Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34:5868CrossRef Thomsen DL, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna BR (2001) Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34:5868CrossRef
50.
go back to reference Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Krüger P, Lösche M, Kremer F (2001) Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410:447CrossRef Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Krüger P, Lösche M, Kremer F (2001) Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410:447CrossRef
51.
go back to reference Kondo M, Sugimoto M, Yamada M, Naka Y, J-i M, Kinoshita M, Shishido A, Yu Y, Ikeda T (2010) Effect of concentration of photoactive chromophores on photomechanical properties of crosslinked azobenzene liquid-crystalline polymers. J Mater Chem 20:117CrossRef Kondo M, Sugimoto M, Yamada M, Naka Y, J-i M, Kinoshita M, Shishido A, Yu Y, Ikeda T (2010) Effect of concentration of photoactive chromophores on photomechanical properties of crosslinked azobenzene liquid-crystalline polymers. J Mater Chem 20:117CrossRef
52.
go back to reference Yamada M, Kondo M, Mamiya Ji YY, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light‐driven plastic motors. Angew Chem Int Ed 47:4986CrossRef Yamada M, Kondo M, Mamiya Ji YY, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light‐driven plastic motors. Angew Chem Int Ed 47:4986CrossRef
53.
go back to reference Syrett JA, Becer CR, Haddleton DM (2010) Self-healing and self-mendable polymers. Polym Chem 1:978CrossRef Syrett JA, Becer CR, Haddleton DM (2010) Self-healing and self-mendable polymers. Polym Chem 1:978CrossRef
55.
go back to reference Descalzo AB, Martínez‐Máñez R, Sancenon F, Hoffmann K, Rurack K (2006) The supramolecular chemistry of organic–inorganic hybrid materials. Angew Chem Int Ed 45:5924CrossRef Descalzo AB, Martínez‐Máñez R, Sancenon F, Hoffmann K, Rurack K (2006) The supramolecular chemistry of organic–inorganic hybrid materials. Angew Chem Int Ed 45:5924CrossRef
56.
go back to reference Becer CR, Hahn S, Fijten MW, Thijs HM, Hoogenboom R, Schubert US (2008) Libraries of methacrylic acid and oligo (ethylene glycol) methacrylate copolymers with LCST behavior. J Polym Sci A Polym Chem 46:7138CrossRef Becer CR, Hahn S, Fijten MW, Thijs HM, Hoogenboom R, Schubert US (2008) Libraries of methacrylic acid and oligo (ethylene glycol) methacrylate copolymers with LCST behavior. J Polym Sci A Polym Chem 46:7138CrossRef
57.
go back to reference Ladmiral V, Legge TM, Zhao Y, Perrier S (2008) “Click” chemistry and radical polymerization: potential loss of orthogonality. Macromolecules 41:6728 Ladmiral V, Legge TM, Zhao Y, Perrier S (2008) “Click” chemistry and radical polymerization: potential loss of orthogonality. Macromolecules 41:6728
58.
go back to reference Nurmi L, Lindqvist J, Randev R, Syrett J, Haddleton DM (2009) Glycopolymers via catalytic chain transfer polymerisation (CCTP), Huisgens cycloaddition and thiol–ene double click reactions. Chem Commun 2727 Nurmi L, Lindqvist J, Randev R, Syrett J, Haddleton DM (2009) Glycopolymers via catalytic chain transfer polymerisation (CCTP), Huisgens cycloaddition and thiol–ene double click reactions. Chem Commun 2727
59.
go back to reference Liu YL, Chen YW (2007) Thermally reversible cross‐linked polyamides with high toughness and self‐repairing ability from maleimide‐and furan‐functionalized aromatic polyamides. Macromol Chem Phys 208:224CrossRef Liu YL, Chen YW (2007) Thermally reversible cross‐linked polyamides with high toughness and self‐repairing ability from maleimide‐and furan‐functionalized aromatic polyamides. Macromol Chem Phys 208:224CrossRef
60.
go back to reference Oehlenschlaeger KK, Mueller JO, Brandt J, Hilf S, Lederer A, Wilhelm M, Graf R, Coote ML, Schmidt FG, Barner‐Kowollik C (2014) Adaptable hetero Diels–Alder networks for fast self‐healing under mild conditions. Adv Mater 26:3561CrossRef Oehlenschlaeger KK, Mueller JO, Brandt J, Hilf S, Lederer A, Wilhelm M, Graf R, Coote ML, Schmidt FG, Barner‐Kowollik C (2014) Adaptable hetero Diels–Alder networks for fast self‐healing under mild conditions. Adv Mater 26:3561CrossRef
61.
go back to reference Klukovich HM, Kean ZS, Iacono ST, Craig SL (2011) Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers. J Am Chem Soc 133:17882CrossRef Klukovich HM, Kean ZS, Iacono ST, Craig SL (2011) Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers. J Am Chem Soc 133:17882CrossRef
62.
go back to reference Yang Y, Urban MW (2013) Self-healing polymeric materials. Chem Soc Rev 42:7446CrossRef Yang Y, Urban MW (2013) Self-healing polymeric materials. Chem Soc Rev 42:7446CrossRef
63.
go back to reference Deng G, Tang C, Li F, Jiang H, Chen Y (2010) Covalent cross-linked polymer gels with reversible sol–gel transition and self-healing properties. Macromolecules 43:1191CrossRef Deng G, Tang C, Li F, Jiang H, Chen Y (2010) Covalent cross-linked polymer gels with reversible sol–gel transition and self-healing properties. Macromolecules 43:1191CrossRef
64.
go back to reference Nicolaÿ R, Kamada J, Van Wassen A, Matyjaszewski K (2010) Responsive gels based on a dynamic covalent trithiocarbonate cross-linker. Macromolecules 43:4355CrossRef Nicolaÿ R, Kamada J, Van Wassen A, Matyjaszewski K (2010) Responsive gels based on a dynamic covalent trithiocarbonate cross-linker. Macromolecules 43:4355CrossRef
65.
go back to reference Arisawa M, Yamaguchi M (2003) Rhodium-catalyzed disulfide exchange reaction. J Am Chem Soc 125:6624CrossRef Arisawa M, Yamaguchi M (2003) Rhodium-catalyzed disulfide exchange reaction. J Am Chem Soc 125:6624CrossRef
66.
go back to reference Yoon JA, Kamada J, Koynov K, Mohin J, Nicolaÿ R, Zhang Y, Balazs AC, Kowalewski T, Matyjaszewski K (2011) Self-healing polymer films based on thiol–disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45:142CrossRef Yoon JA, Kamada J, Koynov K, Mohin J, Nicolaÿ R, Zhang Y, Balazs AC, Kowalewski T, Matyjaszewski K (2011) Self-healing polymer films based on thiol–disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45:142CrossRef
67.
go back to reference Amamoto Y, Otsuka H, Takahara A, Matyjaszewski K (2012) Self‐healing of covalently cross‐linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv Mater 24:3975CrossRef Amamoto Y, Otsuka H, Takahara A, Matyjaszewski K (2012) Self‐healing of covalently cross‐linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv Mater 24:3975CrossRef
68.
go back to reference Kantor SW, Grubb WT, Osthoff RC (1954) The mechanism of the acid-catalyzed and base-catalyzed equilibration of siloxanes. J Am Chem Soc 76:5190CrossRef Kantor SW, Grubb WT, Osthoff RC (1954) The mechanism of the acid-catalyzed and base-catalyzed equilibration of siloxanes. J Am Chem Soc 76:5190CrossRef
69.
go back to reference Zheng P, McCarthy TJ (2012) A Surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J Am Chem Soc 134:2024CrossRef Zheng P, McCarthy TJ (2012) A Surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J Am Chem Soc 134:2024CrossRef
70.
go back to reference Maes F, Montarnal D, Cantournet S, Tournilhac F, Corté L, Leibler L (2012) Activation and deactivation of self-healing in supramolecular rubbers. Soft Matter 8:1681CrossRef Maes F, Montarnal D, Cantournet S, Tournilhac F, Corté L, Leibler L (2012) Activation and deactivation of self-healing in supramolecular rubbers. Soft Matter 8:1681CrossRef
71.
go back to reference Montarnal D, Tournilhac F, Hidalgo M, Couturier J-L, Leibler L (2009) Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. J Am Chem Soc 131:7966CrossRef Montarnal D, Tournilhac F, Hidalgo M, Couturier J-L, Leibler L (2009) Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers. J Am Chem Soc 131:7966CrossRef
72.
go back to reference Faghihnejad A, Feldman KE, Yu J, Tirrell MV, Israelachvili JN, Hawker CJ, Kramer EJ, Zeng H (2014) Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv Funct Mater 24:2322CrossRef Faghihnejad A, Feldman KE, Yu J, Tirrell MV, Israelachvili JN, Hawker CJ, Kramer EJ, Zeng H (2014) Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv Funct Mater 24:2322CrossRef
73.
go back to reference Wilson GO, Caruso MM, Schelkopf SR, Sottos NR, White SR, Moore JS (2011) Adhesion promotion via noncovalent interactions in self-healing polymers. ACS Appl Mater Interfaces 3:3072CrossRef Wilson GO, Caruso MM, Schelkopf SR, Sottos NR, White SR, Moore JS (2011) Adhesion promotion via noncovalent interactions in self-healing polymers. ACS Appl Mater Interfaces 3:3072CrossRef
74.
go back to reference Schubert US, Eschbaumer C, Hien O, Andres PR (2001) 4′-Functionalized 2,2′, 6′,2″-terpyridines as building blocks for supramolecular chemistry and nanoscience. Tetrahedron Lett 42:4705CrossRef Schubert US, Eschbaumer C, Hien O, Andres PR (2001) 4′-Functionalized 2,2′, 6′,2″-terpyridines as building blocks for supramolecular chemistry and nanoscience. Tetrahedron Lett 42:4705CrossRef
75.
go back to reference Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, Rowan SJ, Weder C (2011) Optically healable supramolecular polymers. Nature 472:334CrossRef Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, Rowan SJ, Weder C (2011) Optically healable supramolecular polymers. Nature 472:334CrossRef
76.
go back to reference Holten-Andersen N, Harrington MJ, Birkedal H, Lee BP, Messersmith PB, Lee KYC, Waite JH (2011) pH-Induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. PNAS 108:2651CrossRef Holten-Andersen N, Harrington MJ, Birkedal H, Lee BP, Messersmith PB, Lee KYC, Waite JH (2011) pH-Induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. PNAS 108:2651CrossRef
77.
go back to reference Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H (2013) Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 14:297CrossRef Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H (2013) Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 14:297CrossRef
78.
go back to reference Burattini S, Greenland BW, Merino DH, Weng W, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic π–π stacking and hydrogen-bonding interactions. J Am Chem Soc 132:12051CrossRef Burattini S, Greenland BW, Merino DH, Weng W, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic π–π stacking and hydrogen-bonding interactions. J Am Chem Soc 132:12051CrossRef
79.
go back to reference Greenland BW, Burattini S, Hayes W, Colquhoun HM (2008) Design, synthesis and computational modelling of aromatic tweezer-molecules as models for chain-folding polymer blends. Tetrahedron 64:8346CrossRef Greenland BW, Burattini S, Hayes W, Colquhoun HM (2008) Design, synthesis and computational modelling of aromatic tweezer-molecules as models for chain-folding polymer blends. Tetrahedron 64:8346CrossRef
80.
go back to reference Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, Mackay ME, Rowan SJ (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134:5362CrossRef Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, Mackay ME, Rowan SJ (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134:5362CrossRef
81.
go back to reference Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678CrossRef Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678CrossRef
82.
go back to reference Roy I, Gupta MN (2003) Smart polymeric materials: emerging biochemical applications. Chem Biol 10:1161CrossRef Roy I, Gupta MN (2003) Smart polymeric materials: emerging biochemical applications. Chem Biol 10:1161CrossRef
83.
go back to reference Robinson DN, Peppas NA (2002) Preparation and characterization of pH-responsive poly (methacrylic acid-g-ethylene glycol) nanospheres. Macromolecules 35:3668CrossRef Robinson DN, Peppas NA (2002) Preparation and characterization of pH-responsive poly (methacrylic acid-g-ethylene glycol) nanospheres. Macromolecules 35:3668CrossRef
85.
go back to reference Bashir R, Hilt J, Elibol O, Gupta A, Peppas N (2002) Micromechanical cantilever as an ultrasensitive pH microsensor. Appl Phys Lett 81:3091CrossRef Bashir R, Hilt J, Elibol O, Gupta A, Peppas N (2002) Micromechanical cantilever as an ultrasensitive pH microsensor. Appl Phys Lett 81:3091CrossRef
86.
go back to reference Xia Y, Gates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12:693CrossRef Xia Y, Gates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12:693CrossRef
87.
go back to reference Weissman JM, Sunkara HB, Tse AS, Asher SA (1996) Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274:959CrossRef Weissman JM, Sunkara HB, Tse AS, Asher SA (1996) Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274:959CrossRef
88.
go back to reference Yeh P (1988) Optical waves in layered media. Wiley, New York Yeh P (1988) Optical waves in layered media. Wiley, New York
89.
go back to reference Hu L, Serpe MJ (2013) Controlling the response of color tunable poly (N-isopropylacrylamide) microgel-based etalons with hysteresis. Chem Commun 49:2649CrossRef Hu L, Serpe MJ (2013) Controlling the response of color tunable poly (N-isopropylacrylamide) microgel-based etalons with hysteresis. Chem Commun 49:2649CrossRef
90.
go back to reference Schacher FH, Rupar PA, Manners I (2012) Functional block copolymers: nanostructured materials with emerging applications. Angew Chem Int Ed 51:7898CrossRef Schacher FH, Rupar PA, Manners I (2012) Functional block copolymers: nanostructured materials with emerging applications. Angew Chem Int Ed 51:7898CrossRef
91.
go back to reference Ye X, Qi L (2011) Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: controllable fabrication, assembly, and applications. Nano Today 6:608CrossRef Ye X, Qi L (2011) Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: controllable fabrication, assembly, and applications. Nano Today 6:608CrossRef
92.
go back to reference Lee K, Asher SA (2000) Photonic crystal chemical sensors: pH and ionic strength. J Am Chem Soc 122:9534CrossRef Lee K, Asher SA (2000) Photonic crystal chemical sensors: pH and ionic strength. J Am Chem Soc 122:9534CrossRef
93.
go back to reference Marchetti M, Prager S, Cussler EL (1990) Thermodynamic predictions of volume changes in temperature-sensitive gels. 1. Theory. Macromolecules 23:1760CrossRef Marchetti M, Prager S, Cussler EL (1990) Thermodynamic predictions of volume changes in temperature-sensitive gels. 1. Theory. Macromolecules 23:1760CrossRef
94.
go back to reference Xu X, Goponenko AV, Asher SA (2008) Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials. J Am Chem Soc 130:3113CrossRef Xu X, Goponenko AV, Asher SA (2008) Polymerized polyHEMA photonic crystals: pH and ethanol sensor materials. J Am Chem Soc 130:3113CrossRef
95.
go back to reference Mafé S, Manzanares JA, English AE, Tanaka T (1997) Multiple phases in ionic copolymer gels. Phys Rev Lett 79:3086CrossRef Mafé S, Manzanares JA, English AE, Tanaka T (1997) Multiple phases in ionic copolymer gels. Phys Rev Lett 79:3086CrossRef
96.
go back to reference Shin J, Braun PV, Lee W (2010) Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sensor Actuat B Chem 150:183CrossRef Shin J, Braun PV, Lee W (2010) Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sensor Actuat B Chem 150:183CrossRef
97.
go back to reference Griffete N, Frederich H, Maître A, Chehimi MM, Ravaine S, Mangeney C (2011) Photonic crystal pH sensor containing a planar defect for fast and enhanced response. J Mater Chem 21:13052CrossRef Griffete N, Frederich H, Maître A, Chehimi MM, Ravaine S, Mangeney C (2011) Photonic crystal pH sensor containing a planar defect for fast and enhanced response. J Mater Chem 21:13052CrossRef
98.
go back to reference Sorrell CD, Carter MCD, Serpe MJ (2011) Color tunable poly (N-isopropylacrylamide)-co-acrylic acid microgel–Au hybrid assemblies. Adv Funct Mater 21:425CrossRef Sorrell CD, Carter MCD, Serpe MJ (2011) Color tunable poly (N-isopropylacrylamide)-co-acrylic acid microgel–Au hybrid assemblies. Adv Funct Mater 21:425CrossRef
99.
go back to reference Sorrell CD, Carter MCD, Serpe MJ (2011) A “paint-on” protocol for the facile assembly of uniform microgel coatings for color tunable etalon fabrication. ACS Appl Mater Interfaces 3:1140CrossRef Sorrell CD, Carter MCD, Serpe MJ (2011) A “paint-on” protocol for the facile assembly of uniform microgel coatings for color tunable etalon fabrication. ACS Appl Mater Interfaces 3:1140CrossRef
100.
go back to reference Islam MR, Serpe MJ (2013) Polyelectrolyte mediated intra and intermolecular crosslinking in microgel-based etalons for sensing protein concentration in solution. Chem Commun 49:2646CrossRef Islam MR, Serpe MJ (2013) Polyelectrolyte mediated intra and intermolecular crosslinking in microgel-based etalons for sensing protein concentration in solution. Chem Commun 49:2646CrossRef
101.
go back to reference Islam MR, Serpe MJ (2013) Penetration of polyelectrolytes into charged poly (N-isopropylacrylamide) microgel layers confined between two surfaces. Macromolecules 46:1599CrossRef Islam MR, Serpe MJ (2013) Penetration of polyelectrolytes into charged poly (N-isopropylacrylamide) microgel layers confined between two surfaces. Macromolecules 46:1599CrossRef
102.
go back to reference Hu L, Serpe MJ (2012) Color modulation of spatially isolated regions on a single poly (N-isopropylacrylamide) microgel based etalon. J Mater Chem 22:8199CrossRef Hu L, Serpe MJ (2012) Color modulation of spatially isolated regions on a single poly (N-isopropylacrylamide) microgel based etalon. J Mater Chem 22:8199CrossRef
103.
go back to reference Sorrell CD, Serpe MJ (2011) Reflection order selectivity of color-tunable poly(N-isopropylacrylamide) microgel based etalons. Adv Mater 23:4088CrossRef Sorrell CD, Serpe MJ (2011) Reflection order selectivity of color-tunable poly(N-isopropylacrylamide) microgel based etalons. Adv Mater 23:4088CrossRef
104.
go back to reference Gopich IV, Szabo A (2007) Single-molecule FRET with diffusion and conformational dynamics. J Phys Chem B 111:12925CrossRef Gopich IV, Szabo A (2007) Single-molecule FRET with diffusion and conformational dynamics. J Phys Chem B 111:12925CrossRef
105.
go back to reference Hong SW, Kim KH, Huh J, Ahn C-H, Jo WH (2005) Design and synthesis of a new pH sensitive polymeric sensor using fluorescence resonance energy transfer. Chem Mater 17:6213CrossRef Hong SW, Kim KH, Huh J, Ahn C-H, Jo WH (2005) Design and synthesis of a new pH sensitive polymeric sensor using fluorescence resonance energy transfer. Chem Mater 17:6213CrossRef
106.
go back to reference Hong SW, Ahn C-H, Huh J, Jo WH (2006) Synthesis of a PEGylated polymeric pH sensor and its pH sensitivity by fluorescence resonance energy transfer. Macromolecules 39:7694CrossRef Hong SW, Ahn C-H, Huh J, Jo WH (2006) Synthesis of a PEGylated polymeric pH sensor and its pH sensitivity by fluorescence resonance energy transfer. Macromolecules 39:7694CrossRef
107.
go back to reference Paek K, Chung S, Cho C-H, Kim BJ (2011) Fluorescent and pH-responsive diblock copolymer-coated core–shell CdSe/ZnS particles for a color-displaying, ratiometric pH sensor. Chem Commun 47:10272CrossRef Paek K, Chung S, Cho C-H, Kim BJ (2011) Fluorescent and pH-responsive diblock copolymer-coated core–shell CdSe/ZnS particles for a color-displaying, ratiometric pH sensor. Chem Commun 47:10272CrossRef
108.
go back to reference Paek K, Yang H, Lee J, Park J, Kim BJ (2014) Efficient colorimetric pH sensor based on responsive polymer–quantum dot integrated graphene oxide. ACS Nano 8:2848CrossRef Paek K, Yang H, Lee J, Park J, Kim BJ (2014) Efficient colorimetric pH sensor based on responsive polymer–quantum dot integrated graphene oxide. ACS Nano 8:2848CrossRef
109.
go back to reference Xie D, Jiang Y, Pan W, Li D, Wu Z, Li Y (2002) Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology. Sensor Actuat B Chem 81:158CrossRef Xie D, Jiang Y, Pan W, Li D, Wu Z, Li Y (2002) Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology. Sensor Actuat B Chem 81:158CrossRef
110.
go back to reference Matsuguchi M, Tamai K, Sakai Y (2001) SO2 gas sensors using polymers with different amino groups. Sensor Actuat B Chem 77:363CrossRef Matsuguchi M, Tamai K, Sakai Y (2001) SO2 gas sensors using polymers with different amino groups. Sensor Actuat B Chem 77:363CrossRef
111.
go back to reference Nanto H, Dougami N, Mukai T, Habara M, Kusano E, Kinbara A, Ogawa T, Oyabu T (2000) A smart gas sensor using polymer-film-coated quartz resonator microbalance. Sensor Actuat B Chem 66:16CrossRef Nanto H, Dougami N, Mukai T, Habara M, Kusano E, Kinbara A, Ogawa T, Oyabu T (2000) A smart gas sensor using polymer-film-coated quartz resonator microbalance. Sensor Actuat B Chem 66:16CrossRef
112.
go back to reference Zhang JT, Wang L, Luo J, Tikhonov A, Kornienko N, Asher SA (2011) 2-D array photonic crystal sensing motif. J Am Chem Soc 133:9152CrossRef Zhang JT, Wang L, Luo J, Tikhonov A, Kornienko N, Asher SA (2011) 2-D array photonic crystal sensing motif. J Am Chem Soc 133:9152CrossRef
113.
go back to reference Asher SA, Holtz J, Liu L, Wu Z (1994) Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays. J Am Chem Soc 116:4997CrossRef Asher SA, Holtz J, Liu L, Wu Z (1994) Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays. J Am Chem Soc 116:4997CrossRef
114.
go back to reference Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829CrossRef Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829CrossRef
115.
go back to reference Staples CA, Dome PB, Klecka GM, Oblock ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149CrossRef Staples CA, Dome PB, Klecka GM, Oblock ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149CrossRef
116.
go back to reference Wu Z, Ca T, Lin C, Shen D, Li G (2008) Label-free colorimetric detection of trace atrazine in aqueous solution by using molecularly imprinted photonic polymers. Chem A Eur J 14:11358CrossRef Wu Z, Ca T, Lin C, Shen D, Li G (2008) Label-free colorimetric detection of trace atrazine in aqueous solution by using molecularly imprinted photonic polymers. Chem A Eur J 14:11358CrossRef
117.
go back to reference Guo C, Zhou C, Sai N, Ning B, Liu M, Chen H, Gao Z (2012) Detection of bisphenol A using an opal photonic crystal sensor. Sensor Actuat B Chem 166:17CrossRef Guo C, Zhou C, Sai N, Ning B, Liu M, Chen H, Gao Z (2012) Detection of bisphenol A using an opal photonic crystal sensor. Sensor Actuat B Chem 166:17CrossRef
118.
go back to reference Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29CrossRef Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29CrossRef
119.
go back to reference Khimji I, Kelly EY, Helwa Y, Hoang M, Liu J (2013) Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods 64:292CrossRef Khimji I, Kelly EY, Helwa Y, Hoang M, Liu J (2013) Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods 64:292CrossRef
120.
go back to reference Yin B-C, Ye B-C, Wang H, Zhu Z, Tan W (2012) Colorimetric logic gates based on aptamer-crosslinked hydrogels. Chem Commun 48:1248CrossRef Yin B-C, Ye B-C, Wang H, Zhu Z, Tan W (2012) Colorimetric logic gates based on aptamer-crosslinked hydrogels. Chem Commun 48:1248CrossRef
121.
go back to reference Dave N, Chan MY, Huang P-JJ, Smith BD, Liu J (2010) Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J Am Chem Soc 132:12668CrossRef Dave N, Chan MY, Huang P-JJ, Smith BD, Liu J (2010) Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J Am Chem Soc 132:12668CrossRef
122.
go back to reference Rahman MM, X-b L, Kim J, Lim BO, Ahammad A, Lee J-J (2014) A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly (thionine) film. Sensor Actuat B Chem 202:536CrossRef Rahman MM, X-b L, Kim J, Lim BO, Ahammad A, Lee J-J (2014) A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly (thionine) film. Sensor Actuat B Chem 202:536CrossRef
123.
go back to reference Lee E, Kim J, Myung J, Kang Y (2013) Modification of block copolymer photonic gels for colorimetric biosensors. Macromol Res 20:1219CrossRef Lee E, Kim J, Myung J, Kang Y (2013) Modification of block copolymer photonic gels for colorimetric biosensors. Macromol Res 20:1219CrossRef
124.
go back to reference Islam MR, Serpe MJ (2013) Label-free detection of low protein concentration in solution using a novel colorimetric assay biosensor. Bioelectron 49:133CrossRef Islam MR, Serpe MJ (2013) Label-free detection of low protein concentration in solution using a novel colorimetric assay biosensor. Bioelectron 49:133CrossRef
125.
go back to reference Islam MR, Serpe MJ (2014) Polymer-based devices for the label-free detection of DNA in solution: low DNA concentrations yield large signals. Anal Bioanal Chem 406:4777CrossRef Islam MR, Serpe MJ (2014) Polymer-based devices for the label-free detection of DNA in solution: low DNA concentrations yield large signals. Anal Bioanal Chem 406:4777CrossRef
126.
go back to reference Islam MR, Serpe MJ (2014) A novel label-free colorimetric assay for DNA concentration in solution. Anal Chim Acta 843:83CrossRef Islam MR, Serpe MJ (2014) A novel label-free colorimetric assay for DNA concentration in solution. Anal Chim Acta 843:83CrossRef
Metadata
Title
Responsive Polymers as Sensors, Muscles, and Self-Healing Materials
Authors
Qiang Matthew Zhang
Michael J. Serpe
Copyright Year
2015
DOI
https://doi.org/10.1007/128_2015_626

Premium Partners