Skip to main content
Top

2011 | OriginalPaper | Chapter

22. Reverse Engineering of Gene Regulation Networks with an Application to the DREAM4 in silico Network Challenge

Authors : Hyonho Chun, Jia Kang, Xianghua Zhang, Minghua Deng, Haisu Ma, Hongyu Zhao

Published in: Handbook of Statistical Bioinformatics

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Despite much research, reverse engineering of gene regulation remains a challenging task due to a large number of genes involved and complex relationships among them. In this chapter, we review statistical methods for inferring gene regulation networks, specifically focusing on the methods for analyzing gene expression data. We then present a new reverse engineering method in order to efficiently utilize datasets from various perturbation experiments as well as to integrate these multiple sources of information. We apply our approach to the DREAM in silico network challenge to demonstrate its performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Andercut, M., & Kauffman, S. A. (2008). On the sparse reconstruction of gene networks. Journal of Computational Biology, 15(1), 21–30.MathSciNetCrossRef Andercut, M., & Kauffman, S. A. (2008). On the sparse reconstruction of gene networks. Journal of Computational Biology, 15(1), 21–30.MathSciNetCrossRef
2.
go back to reference Andrecut, M., Huang, S., & Kauffman, S. A. (2008). Heuristic approach to sparse approximation of gene regulatory networks. Journal of Computational Biology, 15(9), 1173–1186.MathSciNetCrossRef Andrecut, M., Huang, S., & Kauffman, S. A. (2008). Heuristic approach to sparse approximation of gene regulatory networks. Journal of Computational Biology, 15(9), 1173–1186.MathSciNetCrossRef
3.
go back to reference Bansal, M., Gatta, G. D., & di Bernardo, D. (2006). Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics, 22(7), 815–822.CrossRef Bansal, M., Gatta, G. D., & di Bernardo, D. (2006). Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics, 22(7), 815–822.CrossRef
4.
go back to reference Bernt Øksendal, (2006). Stochastic differential equation: An introduction with applications (6th ed.). Springer Heidelberg Dordrecht London New York. Bernt Øksendal, (2006). Stochastic differential equation: An introduction with applications (6th ed.). Springer Heidelberg Dordrecht London New York.
5.
go back to reference Bonneau, R., Reiss, D. J., Shannon, P., Facciotti, M., Hood, L., Baliga, N. S., & Thorsson, V. (2006). The inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biology, 7, R36.CrossRef Bonneau, R., Reiss, D. J., Shannon, P., Facciotti, M., Hood, L., Baliga, N. S., & Thorsson, V. (2006). The inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biology, 7, R36.CrossRef
6.
go back to reference Buchler, N. E., Garland, U., & Hwa, T. (2003). On schemes of combinatorial transcription logic. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5136–5141.CrossRef Buchler, N. E., Garland, U., & Hwa, T. (2003). On schemes of combinatorial transcription logic. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5136–5141.CrossRef
7.
go back to reference Butte, A. J., Tamayo, P., Slonim, D., Golub, T. R., & Kohane, I. S. (2000). Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12182–12186.CrossRef Butte, A. J., Tamayo, P., Slonim, D., Golub, T. R., & Kohane, I. S. (2000). Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12182–12186.CrossRef
8.
go back to reference Butte, A. S., & Kohane, I. S. (2003). Relevance networks: A first step toward finding genetic regulatory networks within microarray data. In G. Parmigiani, E.S. Garrett, R.A. Irizarry, & S.L. Zeger (Eds.), The analysis of gene expression data: Methods and Software, (pp. 428–446). New York, NY: Springer.CrossRef Butte, A. S., & Kohane, I. S. (2003). Relevance networks: A first step toward finding genetic regulatory networks within microarray data. In G. Parmigiani, E.S. Garrett, R.A. Irizarry, & S.L. Zeger (Eds.), The analysis of gene expression data: Methods and Software, (pp. 428–446). New York, NY: Springer.CrossRef
9.
go back to reference Cao, J., & Zhao, H. (2008). Estimating dynamic models for gene regulation networks. Bioinformatics, 15;24(14), 1619–1624. Cao, J., & Zhao, H. (2008). Estimating dynamic models for gene regulation networks. Bioinformatics, 15;24(14), 1619–1624.
10.
go back to reference Chen, K. C., Wang, T. Y., Tseng, H. H., Huang, C. Y. F., & Kao, C. Y. (2005). A stochastic differential equation model for quantifying transcriptional regulatory network in saccharomyces cerevisiae. Bioinformatics, 21(12), 2883–2890.CrossRef Chen, K. C., Wang, T. Y., Tseng, H. H., Huang, C. Y. F., & Kao, C. Y. (2005). A stochastic differential equation model for quantifying transcriptional regulatory network in saccharomyces cerevisiae. Bioinformatics, 21(12), 2883–2890.CrossRef
11.
go back to reference Chickering, D. M. (1996). Learing Bayesian Networks is NP-complete. In D. Fisher & H.-J. Lenz (Eds.), Learning from data: Artificial intelligence and statistics, (pp. 121–130). New York: Springer-Verlag.CrossRef Chickering, D. M. (1996). Learing Bayesian Networks is NP-complete. In D. Fisher & H.-J. Lenz (Eds.), Learning from data: Artificial intelligence and statistics, (pp. 121–130). New York: Springer-Verlag.CrossRef
12.
go back to reference Christley, S., Nie, Q., & Xie, X. (2009). Incorporating existing network information into gene network inference. PLoS ONE, 4(8), e6799.CrossRef Christley, S., Nie, Q., & Xie, X. (2009). Incorporating existing network information into gene network inference. PLoS ONE, 4(8), e6799.CrossRef
13.
go back to reference Chu, S., DeRisi, J., Eisen, M., Botstein, J., Brown, P. O., & Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast. Science, 282(5389), 699–705.CrossRef Chu, S., DeRisi, J., Eisen, M., Botstein, J., Brown, P. O., & Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast. Science, 282(5389), 699–705.CrossRef
14.
go back to reference Dobra, A., Hans, C., Jones, B., Nevins, J. R., Yao, G., & West, M. (2004). Sparse graphical models for exploring gene expression data. Journal of Multivariate Analysis, 90(1), 196–212.MathSciNetMATHCrossRef Dobra, A., Hans, C., Jones, B., Nevins, J. R., Yao, G., & West, M. (2004). Sparse graphical models for exploring gene expression data. Journal of Multivariate Analysis, 90(1), 196–212.MathSciNetMATHCrossRef
15.
go back to reference Ellis, B., & Wong, W. H. (2008). Learning causal Bayesian network structures from experimental data. Journal of the American Statistical Association, 103, 778–789.MathSciNetMATHCrossRef Ellis, B., & Wong, W. H. (2008). Learning causal Bayesian network structures from experimental data. Journal of the American Statistical Association, 103, 778–789.MathSciNetMATHCrossRef
16.
go back to reference Fisher, R. A. (1948). Combining independent tests of significance. American Statistician, 2(5), 30. Fisher, R. A. (1948). Combining independent tests of significance. American Statistician, 2(5), 30.
17.
go back to reference Fisk, P. R. (1970). A note on a characterization of the multivariate normal distribution. The Annals of Mathematical Statistics, 41, 486–494.MathSciNetMATHCrossRef Fisk, P. R. (1970). A note on a characterization of the multivariate normal distribution. The Annals of Mathematical Statistics, 41, 486–494.MathSciNetMATHCrossRef
18.
go back to reference Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000). Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7, 601–620.CrossRef Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000). Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7, 601–620.CrossRef
19.
go back to reference Gardner, T. S., di Bernardo, D., Lorenz, D., & Collins, J. J. (2003). Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 4, 102–105.CrossRef Gardner, T. S., di Bernardo, D., Lorenz, D., & Collins, J. J. (2003). Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 4, 102–105.CrossRef
20.
go back to reference Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., & Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 11(12), 4241–4257. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., & Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 11(12), 4241–4257.
21.
go back to reference Granger, C. W. J. (1980). Testing for causality, a personal viewpoint. Journal of Economic Dynamics and Control, 2, 329–352.MathSciNetCrossRef Granger, C. W. J. (1980). Testing for causality, a personal viewpoint. Journal of Economic Dynamics and Control, 2, 329–352.MathSciNetCrossRef
22.
go back to reference Hartemink, A. J., Gifford, D. K., Jaakkola, T. S., & Young, R. A. (2001). Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac Symp Biocomput., 422–433. Hartemink, A. J., Gifford, D. K., Jaakkola, T. S., & Young, R. A. (2001). Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac Symp Biocomput., 422–433.
23.
go back to reference Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R., Armour, C. D., Bennett, H. A., Coffey, E., Dai, H., He, Y. D., Kidd, M. J., King, A. M., Meyer, M. R., Slade, D., Lum, P. Y., Stepaniants, S. B., Shoemaker, D. D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., & Friend, S. H. (2000). Functional discovery via a compendium of expression profiles. Cell, 102(1), 109–126.CrossRef Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R., Armour, C. D., Bennett, H. A., Coffey, E., Dai, H., He, Y. D., Kidd, M. J., King, A. M., Meyer, M. R., Slade, D., Lum, P. Y., Stepaniants, S. B., Shoemaker, D. D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., & Friend, S. H. (2000). Functional discovery via a compendium of expression profiles. Cell, 102(1), 109–126.CrossRef
25.
go back to reference Li, H., & Gui, J. (2006). Gradient directed regularization for sparse gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics, 7(2), 302–317.MATHCrossRef Li, H., & Gui, J. (2006). Gradient directed regularization for sparse gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics, 7(2), 302–317.MATHCrossRef
26.
go back to reference Marbach, D., Schaffter, T., Mattiussi, C., & Floreano, D. (2009). Generating realistic in silico gene networks fro performance assessment of reverse engineering methods. Journal of Computational Biology, 16(2), 229–239.CrossRef Marbach, D., Schaffter, T., Mattiussi, C., & Floreano, D. (2009). Generating realistic in silico gene networks fro performance assessment of reverse engineering methods. Journal of Computational Biology, 16(2), 229–239.CrossRef
27.
go back to reference Margolin, A. A., Memenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R. D., & Califano, A. (2006). ARCANE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7(1), S7.CrossRef Margolin, A. A., Memenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R. D., & Califano, A. (2006). ARCANE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7(1), S7.CrossRef
28.
go back to reference Meinshausen, N., & Buhlmann, P. (2006). High-dimensional graphs and variable selection with the LASSO. Annals of Statistics, 34(3), 1436.MathSciNetMATHCrossRef Meinshausen, N., & Buhlmann, P. (2006). High-dimensional graphs and variable selection with the LASSO. Annals of Statistics, 34(3), 1436.MathSciNetMATHCrossRef
29.
go back to reference Opgen-Rhein, R., & Strimmer, K. (2007). Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process. BMC Bioinformatics, 8(2), S3.CrossRef Opgen-Rhein, R., & Strimmer, K. (2007). Learning causal networks from systems biology time course data: An effective model selection procedure for the vector autoregressive process. BMC Bioinformatics, 8(2), S3.CrossRef
30.
go back to reference Peng, J., Wang, P., Zhou, N., & Zhu, J. (2009). Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 104(486), 735–746.MathSciNetCrossRef Peng, J., Wang, P., Zhou, N., & Zhu, J. (2009). Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 104(486), 735–746.MathSciNetCrossRef
31.
go back to reference Perrin, B. E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., & d’Alche-Buc, F. (2003). Gene networks inference using dynamic Bayesian networks. Bioinformatics, 19(2), ii138–ii148. Perrin, B. E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., & d’Alche-Buc, F. (2003). Gene networks inference using dynamic Bayesian networks. Bioinformatics, 19(2), ii138–ii148.
32.
go back to reference Ramsay, J. O., Hooker, G., Cao, G., & Campbell, D. (2007). Parameter estimation for differential equations: A generalized smoothing approach (with discussion). Journal of Royal Statistical Society, Series B, 69, 741–769.MathSciNetCrossRef Ramsay, J. O., Hooker, G., Cao, G., & Campbell, D. (2007). Parameter estimation for differential equations: A generalized smoothing approach (with discussion). Journal of Royal Statistical Society, Series B, 69, 741–769.MathSciNetCrossRef
33.
go back to reference Rice, J. J., Tu, Y., & Stolovizky, G. (2005). Reconstructing biological networks using conditional correlation analysis. Bioinformatics, 21(6), 765–773.CrossRef Rice, J. J., Tu, Y., & Stolovizky, G. (2005). Reconstructing biological networks using conditional correlation analysis. Bioinformatics, 21(6), 765–773.CrossRef
34.
go back to reference Rogers, S., & Girolami, M. (2005). A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics, 21(14), 3131–3137.CrossRef Rogers, S., & Girolami, M. (2005). A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics, 21(14), 3131–3137.CrossRef
35.
go back to reference Savageau, M. A. (1969). Biochemical systems analysis. I. some mathematical properties of the rate law for the component enzymatic reactions. Journal of Theoretical Biology, 25(3), 365–369. Savageau, M. A. (1969). Biochemical systems analysis. I. some mathematical properties of the rate law for the component enzymatic reactions. Journal of Theoretical Biology, 25(3), 365–369.
36.
go back to reference Savageau, M. A. (1969). Biochemical systems analysis. II. the steady-state solutions for an n-pool system using a power-law approximation. Journal of Theoretical Biology, 25(3), 370–379. Savageau, M. A. (1969). Biochemical systems analysis. II. the steady-state solutions for an n-pool system using a power-law approximation. Journal of Theoretical Biology, 25(3), 370–379.
37.
go back to reference Schafer, J., & Strimmer, K. (2005). An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics, 21, 754–764.CrossRef Schafer, J., & Strimmer, K. (2005). An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics, 21, 754–764.CrossRef
38.
go back to reference Schafer, J., & Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4, 1–30.MathSciNetCrossRef Schafer, J., & Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4, 1–30.MathSciNetCrossRef
39.
go back to reference Shimamura, T., Imoto, S., Yamaguchi, R., Fujita, A., Nagasaki, M., & Miyano, S. (2009). Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Systems Biology, 3, 41.CrossRef Shimamura, T., Imoto, S., Yamaguchi, R., Fujita, A., Nagasaki, M., & Miyano, S. (2009). Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Systems Biology, 3, 41.CrossRef
40.
go back to reference Shimamura, T., Imoto, S., Yamaguchi, R., & Miyano, S. (2007). Weighted LASSO in graphical Gaussian modeling for large gene network estimation based on microarray data. Genome Informatics, 19, 142–153.CrossRef Shimamura, T., Imoto, S., Yamaguchi, R., & Miyano, S. (2007). Weighted LASSO in graphical Gaussian modeling for large gene network estimation based on microarray data. Genome Informatics, 19, 142–153.CrossRef
41.
go back to reference Soranzo, N., Bianconi, G., & Altafini, C. (2007). Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: Synthetic versus real data. Bioinformatics, 23, 1640–1647.CrossRef Soranzo, N., Bianconi, G., & Altafini, C. (2007). Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: Synthetic versus real data. Bioinformatics, 23, 1640–1647.CrossRef
42.
go back to reference Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D., & Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9(12), 3273–3297. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D., & Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9(12), 3273–3297.
43.
go back to reference Stolovitzky, G., Monroe, D., & Califano, A. (2007). Dialogue on reverse-engineering assessment and methods: The DREAM of high-throughput pathway inference. Annals of the Newyork Academy of Sciences, 1115, 1–22.CrossRef Stolovitzky, G., Monroe, D., & Califano, A. (2007). Dialogue on reverse-engineering assessment and methods: The DREAM of high-throughput pathway inference. Annals of the Newyork Academy of Sciences, 1115, 1–22.CrossRef
44.
go back to reference Stolovitzky, G., Prill, R., & Califano, A. (2009). Lessons from the DREAM2 challenges. Annals of the New York Academy of Sciences, 1158, 159–195.CrossRef Stolovitzky, G., Prill, R., & Califano, A. (2009). Lessons from the DREAM2 challenges. Annals of the New York Academy of Sciences, 1158, 159–195.CrossRef
45.
go back to reference Sun, N., & Zhao, H. (2009). Reconstructing transcriptional regulatory networks through genomic data. Statistical Methods in Medical Research, 18, 595–617.MathSciNetCrossRef Sun, N., & Zhao, H. (2009). Reconstructing transcriptional regulatory networks through genomic data. Statistical Methods in Medical Research, 18, 595–617.MathSciNetCrossRef
46.
go back to reference Wahba, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Annals of Statistics, 13, 1378–1402.MathSciNetMATHCrossRef Wahba, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Annals of Statistics, 13, 1378–1402.MathSciNetMATHCrossRef
47.
go back to reference Wang, S. C. (2004). Reconstructing gene networks from tiem ordered gene expression data using bayesian method with global search algorithm. Journal of Bioinformatics and Computational Biology, 2, 441–458.CrossRef Wang, S. C. (2004). Reconstructing gene networks from tiem ordered gene expression data using bayesian method with global search algorithm. Journal of Bioinformatics and Computational Biology, 2, 441–458.CrossRef
48.
go back to reference Werhli, A. V., Grzegorczyk, M., & Husmeier, D. (2006). Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and Bayesian networks. Bioinformatics, 22, 2623–2531.CrossRef Werhli, A. V., Grzegorczyk, M., & Husmeier, D. (2006). Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and Bayesian networks. Bioinformatics, 22, 2623–2531.CrossRef
49.
go back to reference Wille, A., & Buhlmann, P. (2006). Low-order conditional independence graphs for inferring genetic networks. Statistical Applications in Genetics and Molecular Biology, 5(1), Article 1. Wille, A., & Buhlmann, P. (2006). Low-order conditional independence graphs for inferring genetic networks. Statistical Applications in Genetics and Molecular Biology, 5(1), Article 1.
50.
go back to reference Yip, Y. L. (2009). Computational reconstruction of biological networks. Ph.D. thesis, Yale University, New Haven, CT. Yip, Y. L. (2009). Computational reconstruction of biological networks. Ph.D. thesis, Yale University, New Haven, CT.
51.
go back to reference Zou, M., & Conzen, S. D. (2005). A new dynamic bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21, 71–79.CrossRef Zou, M., & Conzen, S. D. (2005). A new dynamic bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21, 71–79.CrossRef
Metadata
Title
Reverse Engineering of Gene Regulation Networks with an Application to the DREAM4 in silico Network Challenge
Authors
Hyonho Chun
Jia Kang
Xianghua Zhang
Minghua Deng
Haisu Ma
Hongyu Zhao
Copyright Year
2011
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-16345-6_22

Premium Partner