Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 10/2023

24-05-2023 | Review Article

Review of microwave imaging algorithms for stroke detection

Authors: Jinzhen Liu, Liming Chen, Hui Xiong, Yuqing Han

Published in: Medical & Biological Engineering & Computing | Issue 10/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microwave imaging is one of the rapidly developing frontier disciplines in the field of modern medical imaging. The development of microwave imaging algorithms for reconstructing stroke images is discussed in this paper. Compared with traditional stroke detection and diagnosis techniques, microwave imaging has the advantages of low price and no ionizing radiation hazards. The research hotspots of microwave imaging algorithms in the field of stroke are mainly reflected in the design and improvement of microwave tomography, radar imaging, and deep learning imaging. However, the current research lacks the analysis and combing of microwave imaging algorithms. In this paper, the development of common microwave imaging algorithms is reviewed. The concept, research status, current research hotspots and difficulties, and future development trends of microwave imaging algorithms are systematically expounded.

Graphical Abstract

The microwave antenna is used to collect scattered signals, and a series of microwave imaging algorithms are used to reconstruct the stroke image. The classification diagram and flow chart of the algorithms are shown in this Figure. (The classification diagram and flow chart are based on the microwave imaging algorithms.)

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lindsay MP, Norrving B, Sacco RL et al (2019) World Stroke Organization (WSO): global stroke fact sheet 2019. Int J Stroke 14(8):806–817PubMedCrossRef Lindsay MP, Norrving B, Sacco RL et al (2019) World Stroke Organization (WSO): global stroke fact sheet 2019. Int J Stroke 14(8):806–817PubMedCrossRef
3.
go back to reference Murphy SJ, Werring DJ (2020) Stroke: causes and clinical features. Medicine (Abingdon) 48(9):561–566PubMed Murphy SJ, Werring DJ (2020) Stroke: causes and clinical features. Medicine (Abingdon) 48(9):561–566PubMed
4.
go back to reference Benjamin EJ, Muntner P, Alonso A et al (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528PubMedCrossRef Benjamin EJ, Muntner P, Alonso A et al (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528PubMedCrossRef
5.
go back to reference Elameer M, Price CI, (2020) Neuroimaging methods for acute stroke diagnosis and treatment. In: Peplow, P.V., Martinez, B., Dambinova, S.A. (eds) Stroke biomarkers. Neuromethods 147: 297–333 Elameer M, Price CI, (2020) Neuroimaging methods for acute stroke diagnosis and treatment. In: Peplow, P.V., Martinez, B., Dambinova, S.A. (eds) Stroke biomarkers. Neuromethods 147: 297–333
6.
go back to reference Ramamurthy K, Menaka R, Johnson A et al (2020) Neuroimaging and deep learning for brain stroke detection — a review of recent advancements and future prospects. Comput Methods Programs Biomed 197:105728CrossRef Ramamurthy K, Menaka R, Johnson A et al (2020) Neuroimaging and deep learning for brain stroke detection — a review of recent advancements and future prospects. Comput Methods Programs Biomed 197:105728CrossRef
7.
go back to reference Orel SG, Schnall MD (2001) MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 220(1):13–30PubMedCrossRef Orel SG, Schnall MD (2001) MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 220(1):13–30PubMedCrossRef
8.
go back to reference Walsh KB (2019) Non-invasive sensor technology for prehospital stroke diagnosis: current status and future directions. Int J Stroke 14(6):592–602PubMedCrossRef Walsh KB (2019) Non-invasive sensor technology for prehospital stroke diagnosis: current status and future directions. Int J Stroke 14(6):592–602PubMedCrossRef
9.
go back to reference Bevacqua MT, Bellizzi GG, Crocco L, et al. (2019) A method for quantitative imaging of electrical properties of human tissues from only amplitude electromagnetic data. Inverse Problems 35 Bevacqua MT, Bellizzi GG, Crocco L, et al. (2019) A method for quantitative imaging of electrical properties of human tissues from only amplitude electromagnetic data. Inverse Problems 35
10.
go back to reference Semenov SY, Svenson RH, Posukh VG et al (2002) Dielectrical spectroscopy of canine myocardium during acute ischemia and hypoxia at frequency spectrum from 100 kHz to 6 GHz. IEEE Trans Med Imaging 21(6):703–707PubMedCrossRef Semenov SY, Svenson RH, Posukh VG et al (2002) Dielectrical spectroscopy of canine myocardium during acute ischemia and hypoxia at frequency spectrum from 100 kHz to 6 GHz. IEEE Trans Med Imaging 21(6):703–707PubMedCrossRef
11.
go back to reference Hopfer M, Planas R, Hamidipour A et al (2017) Electromagnetic tomography for detection, differentiation, and monitoring of brain stroke: a virtual data and human head phantom study. IEEE Antennas Propag Mag 59(5):86–97CrossRef Hopfer M, Planas R, Hamidipour A et al (2017) Electromagnetic tomography for detection, differentiation, and monitoring of brain stroke: a virtual data and human head phantom study. IEEE Antennas Propag Mag 59(5):86–97CrossRef
12.
go back to reference Pagliari DJ, Pulimeno A, Vacca M, et al. (2015) A low-cost, fast, and accurate microwave imaging system for breast cancer detection. 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS) Pagliari DJ, Pulimeno A, Vacca M, et al. (2015) A low-cost, fast, and accurate microwave imaging system for breast cancer detection. 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS)
13.
go back to reference Eesuola A, Chen Y, Tian GY (2011) Novel ultra-wideband directional antennas for microwave breast cancer detection. In: 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 90–93 Eesuola A, Chen Y, Tian GY (2011) Novel ultra-wideband directional antennas for microwave breast cancer detection. In: 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 90–93
14.
go back to reference Qureshi AM, Mustansar Z (2017) Levels of detail analysis of microwave scattering from human head models for brain stroke detection. PeerJ 21(5):e4061CrossRef Qureshi AM, Mustansar Z (2017) Levels of detail analysis of microwave scattering from human head models for brain stroke detection. PeerJ 21(5):e4061CrossRef
15.
go back to reference Mobashsher AT, Bialkowski KS, Abbosh AM (2016) Design of compact cross-fed three-dimensional slot-loaded antenna and its application in wideband head imaging system. IEEE Antennas Wirel Propag Lett 15:1856–1860CrossRef Mobashsher AT, Bialkowski KS, Abbosh AM (2016) Design of compact cross-fed three-dimensional slot-loaded antenna and its application in wideband head imaging system. IEEE Antennas Wirel Propag Lett 15:1856–1860CrossRef
16.
go back to reference Chew KM, Yong CY, Sudirman R, et al. (2018) Bio-signal processing and 2D representation for brain tumor detection using microwave signal analysis. 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 303–309 Chew KM, Yong CY, Sudirman R, et al. (2018) Bio-signal processing and 2D representation for brain tumor detection using microwave signal analysis. 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 303–309
17.
go back to reference Jamlos MA, Mustafa WA, (2019) Improved confocal microwave imaging algorithm for tumor detection Jamlos MA, Mustafa WA, (2019) Improved confocal microwave imaging algorithm for tumor detection
18.
go back to reference Chaudhary SS, Mishra RK, Swarup A et al (1984) Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies. Indian J Biochem Biophys 21(1):76–79PubMed Chaudhary SS, Mishra RK, Swarup A et al (1984) Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies. Indian J Biochem Biophys 21(1):76–79PubMed
19.
go back to reference Halter RJ, Zhou T, Meaney PM et al (2009) The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience. Physiol Meas 30:S121–S136PubMedPubMedCentralCrossRef Halter RJ, Zhou T, Meaney PM et al (2009) The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience. Physiol Meas 30:S121–S136PubMedPubMedCentralCrossRef
20.
go back to reference Bindu GN, Abraham S, Lonappan A et al (2006) Active microwave imaging for breast cancer detection. Progress In Electromagnetics Res 58:149–169CrossRef Bindu GN, Abraham S, Lonappan A et al (2006) Active microwave imaging for breast cancer detection. Progress In Electromagnetics Res 58:149–169CrossRef
21.
go back to reference Aldhaeebi MA, Alzoubi K, Almoneef TS et al (2020) Review of microwaves techniques for breast cancer detection. Sensors (Basel) 20(8):E2390CrossRef Aldhaeebi MA, Alzoubi K, Almoneef TS et al (2020) Review of microwaves techniques for breast cancer detection. Sensors (Basel) 20(8):E2390CrossRef
22.
go back to reference Mouty S, Bocquet B, Ringot R, et al. (2000) Microwave radiometric imaging (MWI) for the characterisation of breast tumours. Eur Phys J-appl Phys 10:73–78 Mouty S, Bocquet B, Ringot R, et al. (2000) Microwave radiometric imaging (MWI) for the characterisation of breast tumours. Eur Phys J-appl Phys 10:73–78
23.
go back to reference Wang X, Xin H, Bauer D, et al. (2011) Microwave induced thermal acoustic imaging modeling for potential breast cancer detection. In: 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 722–725 Wang X, Xin H, Bauer D, et al. (2011) Microwave induced thermal acoustic imaging modeling for potential breast cancer detection. In: 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 722–725
24.
go back to reference Pichot C, Jofre L, Peronnet G et al (1985) Active microwave imaging of inhomogeneous bodies. IEEE Trans Antennas Propagat 33:416–425CrossRef Pichot C, Jofre L, Peronnet G et al (1985) Active microwave imaging of inhomogeneous bodies. IEEE Trans Antennas Propagat 33:416–425CrossRef
25.
go back to reference Meaney PM, Fanning MW, Li D et al (2000) A clinical prototype for active microwave imaging of the breast. IEEE Trans Microw Theory Tech 48:1841–1853CrossRef Meaney PM, Fanning MW, Li D et al (2000) A clinical prototype for active microwave imaging of the breast. IEEE Trans Microw Theory Tech 48:1841–1853CrossRef
26.
go back to reference Yago Ruiz Á, Cavagnaro M, Crocco L (2023) An effective framework for deep-learning-enhanced quantitative microwave imaging and its potential for medical applications. Sensors 23(2):643PubMedPubMedCentralCrossRef Yago Ruiz Á, Cavagnaro M, Crocco L (2023) An effective framework for deep-learning-enhanced quantitative microwave imaging and its potential for medical applications. Sensors 23(2):643PubMedPubMedCentralCrossRef
27.
go back to reference Semenov SY, Corfield DR (2008) Microwave tomography for brain imaging: feasibility assessment for stroke detection. Int J Antennas Propagation 2008:1–8CrossRef Semenov SY, Corfield DR (2008) Microwave tomography for brain imaging: feasibility assessment for stroke detection. Int J Antennas Propagation 2008:1–8CrossRef
28.
go back to reference Fear EC, Li X, Hagness SC et al (2002) Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions. IEEE Trans Biomed Eng 49(8):812–822PubMedCrossRef Fear EC, Li X, Hagness SC et al (2002) Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions. IEEE Trans Biomed Eng 49(8):812–822PubMedCrossRef
29.
go back to reference Ambrosanio M, Franceschini S, Baselice F, et al. (2020). Machine learning for microwave imaging. 2020 14th European Conference on Antennas and Propagation (EuCAP), 1–4 Ambrosanio M, Franceschini S, Baselice F, et al. (2020). Machine learning for microwave imaging. 2020 14th European Conference on Antennas and Propagation (EuCAP), 1–4
30.
go back to reference Chew W (1998) Imaging and inverse problems in electromagnetics. Advances in computational electrodynamics: the finite-difference time-domain method; Artech House: Norwood. MA, USA, pp 653–702 Chew W (1998) Imaging and inverse problems in electromagnetics. Advances in computational electrodynamics: the finite-difference time-domain method; Artech House: Norwood. MA, USA, pp 653–702
31.
go back to reference Semenov SY, Seiser B, Stoegmann E, et al. (2014). Electromagnetic tomography for brain imaging: from virtual to human brain. 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1–4 Semenov SY, Seiser B, Stoegmann E, et al. (2014). Electromagnetic tomography for brain imaging: from virtual to human brain. 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1–4
32.
go back to reference Mackay DJC. (1998). Introduction to Monte Carlo methods. In: Jordan, M.I. (eds) Learning in graphical models. NATO ASI Series, Springer, Dordrecht 89:175–204 Mackay DJC. (1998). Introduction to Monte Carlo methods. In: Jordan, M.I. (eds) Learning in graphical models. NATO ASI Series, Springer, Dordrecht 89:175–204
33.
go back to reference Ambrosanio M, Franceschini S, Pascazio V, et al. (2021). Microwave breast imaging via neural networks for almost real-time applications Ambrosanio M, Franceschini S, Pascazio V, et al. (2021). Microwave breast imaging via neural networks for almost real-time applications
34.
go back to reference Holland JH (1975) Adaptation in natural and artificial systems 6(2):126–137 Holland JH (1975) Adaptation in natural and artificial systems 6(2):126–137
35.
go back to reference Hwang CR (1988) Simulated annealing: theory and applications. Acta Appl Math 12:108–111CrossRef Hwang CR (1988) Simulated annealing: theory and applications. Acta Appl Math 12:108–111CrossRef
36.
go back to reference Meza JC. (2010) Steepest descent. Wiley Interdisciplinary Reviews: Computational Statistics Meza JC. (2010) Steepest descent. Wiley Interdisciplinary Reviews: Computational Statistics
37.
go back to reference Bisio I, Fedeli A, Lavagetto F et al (2018) A numerical study concerning brain stroke detection by microwave imaging systems. Multimed Tools Appl 77(8):9341–9363CrossRef Bisio I, Fedeli A, Lavagetto F et al (2018) A numerical study concerning brain stroke detection by microwave imaging systems. Multimed Tools Appl 77(8):9341–9363CrossRef
38.
go back to reference Abubakar A, van den Berg P, Kooij B (2000) A conjugate gradient contrast source technique for 3D profile inversion. IEICE Trans Electron 83(12):1864–1874 Abubakar A, van den Berg P, Kooij B (2000) A conjugate gradient contrast source technique for 3D profile inversion. IEICE Trans Electron 83(12):1864–1874
39.
go back to reference Ireland D, Bialkowski K, Abbosh A (2013) Microwave imaging for brain stroke detection using Born iterative method. IET Microwaves Antennas Propag 7(11):909–915CrossRef Ireland D, Bialkowski K, Abbosh A (2013) Microwave imaging for brain stroke detection using Born iterative method. IET Microwaves Antennas Propag 7(11):909–915CrossRef
40.
go back to reference Gilmore C, Abubakar A, Hu W et al (2009) Microwave biomedical data inversion using the finite-difference contrast source inversion method. IEEE Trans Antennas Propag 57(5):1528–1538CrossRef Gilmore C, Abubakar A, Hu W et al (2009) Microwave biomedical data inversion using the finite-difference contrast source inversion method. IEEE Trans Antennas Propag 57(5):1528–1538CrossRef
41.
go back to reference Ireland D, Bialkowski M (2010) Feasibility study on microwave stroke detection using a realistic phantom and the FDTD method. Asia-Pacific Microwave Conference Proceedings, APMC :1360–1363 Ireland D, Bialkowski M (2010) Feasibility study on microwave stroke detection using a realistic phantom and the FDTD method. Asia-Pacific Microwave Conference Proceedings, APMC :1360–1363
42.
go back to reference Zakaria A, Gilmore C, LoVetri J (2010) Finite-element contrast source inversion method for microwave imaging. Inverse Prob 26:115010–115021CrossRef Zakaria A, Gilmore C, LoVetri J (2010) Finite-element contrast source inversion method for microwave imaging. Inverse Prob 26:115010–115021CrossRef
43.
go back to reference Scapaticci R, Tobon J, Bellizzi G et al (2018) Design and numerical characterization of a low-complexity microwave device for brain stroke monitoring. IEEE Trans Antennas Propag 66(12):7328–7338CrossRef Scapaticci R, Tobon J, Bellizzi G et al (2018) Design and numerical characterization of a low-complexity microwave device for brain stroke monitoring. IEEE Trans Antennas Propag 66(12):7328–7338CrossRef
44.
go back to reference Merunka I, Massa A, Vrba D et al (2019) Microwave tomography system for methodical testing of human brain stroke detection approaches. Int J Antennas Propag 2019:e4074862CrossRef Merunka I, Massa A, Vrba D et al (2019) Microwave tomography system for methodical testing of human brain stroke detection approaches. Int J Antennas Propag 2019:e4074862CrossRef
45.
go back to reference Coli VL, Tournier PH, Dolean V et al (2019) Detection of simulated brain strokes using microwave tomography. IEEE J Electromagn RF Microw Med Biol 3(4):254–260CrossRef Coli VL, Tournier PH, Dolean V et al (2019) Detection of simulated brain strokes using microwave tomography. IEEE J Electromagn RF Microw Med Biol 3(4):254–260CrossRef
46.
go back to reference Estatico C, Pastorino M, Randazzo A (2012) A novel microwave imaging approach based on regularization in L(p) Banach spaces. IEEE Trans Antennas Propag 60:3373–3381CrossRef Estatico C, Pastorino M, Randazzo A (2012) A novel microwave imaging approach based on regularization in L(p) Banach spaces. IEEE Trans Antennas Propag 60:3373–3381CrossRef
47.
go back to reference Bisio I, Estatico C, Fedeli A et al (2018) Brain stroke microwave imaging by means of a Newton-conjugate-gradient method in $L^{p}$ Banach spaces. IEEE Trans Microwave Theory Techn 66(8):3668–3682CrossRef Bisio I, Estatico C, Fedeli A et al (2018) Brain stroke microwave imaging by means of a Newton-conjugate-gradient method in $L^{p}$ Banach spaces. IEEE Trans Microwave Theory Techn 66(8):3668–3682CrossRef
48.
go back to reference Estatico C, Fedeli A, Pastorino M et al (2015) A multifrequency inexact-Newton method in $L^p$ Banach spaces for buried objects detection. IEEE Trans Antennas Propag 63(9):4198–4204CrossRef Estatico C, Fedeli A, Pastorino M et al (2015) A multifrequency inexact-Newton method in $L^p$ Banach spaces for buried objects detection. IEEE Trans Antennas Propag 63(9):4198–4204CrossRef
49.
go back to reference Estatico C, Fedeli A, Pastorino M et al (2018) Quantitative microwave imaging method in Lebesgue spaces with nonconstant exponents. IEEE Trans Antennas Propagat 66(12):7282–7294CrossRef Estatico C, Fedeli A, Pastorino M et al (2018) Quantitative microwave imaging method in Lebesgue spaces with nonconstant exponents. IEEE Trans Antennas Propagat 66(12):7282–7294CrossRef
50.
go back to reference Estatico C, Fedeli A, Pastorino M et al (2020) A phaseless microwave imaging approach based on a Lebesgue-space inversion algorithm. IEEE Trans Antennas Propagat 68(12):8091–8103CrossRef Estatico C, Fedeli A, Pastorino M et al (2020) A phaseless microwave imaging approach based on a Lebesgue-space inversion algorithm. IEEE Trans Antennas Propagat 68(12):8091–8103CrossRef
51.
go back to reference Bisio I, Estatico C, Fedeli A et al (2020) Variable-exponent Lebesgue-space inversion for brain stroke microwave imaging. IEEE Trans Microwave Theory Techn 68(5):1882–1895CrossRef Bisio I, Estatico C, Fedeli A et al (2020) Variable-exponent Lebesgue-space inversion for brain stroke microwave imaging. IEEE Trans Microwave Theory Techn 68(5):1882–1895CrossRef
52.
go back to reference Fedeli A, Randazzo A, Sciarrone A et al (2020) A microwave diagnostic technique for early-stage brain stroke characterization. 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science. IEEE, Rome, pp 1–3 Fedeli A, Randazzo A, Sciarrone A et al (2020) A microwave diagnostic technique for early-stage brain stroke characterization. 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science. IEEE, Rome, pp 1–3
53.
go back to reference Fedeli A, Estatico C, Pastorino M et al (2020) Microwave detection of brain injuries by means of a hybrid imaging method. IEEE Open J Antennas and Propag 1:513–523CrossRef Fedeli A, Estatico C, Pastorino M et al (2020) Microwave detection of brain injuries by means of a hybrid imaging method. IEEE Open J Antennas and Propag 1:513–523CrossRef
54.
go back to reference Fedeli A, Schenone V, Randazzo A et al (2021) Nonlinear S-parameters inversion for stroke imaging. IEEE Trans Microwave Theory Techn 69(3):1760–1771CrossRef Fedeli A, Schenone V, Randazzo A et al (2021) Nonlinear S-parameters inversion for stroke imaging. IEEE Trans Microwave Theory Techn 69(3):1760–1771CrossRef
55.
go back to reference Bisio I, Fedeli A, Garibotto C et al (2021) Two ways for early detection of a stroke through a wearable smart helmet: signal processing vs. electromagnetism. IEEE Wireless Commun 28(3):22–27CrossRef Bisio I, Fedeli A, Garibotto C et al (2021) Two ways for early detection of a stroke through a wearable smart helmet: signal processing vs. electromagnetism. IEEE Wireless Commun 28(3):22–27CrossRef
56.
go back to reference Afsari A, Abbosh AM, Rahmat-Samii Y (2019) Modified born iterative method in medical electromagnetic tomography using magnetic field fluctuation contrast source operator. IEEE Trans Microw Theory Tech 67(1):454–463CrossRef Afsari A, Abbosh AM, Rahmat-Samii Y (2019) Modified born iterative method in medical electromagnetic tomography using magnetic field fluctuation contrast source operator. IEEE Trans Microw Theory Tech 67(1):454–463CrossRef
57.
go back to reference Vasquez J, Scapaticci R, Turvani G et al (2019) Design and experimental assessment of a 2D microwave imaging system for brain stroke monitoring. Int J Antennas Propag 2019:e8065036 Vasquez J, Scapaticci R, Turvani G et al (2019) Design and experimental assessment of a 2D microwave imaging system for brain stroke monitoring. Int J Antennas Propag 2019:e8065036
58.
go back to reference Vasquez J, Scapaticci R, Turvani G et al (2020) A prototype microwave system for 3D brain stroke imaging. Sensors 20(9):2607CrossRef Vasquez J, Scapaticci R, Turvani G et al (2020) A prototype microwave system for 3D brain stroke imaging. Sensors 20(9):2607CrossRef
59.
go back to reference Duarte D O R, Vasquez J A T, Vipiana F (2020) Electromagnetic virtual prototyping of a realistic 3-D microwave scanner for brain stroke imaging. In: 2020 14th European Conference on Antennas and Propagation (EuCAP) 1–4 Duarte D O R, Vasquez J A T, Vipiana F (2020) Electromagnetic virtual prototyping of a realistic 3-D microwave scanner for brain stroke imaging. In: 2020 14th European Conference on Antennas and Propagation (EuCAP) 1–4
60.
go back to reference Tesarik J, Vrba J (2020) Validation of multilevel 24-port microwave imaging system for brain stroke monitoring on synthetic numerical data. In: 2020 14th European Conference on Antennas and Propagation (EuCAP), 1–5 Tesarik J, Vrba J (2020) Validation of multilevel 24-port microwave imaging system for brain stroke monitoring on synthetic numerical data. In: 2020 14th European Conference on Antennas and Propagation (EuCAP), 1–5
61.
go back to reference Ye X, Chen X (2017) Subspace-based distorted-born iterative method for solving inverse scattering problems. IEEE Trans Antennas Propag 65(12):7224–7232CrossRef Ye X, Chen X (2017) Subspace-based distorted-born iterative method for solving inverse scattering problems. IEEE Trans Antennas Propag 65(12):7224–7232CrossRef
62.
go back to reference Karadima O, Rahman M, Sotiriou I et al (2020) Experimental validation of microwave tomography with the DBIM-TwIST algorithm for brain stroke detection and classification. Sensors 20(3):840PubMedPubMedCentralCrossRef Karadima O, Rahman M, Sotiriou I et al (2020) Experimental validation of microwave tomography with the DBIM-TwIST algorithm for brain stroke detection and classification. Sensors 20(3):840PubMedPubMedCentralCrossRef
63.
go back to reference Mariano V, Vasquez J, Scapaticci R, et al. (2020) Comparison of reconstruction algorithms for brain stroke microwave imaging 1–3 Mariano V, Vasquez J, Scapaticci R, et al. (2020) Comparison of reconstruction algorithms for brain stroke microwave imaging 1–3
64.
go back to reference Ghavami N, Razzicchia E, Karadima O et al (2021) The use of metasurfaces to enhance microwave imaging: experimental validation for tomographic and radar-based algorithms. IEEE Open J Antennas Propag 3:89–100CrossRef Ghavami N, Razzicchia E, Karadima O et al (2021) The use of metasurfaces to enhance microwave imaging: experimental validation for tomographic and radar-based algorithms. IEEE Open J Antennas Propag 3:89–100CrossRef
65.
go back to reference Karadima O, Ghavami N, Sotiriou I, et al. (2020) Performance assessment of microwave tomography and radar imaging using an anthropomorphic brain phantom. In: 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rome. Karadima O, Ghavami N, Sotiriou I, et al. (2020) Performance assessment of microwave tomography and radar imaging using an anthropomorphic brain phantom. In: 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rome.
66.
go back to reference Ghavami N, Sotiriou I, Kosmas P (2019) Preliminary experimental validation of radar imaging for stroke detection with phantoms. 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall) Ghavami N, Sotiriou I, Kosmas P (2019) Preliminary experimental validation of radar imaging for stroke detection with phantoms. 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall)
67.
go back to reference Karadima O, Lu P, Sotiriou I et al (2022) Experimental validation of the DBIM-TwIST algorithm for brain stroke detection and differentiation using a multi-layered anatomically complex head phantom. IEEE Open J Antennas Propag 3:274–286CrossRef Karadima O, Lu P, Sotiriou I et al (2022) Experimental validation of the DBIM-TwIST algorithm for brain stroke detection and differentiation using a multi-layered anatomically complex head phantom. IEEE Open J Antennas Propag 3:274–286CrossRef
69.
go back to reference Guo L, Khosravi-Farsani M, Stancombe A et al (2022) Adaptive clustering distorted born iterative method for microwave brain tomography with stroke detection and classification. IEEE Trans Biomed Eng 69(4):1512–1523PubMedCrossRef Guo L, Khosravi-Farsani M, Stancombe A et al (2022) Adaptive clustering distorted born iterative method for microwave brain tomography with stroke detection and classification. IEEE Trans Biomed Eng 69(4):1512–1523PubMedCrossRef
70.
go back to reference Semenov S, Seiser B, Stoegmann E, et al. (2014) Electromagnetic tomography for brain imaging: from virtual to human brain. In: 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1–4 Semenov S, Seiser B, Stoegmann E, et al. (2014) Electromagnetic tomography for brain imaging: from virtual to human brain. In: 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1–4
71.
go back to reference Tournier PH, Bonazzoli M, Dolean V et al (2017) Numerical modeling and high-speed parallel computing: new perspectives on tomographic microwave imaging for brain stroke detection and monitoring. IEEE Antennas Propag Mag 59(5):98–110CrossRef Tournier PH, Bonazzoli M, Dolean V et al (2017) Numerical modeling and high-speed parallel computing: new perspectives on tomographic microwave imaging for brain stroke detection and monitoring. IEEE Antennas Propag Mag 59(5):98–110CrossRef
72.
go back to reference Henriksson T, Sahebdivan S, Planas R, et al. (2022) Human brain imaging by electromagnetic tomography: a mobile brain scanner for clinical settings. In: 2022 16th European Conference on Antennas and Propagation (EuCAP) 1–5 Henriksson T, Sahebdivan S, Planas R, et al. (2022) Human brain imaging by electromagnetic tomography: a mobile brain scanner for clinical settings. In: 2022 16th European Conference on Antennas and Propagation (EuCAP) 1–5
73.
go back to reference Elahi MA, O’Loughlin D, Lavoie BR et al (2018) Evaluation of image reconstruction algorithms for confocal microwave imaging: application to patient data. Sensors (Basel) 18(6):1678PubMedCrossRef Elahi MA, O’Loughlin D, Lavoie BR et al (2018) Evaluation of image reconstruction algorithms for confocal microwave imaging: application to patient data. Sensors (Basel) 18(6):1678PubMedCrossRef
74.
go back to reference Zamani A, Abbosh A, Mobashsher A (2016) Fast frequency-based multistatic microwave imaging algorithm with application to brain injury detection. IEEE Trans Microw Theory Tech 64:1–10CrossRef Zamani A, Abbosh A, Mobashsher A (2016) Fast frequency-based multistatic microwave imaging algorithm with application to brain injury detection. IEEE Trans Microw Theory Tech 64:1–10CrossRef
75.
go back to reference Ricci E , Domenico S D , Cianca E , et al. (2015) Artifact removal algorithms for stroke detection using a multistatic MIST beamforming algorithm. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 1930–1933 Ricci E , Domenico S D , Cianca E , et al. (2015) Artifact removal algorithms for stroke detection using a multistatic MIST beamforming algorithm. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 1930–1933
76.
go back to reference Klemm M, Craddock IJ, Leendertz JA, et al. (2008) Improved delay-and-sum beamforming algorithm for breast cancer detection. International Journal of Antennas and Propagation 761402–1–761402–9 Klemm M, Craddock IJ, Leendertz JA, et al. (2008) Improved delay-and-sum beamforming algorithm for breast cancer detection. International Journal of Antennas and Propagation 761402–1–761402–9
77.
go back to reference Xie Y, Guo B, Xu L et al (2006) Multistatic adaptive microwave imaging for early breast cancer detection. IEEE Trans Biomed Eng 53(8):1647–1657PubMedCrossRef Xie Y, Guo B, Xu L et al (2006) Multistatic adaptive microwave imaging for early breast cancer detection. IEEE Trans Biomed Eng 53(8):1647–1657PubMedCrossRef
78.
go back to reference Entezami M, Faraji-Dana R, Dehmollaian M (2017) Design and implementation of a head imaging system for trauma detection. In: 2017 Iranian Conference on Electrical Engineering (ICEE), 1983–1986 Entezami M, Faraji-Dana R, Dehmollaian M (2017) Design and implementation of a head imaging system for trauma detection. In: 2017 Iranian Conference on Electrical Engineering (ICEE), 1983–1986
79.
go back to reference Ireland D, Bialkowski M (2011) Microwave head imaging for stroke detection. Progress In Electromagn Res M 21:163–175CrossRef Ireland D, Bialkowski M (2011) Microwave head imaging for stroke detection. Progress In Electromagn Res M 21:163–175CrossRef
80.
go back to reference Ricci E, Colucciello A, Domenico SD, et al. (2015) Modified RAR and PLSR-based artifact removal for stroke detection in UWB radar imaging Ricci E, Colucciello A, Domenico SD, et al. (2015) Modified RAR and PLSR-based artifact removal for stroke detection in UWB radar imaging
81.
go back to reference Hagness S, Taflove A, Bridges J (1999) Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: design of an antenna-array element. IEEE Trans Antennas Propag 47(5):783–791CrossRef Hagness S, Taflove A, Bridges J (1999) Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: design of an antenna-array element. IEEE Trans Antennas Propag 47(5):783–791CrossRef
82.
go back to reference Xu L, Hagness S (2001) A confocal microwave imaging algorithm for breast cancer detection. Microwave Wireless Components Lett IEEE 11(3):130–132CrossRef Xu L, Hagness S (2001) A confocal microwave imaging algorithm for breast cancer detection. Microwave Wireless Components Lett IEEE 11(3):130–132CrossRef
83.
go back to reference Mohammed B J, Abbosh A M, Ireland D. Circular antenna array for brain imaging systems. In: Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation Mohammed B J, Abbosh A M, Ireland D. Circular antenna array for brain imaging systems. In: Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation
84.
go back to reference Mohammed BJ, Abbosh AM, Mustafa S et al (2014) Microwave system for head imaging. IEEE Trans Instrum Meas 63(1):117–123CrossRef Mohammed BJ, Abbosh AM, Mustafa S et al (2014) Microwave system for head imaging. IEEE Trans Instrum Meas 63(1):117–123CrossRef
85.
go back to reference Mustafa S, Mohammed B, Abbosh A (2013) Novel preprocessing techniques for accurate microwave imaging of human brain. IEEE Antennas Wirel Propag Lett 12:460–463CrossRef Mustafa S, Mohammed B, Abbosh A (2013) Novel preprocessing techniques for accurate microwave imaging of human brain. IEEE Antennas Wirel Propag Lett 12:460–463CrossRef
86.
go back to reference Mobashsher AT, Abbosh AM, Wang Y (2014) Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom. IEEE Trans Microw Theory Tech 62(9):1826–1836CrossRef Mobashsher AT, Abbosh AM, Wang Y (2014) Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom. IEEE Trans Microw Theory Tech 62(9):1826–1836CrossRef
87.
go back to reference Mohammed B, Bialkowski K, Mustafa S et al (2015) Investigation of noise effect on image quality in microwave head imaging systems. Microwaves, Antennas & Propagation, IET 9(3):200–205CrossRef Mohammed B, Bialkowski K, Mustafa S et al (2015) Investigation of noise effect on image quality in microwave head imaging systems. Microwaves, Antennas & Propagation, IET 9(3):200–205CrossRef
88.
go back to reference Ricci E, Cianca E, Rossi T et al (2016) (2016) Beamforming algorithms for UWB radar-based stroke detection: trade-off performance-complexity. J Commun Navig Sens Serv (CONASENSE) 1:11–28CrossRef Ricci E, Cianca E, Rossi T et al (2016) (2016) Beamforming algorithms for UWB radar-based stroke detection: trade-off performance-complexity. J Commun Navig Sens Serv (CONASENSE) 1:11–28CrossRef
89.
go back to reference Ricci E, Domenico SD, Cianca E et al (2017) PCA-based artifact removal algorithm for stroke detection using UWB radar imaging. Med Biol Eng Compu 55(6):909–921CrossRef Ricci E, Domenico SD, Cianca E et al (2017) PCA-based artifact removal algorithm for stroke detection using UWB radar imaging. Med Biol Eng Compu 55(6):909–921CrossRef
90.
go back to reference Ricci E, Cianca E, Rossi T et al (2017) Performance evaluation of novel microwave imaging algorithms for stroke detection using an accurate 3D head model. Wireless Pers Commun 96(3):3317–3331CrossRef Ricci E, Cianca E, Rossi T et al (2017) Performance evaluation of novel microwave imaging algorithms for stroke detection using an accurate 3D head model. Wireless Pers Commun 96(3):3317–3331CrossRef
91.
go back to reference Saied I, Arslan T (2019) Microwave imaging algorithm for detecting brain disorders. In: 2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA), 1–5 Saied I, Arslan T (2019) Microwave imaging algorithm for detecting brain disorders. In: 2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA), 1–5
92.
go back to reference Sohani B, Khalesi B, Ghavami N et al (2020) Detection of haemorrhagic stroke in simulation and realistic 3-D human head phantom using microwave imaging. Biomed Signal Process Control 61:102001CrossRef Sohani B, Khalesi B, Ghavami N et al (2020) Detection of haemorrhagic stroke in simulation and realistic 3-D human head phantom using microwave imaging. Biomed Signal Process Control 61:102001CrossRef
93.
go back to reference Sohani B, Puttock J, Khalesi B et al (2020) Developing artefact removal algorithms to process data from a microwave imaging device for haemorrhagic stroke detection [J]. Sensors 20(19):5545PubMedPubMedCentralCrossRef Sohani B, Puttock J, Khalesi B et al (2020) Developing artefact removal algorithms to process data from a microwave imaging device for haemorrhagic stroke detection [J]. Sensors 20(19):5545PubMedPubMedCentralCrossRef
94.
go back to reference Lucas A, Iliadis M, Molina R et al (2018) Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process Mag 35(1):20–36CrossRef Lucas A, Iliadis M, Molina R et al (2018) Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process Mag 35(1):20–36CrossRef
95.
go back to reference Cortes C, Vapnik V (1995) Support-vector networks. Machine Learn 20:273–297CrossRef Cortes C, Vapnik V (1995) Support-vector networks. Machine Learn 20:273–297CrossRef
96.
go back to reference Fhager A, Persson M (2011) A microwave measurement system for stroke detection. In: 2011 Loughborough Antennas Propagation Conference, 1–2 Fhager A, Persson M (2011) A microwave measurement system for stroke detection. In: 2011 Loughborough Antennas Propagation Conference, 1–2
97.
go back to reference Persson M, Fhager A, Trefná HD et al (2014) Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans Biomed Eng 61(11):2806–2817PubMedCrossRef Persson M, Fhager A, Trefná HD et al (2014) Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans Biomed Eng 61(11):2806–2817PubMedCrossRef
98.
go back to reference Guo L, Abbosh AM (2015) Microwave imaging of nonsparse domains using born iterative method with wavelet transform and block sparse Bayesian learning. IEEE Trans Antennas Propag 63(11):4877–4888CrossRef Guo L, Abbosh AM (2015) Microwave imaging of nonsparse domains using born iterative method with wavelet transform and block sparse Bayesian learning. IEEE Trans Antennas Propag 63(11):4877–4888CrossRef
99.
go back to reference Guo L, Abbosh A (2018) Stroke localization and classification using microwave tomography with k-means clustering and support vector machine. Bioelectromagnetics 39(4):312–324PubMedCrossRef Guo L, Abbosh A (2018) Stroke localization and classification using microwave tomography with k-means clustering and support vector machine. Bioelectromagnetics 39(4):312–324PubMedCrossRef
100.
go back to reference Qureshi A, Mustansar Z, Mustafa S (2018) Finite-element analysis of microwave scattering from a three-dimensional human head model for brain stroke detection. Royal Society Open Science 5(7):180319CrossRef Qureshi A, Mustansar Z, Mustafa S (2018) Finite-element analysis of microwave scattering from a three-dimensional human head model for brain stroke detection. Royal Society Open Science 5(7):180319CrossRef
101.
go back to reference Wu Y, Zhu M, Li D, et al. (2016) Brain stroke localization by using microwave-based signal classification. 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), 828–831 Wu Y, Zhu M, Li D, et al. (2016) Brain stroke localization by using microwave-based signal classification. 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), 828–831
102.
go back to reference Fhager A, Candefjord S, Persson M (2018) FDTD based simulation study of a classification based hemorrhagic stroke detector. In: 12th European Conference on Antennas and Propagation (EuCAP 2018), 1–3 Fhager A, Candefjord S, Persson M (2018) FDTD based simulation study of a classification based hemorrhagic stroke detector. In: 12th European Conference on Antennas and Propagation (EuCAP 2018), 1–3
103.
go back to reference Zhu G, Bialkowski A, Guo L et al (2021) Stroke classification in simulated electromagnetic imaging using graph approaches [J]. IEEE J Electromagn RF Microwaves Med Biol 5(1):46–53CrossRef Zhu G, Bialkowski A, Guo L et al (2021) Stroke classification in simulated electromagnetic imaging using graph approaches [J]. IEEE J Electromagn RF Microwaves Med Biol 5(1):46–53CrossRef
104.
go back to reference Al-Saffar A, Bialkowski A, Baktashmotlagh M et al (2021) Closing the gap of simulation to reality in electromagnetic imaging of brain strokes via deep neural networks. IEEE Trans Comput Imaging 7:13–21CrossRef Al-Saffar A, Bialkowski A, Baktashmotlagh M et al (2021) Closing the gap of simulation to reality in electromagnetic imaging of brain strokes via deep neural networks. IEEE Trans Comput Imaging 7:13–21CrossRef
105.
go back to reference Borgwardt KM, Gretton A, Rasch MJ et al (2006) Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14):e49–e57PubMedCrossRef Borgwardt KM, Gretton A, Rasch MJ et al (2006) Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14):e49–e57PubMedCrossRef
106.
go back to reference Alon L, Dehkharghani S (2021) A stroke detection and discrimination framework using broadband microwave scattering on stochastic models with deep learning. Sci Rep 11(1):1–9CrossRef Alon L, Dehkharghani S (2021) A stroke detection and discrimination framework using broadband microwave scattering on stochastic models with deep learning. Sci Rep 11(1):1–9CrossRef
107.
go back to reference Al-Saffar A, Zamani A, Stancombe A et al (2022) Operational learning-based boundary estimation in electromagnetic medical imaging. IEEE Trans Antennas Propag 70(3):2234–2245CrossRef Al-Saffar A, Zamani A, Stancombe A et al (2022) Operational learning-based boundary estimation in electromagnetic medical imaging. IEEE Trans Antennas Propag 70(3):2234–2245CrossRef
Metadata
Title
Review of microwave imaging algorithms for stroke detection
Authors
Jinzhen Liu
Liming Chen
Hui Xiong
Yuqing Han
Publication date
24-05-2023
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 10/2023
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-023-02848-5

Other articles of this Issue 10/2023

Medical & Biological Engineering & Computing 10/2023 Go to the issue

Premium Partner