Skip to main content
Top
Published in: Tribology Letters 2/2022

01-06-2022 | Review

Review of Molecular Dynamics Simulations of Phosphonium Ionic Liquid Lubricants

Authors: Ting Liu, Pawan Panwar, Arash Khajeh, Md Hafizur Rahman, Pradeep L. Menezes, Ashlie Martini

Published in: Tribology Letters | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Phosphonium ionic liquids (ILs) have various uses, including as environmentally benign lubricants and lubricant additives. The properties and behavior of these ILs depend on their chemical composition, i.e., cation and anion combination, and the operating conditions. One approach to understanding the relationships between composition, conditions, and lubricant-relevant properties is classical molecular dynamics simulation. Although this research area is still emerging, it is growing rapidly, so a review of the topic is timely. Here, we review force field-based molecular dynamics simulations of phosphonium ILs, with emphasis on physical, chemical, and thermal properties relevant to lubricants. Properties reported in previous studies are density, viscosity, self-diffusivity, ionic conductivity, heat capacity, and thermal stability, as well as interactions with other compounds, including \(\mathrm {H_2O}\) and \(\mathrm {CO_2}\), and solid surfaces. The effects of anion and cation, as well as conditions such as temperature, on these properties are identified and analyzed in terms of anion-cation structure, orientation, and interactions. Finally, trends are summarized and opportunities for future research are identified.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Joshi, M.D., Anderson, J.L.: Recent advances of ionic liquids in separation science and mass spectrometry. RSC Adv. 2(13), 5470–5484 (2012)CrossRef Joshi, M.D., Anderson, J.L.: Recent advances of ionic liquids in separation science and mass spectrometry. RSC Adv. 2(13), 5470–5484 (2012)CrossRef
2.
go back to reference Singh, S.K., Savoy, A.W.: Ionic liquids synthesis and applications: an overview. J. Mol. Liq. 297, 112038 (2020)CrossRef Singh, S.K., Savoy, A.W.: Ionic liquids synthesis and applications: an overview. J. Mol. Liq. 297, 112038 (2020)CrossRef
3.
go back to reference Rahman, M.H., Khajeh, A., Panwar, P., Patel, M., Martini, A., Menezes, P.L.: Recent progress on phosphonium-based room temperature ionic liquids: synthesis, properties, tribological performances and applications. Tribol. Int. 167, 107331 (2022)CrossRef Rahman, M.H., Khajeh, A., Panwar, P., Patel, M., Martini, A., Menezes, P.L.: Recent progress on phosphonium-based room temperature ionic liquids: synthesis, properties, tribological performances and applications. Tribol. Int. 167, 107331 (2022)CrossRef
4.
go back to reference Liu, X., Zhou, F., Liang, Y., Liu, W.: Tribological performance of phosphonium based ionic liquids for an aluminum-on-steel system and opinions on lubrication mechanism. Wear 261(10), 1174–1179 (2006)CrossRef Liu, X., Zhou, F., Liang, Y., Liu, W.: Tribological performance of phosphonium based ionic liquids for an aluminum-on-steel system and opinions on lubrication mechanism. Wear 261(10), 1174–1179 (2006)CrossRef
5.
go back to reference Weng, L., Liu, X., Liang, Y., Xue, Q.: Effect of tetraalkylphosphonium based ionic liquids as lubricants on the tribological performance of a steel-on-steel system. Tribol. Lett. 26(1), 11–17 (2007)CrossRef Weng, L., Liu, X., Liang, Y., Xue, Q.: Effect of tetraalkylphosphonium based ionic liquids as lubricants on the tribological performance of a steel-on-steel system. Tribol. Lett. 26(1), 11–17 (2007)CrossRef
6.
go back to reference Minami, I., Kita, M., Kubo, T., Nanao, H., Mori, S.: The tribological properties of ionic liquids composed of trifluorotris (pentafluoroethyl) phosphate as a hydrophobic anion. Tribol. Lett. 30(3), 215–223 (2008)CrossRef Minami, I., Kita, M., Kubo, T., Nanao, H., Mori, S.: The tribological properties of ionic liquids composed of trifluorotris (pentafluoroethyl) phosphate as a hydrophobic anion. Tribol. Lett. 30(3), 215–223 (2008)CrossRef
7.
go back to reference Minami, I., Inada, T., Sasaki, R., Nanao, H.: Tribo-chemistry of phosphonium-derived ionic liquids. Tribol. Lett. 40(2), 225–235 (2010)CrossRef Minami, I., Inada, T., Sasaki, R., Nanao, H.: Tribo-chemistry of phosphonium-derived ionic liquids. Tribol. Lett. 40(2), 225–235 (2010)CrossRef
8.
go back to reference Scarbath-Evers, L.K., Hunt, P.A., Kirchner, B., MacFarlane, D.R., Zahn, S.: Molecular features contributing to the lower viscosity of phosphonium ionic liquids compared to their ammonium analogues. Phys. Chem. Chem. Phys. 17(31), 20205–20216 (2015)CrossRef Scarbath-Evers, L.K., Hunt, P.A., Kirchner, B., MacFarlane, D.R., Zahn, S.: Molecular features contributing to the lower viscosity of phosphonium ionic liquids compared to their ammonium analogues. Phys. Chem. Chem. Phys. 17(31), 20205–20216 (2015)CrossRef
9.
go back to reference Naik, P.K., Paul, S., Banerjee, T.: Physiochemical properties and molecular dynamics simulations of phosphonium and ammonium based deep eutectic solvents. J. Solut. Chem. 48(7), 1046–1065 (2019)CrossRef Naik, P.K., Paul, S., Banerjee, T.: Physiochemical properties and molecular dynamics simulations of phosphonium and ammonium based deep eutectic solvents. J. Solut. Chem. 48(7), 1046–1065 (2019)CrossRef
10.
go back to reference Otero, I., Loépez, E.R., Reichelt, M., Villanueva, M., Salgado, J., Fernaéndez, J.: Ionic liquids based on phosphonium cations as neat lubricants or lubricant additives for a steel/steel contact. ACS Appl. Mater. Interfaces 6(15), 13115–13128 (2014)CrossRef Otero, I., Loépez, E.R., Reichelt, M., Villanueva, M., Salgado, J., Fernaéndez, J.: Ionic liquids based on phosphonium cations as neat lubricants or lubricant additives for a steel/steel contact. ACS Appl. Mater. Interfaces 6(15), 13115–13128 (2014)CrossRef
11.
go back to reference Fraser, K.J., MacFarlane, D.R.: Phosphonium-based ionic liquids: an overview. Aust. J. Chem. 62(4), 309–321 (2009)CrossRef Fraser, K.J., MacFarlane, D.R.: Phosphonium-based ionic liquids: an overview. Aust. J. Chem. 62(4), 309–321 (2009)CrossRef
12.
go back to reference Maton, C., De Vos, N., Stevens, C.V.: Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem. Soc. Rev. 42(13), 5963–5977 (2013)CrossRef Maton, C., De Vos, N., Stevens, C.V.: Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem. Soc. Rev. 42(13), 5963–5977 (2013)CrossRef
13.
go back to reference Khazalpour, S., Yarie, M., Kianpour, E., Amani, A., Asadabadi, S., Seyf, J.Y., Rezaeivala, M., Azizian, S., Zolfigol, M.A.: Applications of phosphonium-based ionic liquids in chemical processes. J. Iran. Chem. Soc. 17(8), 1775–1917 (2020)CrossRef Khazalpour, S., Yarie, M., Kianpour, E., Amani, A., Asadabadi, S., Seyf, J.Y., Rezaeivala, M., Azizian, S., Zolfigol, M.A.: Applications of phosphonium-based ionic liquids in chemical processes. J. Iran. Chem. Soc. 17(8), 1775–1917 (2020)CrossRef
14.
go back to reference Yu, B., Bansal, D.G., Qu, J., Sun, X., Luo, H., Dai, S., Blau, P.J., Bunting, B.G., Mordukhovich, G., Smolenski, D.J.: Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives. Wear 289, 58–64 (2012)CrossRef Yu, B., Bansal, D.G., Qu, J., Sun, X., Luo, H., Dai, S., Blau, P.J., Bunting, B.G., Mordukhovich, G., Smolenski, D.J.: Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives. Wear 289, 58–64 (2012)CrossRef
15.
go back to reference Cai, M., Yu, Q., Liu, W., Zhou, F.: Ionic liquid lubricants: when chemistry meets tribology. Chem. Soc. Rev. 49, 7753–7818 (2020)CrossRef Cai, M., Yu, Q., Liu, W., Zhou, F.: Ionic liquid lubricants: when chemistry meets tribology. Chem. Soc. Rev. 49, 7753–7818 (2020)CrossRef
16.
go back to reference Henriques, R.R., Soares, B.G.: Sepiolite modified with phosphonium ionic liquids as anticorrosive pigment for epoxy coatings. Appl. Clay Sci. 200, 105890 (2021)CrossRef Henriques, R.R., Soares, B.G.: Sepiolite modified with phosphonium ionic liquids as anticorrosive pigment for epoxy coatings. Appl. Clay Sci. 200, 105890 (2021)CrossRef
17.
go back to reference Shah, F.U., Glavatskih, S., MacFarlane, D.R., Somers, A., Forsyth, M., Antzutkin, O.N.: Novel halogen-free chelated orthoborate-phosphonium ionic liquids: synthesis and tribophysical properties. Phys. Chem. Chem. Phys. 13(28), 12865–12873 (2011)CrossRef Shah, F.U., Glavatskih, S., MacFarlane, D.R., Somers, A., Forsyth, M., Antzutkin, O.N.: Novel halogen-free chelated orthoborate-phosphonium ionic liquids: synthesis and tribophysical properties. Phys. Chem. Chem. Phys. 13(28), 12865–12873 (2011)CrossRef
18.
go back to reference Totolin, V., Minami, I., Gabler, C., Dörr, N.: Halogen-free borate ionic liquids as novel lubricants for tribological applications. Tribol. Int. 67, 191–198 (2013)CrossRef Totolin, V., Minami, I., Gabler, C., Dörr, N.: Halogen-free borate ionic liquids as novel lubricants for tribological applications. Tribol. Int. 67, 191–198 (2013)CrossRef
19.
go back to reference Zhu, L., Dong, J., Ma, Y., Jia, Y., Peng, C., Li, W., Zhang, M., Gong, K., Wang, X.: Synthesis and investigation of halogen-free phosphonium-based ionic liquids for lubrication applications. Tribol. Trans. 62(6), 943–954 (2019)CrossRef Zhu, L., Dong, J., Ma, Y., Jia, Y., Peng, C., Li, W., Zhang, M., Gong, K., Wang, X.: Synthesis and investigation of halogen-free phosphonium-based ionic liquids for lubrication applications. Tribol. Trans. 62(6), 943–954 (2019)CrossRef
20.
go back to reference Sydow, M., Owsianiak, M., Framski, G., Woźniak-Karczewska, M., Piotrowska-Cyplik, A., Ławniczak, Ł, Szulc, A., Zgoła-Grześkowiak, A., Heipieper, H.J., Chrzanowski, Ł: Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: effects of toxicity and biodegradation. Ecotoxicol. Environ. Saf. 147, 157–164 (2018)CrossRef Sydow, M., Owsianiak, M., Framski, G., Woźniak-Karczewska, M., Piotrowska-Cyplik, A., Ławniczak, Ł, Szulc, A., Zgoła-Grześkowiak, A., Heipieper, H.J., Chrzanowski, Ł: Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: effects of toxicity and biodegradation. Ecotoxicol. Environ. Saf. 147, 157–164 (2018)CrossRef
21.
go back to reference Oulego, P., Blanco, D., Ramos, D., Viesca, J., Díaz, M., Battez, A.H.: Environmental properties of phosphonium, imidazolium and ammonium cation-based ionic liquids as potential lubricant additives. J. Mol. Liq. 272, 937–947 (2018)CrossRef Oulego, P., Blanco, D., Ramos, D., Viesca, J., Díaz, M., Battez, A.H.: Environmental properties of phosphonium, imidazolium and ammonium cation-based ionic liquids as potential lubricant additives. J. Mol. Liq. 272, 937–947 (2018)CrossRef
22.
go back to reference Rohlmann, P., Munavirov, B., Furó, I., Antzutkin, O., Rutland, M.W., Glavatskih, S.: Non-halogenated ionic liquid dramatically enhances tribological performance of biodegradable oils. Front. Chem. 7, 98 (2019)CrossRef Rohlmann, P., Munavirov, B., Furó, I., Antzutkin, O., Rutland, M.W., Glavatskih, S.: Non-halogenated ionic liquid dramatically enhances tribological performance of biodegradable oils. Front. Chem. 7, 98 (2019)CrossRef
23.
go back to reference Zhou, Y., Qu, J.: Ionic liquids as lubricant additives: a review. ACS Appl. Mater. Interfaces 9(4), 3209–3222 (2017)CrossRef Zhou, Y., Qu, J.: Ionic liquids as lubricant additives: a review. ACS Appl. Mater. Interfaces 9(4), 3209–3222 (2017)CrossRef
24.
go back to reference Kasar, A.K., Reeves, C.J., Menezes, P.L.: The effect of particulate additive mixtures on the tribological performance of phosphonium-based ionic liquid lubricants. Tribol. Int. 165, 107300 (2022)CrossRef Kasar, A.K., Reeves, C.J., Menezes, P.L.: The effect of particulate additive mixtures on the tribological performance of phosphonium-based ionic liquid lubricants. Tribol. Int. 165, 107300 (2022)CrossRef
25.
go back to reference Sivapragasam, M., Jaganathan, J.R., Levêque, J.-M., Moniruzzaman, M., Mutalib, M.A.: Microbial biocompatibility of phosphonium-and ammonium-based ionic liquids. J. Mol. Liq. 273, 107–115 (2019)CrossRef Sivapragasam, M., Jaganathan, J.R., Levêque, J.-M., Moniruzzaman, M., Mutalib, M.A.: Microbial biocompatibility of phosphonium-and ammonium-based ionic liquids. J. Mol. Liq. 273, 107–115 (2019)CrossRef
26.
go back to reference Reeves, C.J., Siddaiah, A., Menezes, P.L.: Tribological study of imidazolium and phosphonium ionic liquid-based lubricants as additives in carboxylic acid-based natural oil: advancements in environmentally friendly lubricants. J. Clean. Prod. 176, 241–250 (2018)CrossRef Reeves, C.J., Siddaiah, A., Menezes, P.L.: Tribological study of imidazolium and phosphonium ionic liquid-based lubricants as additives in carboxylic acid-based natural oil: advancements in environmentally friendly lubricants. J. Clean. Prod. 176, 241–250 (2018)CrossRef
27.
go back to reference Yang, J., Zhou, Z., Liang, Y., Tang, J., Gao, Y., Niu, J., Dong, H., Tang, R., Tang, G., Cao, Y.: Sustainable preparation of microcapsules with desirable stability and bioactivity using phosphonium ionic liquid as a functional additive. ACS Sustain. Chem. Eng. 8(35), 13440–13448 (2020)CrossRef Yang, J., Zhou, Z., Liang, Y., Tang, J., Gao, Y., Niu, J., Dong, H., Tang, R., Tang, G., Cao, Y.: Sustainable preparation of microcapsules with desirable stability and bioactivity using phosphonium ionic liquid as a functional additive. ACS Sustain. Chem. Eng. 8(35), 13440–13448 (2020)CrossRef
28.
go back to reference Nazir, S.., Khawar Rauf, M., Ebihara, M., Hameed, S..: [4-(methoxycarbonyl) benzyl] triphenylphosphonium bromide hemihydrate. Acta Crystallogr. Sect. E: Struct. Rep. Online 64(2), 423 (2008)CrossRef Nazir, S.., Khawar Rauf, M., Ebihara, M., Hameed, S..: [4-(methoxycarbonyl) benzyl] triphenylphosphonium bromide hemihydrate. Acta Crystallogr. Sect. E: Struct. Rep. Online 64(2), 423 (2008)CrossRef
29.
go back to reference Dove, M.T.: An introduction to atomistic simulation methods. Seminarios de la SEM 4, 7–37 (2008) Dove, M.T.: An introduction to atomistic simulation methods. Seminarios de la SEM 4, 7–37 (2008)
30.
go back to reference Balluffi, R.W., Allen, S.M., Carter, W.C.: Kinetics of Materials. Wiley, New York (2005)CrossRef Balluffi, R.W., Allen, S.M., Carter, W.C.: Kinetics of Materials. Wiley, New York (2005)CrossRef
31.
go back to reference Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (2017)CrossRef Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (2017)CrossRef
32.
go back to reference Yan, T., Burnham, C.J., Del Pópolo, M.G., Voth, G.A.: Molecular dynamics simulation of ionic liquids: the effect of electronic polarizability. J. Phys. Chem. B 108(32), 11877–11881 (2004)CrossRef Yan, T., Burnham, C.J., Del Pópolo, M.G., Voth, G.A.: Molecular dynamics simulation of ionic liquids: the effect of electronic polarizability. J. Phys. Chem. B 108(32), 11877–11881 (2004)CrossRef
33.
go back to reference Borodin, O.: Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113(33), 11463–11478 (2009)CrossRef Borodin, O.: Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113(33), 11463–11478 (2009)CrossRef
34.
go back to reference Starovoytov, O.N., Torabifard, H., Cisneros, G.A.: Development of amoeba force field for 1, 3-dimethylimidazolium based ionic liquids. J. Phys. Chem. B 118(25), 7156–7166 (2014)CrossRef Starovoytov, O.N., Torabifard, H., Cisneros, G.A.: Development of amoeba force field for 1, 3-dimethylimidazolium based ionic liquids. J. Phys. Chem. B 118(25), 7156–7166 (2014)CrossRef
35.
go back to reference Wang, Y.-L., Shah, F.U., Glavatskih, S., Antzutkin, O.N., Laaksonen, A.: Atomistic insight into orthoborate-based ionic liquids: force field development and evaluation. J. Phys. Chem. B 118(29), 8711–8723 (2014)CrossRef Wang, Y.-L., Shah, F.U., Glavatskih, S., Antzutkin, O.N., Laaksonen, A.: Atomistic insight into orthoborate-based ionic liquids: force field development and evaluation. J. Phys. Chem. B 118(29), 8711–8723 (2014)CrossRef
36.
go back to reference Bedrov, D., Piquemal, J.-P., Borodin, O., MacKerell, A.D., Jr., Roux, B., Shroder, C.: Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields. Chem. Rev. 119(13), 7940–7995 (2019)CrossRef Bedrov, D., Piquemal, J.-P., Borodin, O., MacKerell, A.D., Jr., Roux, B., Shroder, C.: Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields. Chem. Rev. 119(13), 7940–7995 (2019)CrossRef
37.
go back to reference Goloviznina, K., Canongia Lopes, J.N., Costa Gomes, M., Pádua, A.A.: Transferable, polarizable force field for ionic liquids. J. Chem. Theory Comput. 15(11), 5858–5871 (2019)CrossRef Goloviznina, K., Canongia Lopes, J.N., Costa Gomes, M., Pádua, A.A.: Transferable, polarizable force field for ionic liquids. J. Chem. Theory Comput. 15(11), 5858–5871 (2019)CrossRef
38.
go back to reference Vázquez-Montelongo, E.A., Vázquez-Cervantes, J.E., Cisneros, G.A.: Current status of amoeba-il: a multipolar/polarizable force field for ionic liquids. Int. J. Mol. Sci. 21(3), 697 (2020)CrossRef Vázquez-Montelongo, E.A., Vázquez-Cervantes, J.E., Cisneros, G.A.: Current status of amoeba-il: a multipolar/polarizable force field for ionic liquids. Int. J. Mol. Sci. 21(3), 697 (2020)CrossRef
39.
go back to reference Canongia Lopes, J.N., Deschamps, J., Pádua, A.A.: Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 108(6), 2038–2047 (2004)CrossRef Canongia Lopes, J.N., Deschamps, J., Pádua, A.A.: Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 108(6), 2038–2047 (2004)CrossRef
40.
go back to reference Canongia Lopes, J.N., Pádua, A.A.: Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J. Phys. Chem. B 108(43), 16893–16898 (2004)CrossRef Canongia Lopes, J.N., Pádua, A.A.: Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J. Phys. Chem. B 108(43), 16893–16898 (2004)CrossRef
41.
go back to reference Canongia Lopes, J.N., Pádua, A.A.: Molecular force field for ionic liquids iii: imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. J. Phys. Chem. B 110(39), 19586–19592 (2006)CrossRef Canongia Lopes, J.N., Pádua, A.A.: Molecular force field for ionic liquids iii: imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. J. Phys. Chem. B 110(39), 19586–19592 (2006)CrossRef
42.
go back to reference Canongia Lopes, J.N., Pádua, A.A., Shimizu, K.: Molecular force field for ionic liquids iv: trialkylimidazolium and alkoxycarbonyl-imidazolium cations; alkylsulfonate and alkylsulfate anions. J. Phys. Chem. B 112(16), 5039–5046 (2008)CrossRef Canongia Lopes, J.N., Pádua, A.A., Shimizu, K.: Molecular force field for ionic liquids iv: trialkylimidazolium and alkoxycarbonyl-imidazolium cations; alkylsulfonate and alkylsulfate anions. J. Phys. Chem. B 112(16), 5039–5046 (2008)CrossRef
43.
go back to reference Shimizu, K., Almantariotis, D., Gomes, M.F.C., Padua, A.A., Canongia Lopes, J.N.: Molecular force field for ionic liquids v: hydroxyethylimidazolium, dimethoxy-2-methylimidazolium, and fluoroalkylimidazolium cations and bis (fluorosulfonyl) amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions. J. Phys. Chem. B 114(10), 3592–3600 (2010)CrossRef Shimizu, K., Almantariotis, D., Gomes, M.F.C., Padua, A.A., Canongia Lopes, J.N.: Molecular force field for ionic liquids v: hydroxyethylimidazolium, dimethoxy-2-methylimidazolium, and fluoroalkylimidazolium cations and bis (fluorosulfonyl) amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions. J. Phys. Chem. B 114(10), 3592–3600 (2010)CrossRef
44.
go back to reference Lopes, J.N.C., Pádua, A.A.: CL&P: a generic and systematic force field for ionic liquids modeling. Theor. Chem. Acc. 131(3), 1–11 (2012) Lopes, J.N.C., Pádua, A.A.: CL&P: a generic and systematic force field for ionic liquids modeling. Theor. Chem. Acc. 131(3), 1–11 (2012)
45.
go back to reference Xia, M., Chai, Z., Wang, D.: Polarizable and non-polarizable force field representations of ferric cation and validations. J. Phys. Chem. B 121(23), 5718–5729 (2017)CrossRef Xia, M., Chai, Z., Wang, D.: Polarizable and non-polarizable force field representations of ferric cation and validations. J. Phys. Chem. B 121(23), 5718–5729 (2017)CrossRef
46.
go back to reference Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)CrossRef Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117(19), 5179–5197 (1995)CrossRef
47.
go back to reference Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)CrossRef Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)CrossRef
48.
go back to reference Liu, Z., Huang, S., Wang, W.: A refined force field for molecular simulation of imidazolium-based ionic liquids. J. Phys. Chem. B 108(34), 12978–12989 (2004)CrossRef Liu, Z., Huang, S., Wang, W.: A refined force field for molecular simulation of imidazolium-based ionic liquids. J. Phys. Chem. B 108(34), 12978–12989 (2004)CrossRef
49.
go back to reference Wu, X., Liu, Z., Huang, S., Wang, W.: Molecular dynamics simulation of room-temperature ionic liquid mixture of [bmim][BF4] and acetonitrile by a refined force field. Phys. Chem. Chem. Phys. 7(14), 2771–2779 (2005)CrossRef Wu, X., Liu, Z., Huang, S., Wang, W.: Molecular dynamics simulation of room-temperature ionic liquid mixture of [bmim][BF4] and acetonitrile by a refined force field. Phys. Chem. Chem. Phys. 7(14), 2771–2779 (2005)CrossRef
50.
go back to reference Zhou, G., Liu, X., Zhang, S., Yu, G., He, H.: A force field for molecular simulation of tetrabutylphosphonium amino acid ionic liquids. J. Phys. Chem. B 111(25), 7078–7084 (2007)CrossRef Zhou, G., Liu, X., Zhang, S., Yu, G., He, H.: A force field for molecular simulation of tetrabutylphosphonium amino acid ionic liquids. J. Phys. Chem. B 111(25), 7078–7084 (2007)CrossRef
51.
go back to reference Wu, H., Shah, J.K., Tenney, C.M., Rosch, T.W., Maginn, E.J.: Structure and dynamics of neat and CO2-reacted ionic liquid tetrabutylphosphonium 2-cyanopyrrolide. Ind. Eng. Chem. Res. 50(15), 8983–8993 (2011)CrossRef Wu, H., Shah, J.K., Tenney, C.M., Rosch, T.W., Maginn, E.J.: Structure and dynamics of neat and CO2-reacted ionic liquid tetrabutylphosphonium 2-cyanopyrrolide. Ind. Eng. Chem. Res. 50(15), 8983–8993 (2011)CrossRef
52.
go back to reference Parker, Q., Bell, R.G., de Leeuw, N.H.: Structural and dynamical properties of ionic liquids: a molecular dynamics study employing DL_POLY 4. Mol. Simul., 1–9 (2019) Parker, Q., Bell, R.G., de Leeuw, N.H.: Structural and dynamical properties of ionic liquids: a molecular dynamics study employing DL_POLY 4. Mol. Simul., 1–9 (2019)
53.
go back to reference Sheridan, Q.R., Schneider, W.F., Maginn, E.J.: Role of molecular modeling in the development of CO2-reactive ionic liquids. Chem. Rev. 118(10), 5242–5260 (2018)CrossRef Sheridan, Q.R., Schneider, W.F., Maginn, E.J.: Role of molecular modeling in the development of CO2-reactive ionic liquids. Chem. Rev. 118(10), 5242–5260 (2018)CrossRef
54.
go back to reference Sambasivarao, S.V., Acevedo, O.: Development of OPLS-AA force field parameters for 68 unique ionic liquids. J. Chem. Theory Comput. 5(4), 1038–1050 (2009)CrossRef Sambasivarao, S.V., Acevedo, O.: Development of OPLS-AA force field parameters for 68 unique ionic liquids. J. Chem. Theory Comput. 5(4), 1038–1050 (2009)CrossRef
55.
go back to reference Doherty, B., Zhong, X., Gathiaka, S., Li, B., Acevedo, O.: Revisiting opls force field parameters for ionic liquid simulations. J. Chem. Theory Comput. 13(12), 6131–6145 (2017)CrossRef Doherty, B., Zhong, X., Gathiaka, S., Li, B., Acevedo, O.: Revisiting opls force field parameters for ionic liquid simulations. J. Chem. Theory Comput. 13(12), 6131–6145 (2017)CrossRef
56.
go back to reference Dommert, F., Holm, C.: Refining classical force fields for ionic liquids: theory and application to [MMIM][Cl]. Phys. Chem. Chem. Phys. 15(6), 2037–2049 (2013)CrossRef Dommert, F., Holm, C.: Refining classical force fields for ionic liquids: theory and application to [MMIM][Cl]. Phys. Chem. Chem. Phys. 15(6), 2037–2049 (2013)CrossRef
57.
go back to reference Voroshylova, I.V., Chaban, V.V.: Atomistic force field for pyridinium-based ionic liquids: reliable transport properties. J. Phys. Chem. B 118(36), 10716–10724 (2014)CrossRef Voroshylova, I.V., Chaban, V.V.: Atomistic force field for pyridinium-based ionic liquids: reliable transport properties. J. Phys. Chem. B 118(36), 10716–10724 (2014)CrossRef
58.
go back to reference Chaban, V.V., Voroshylova, I.V.: Systematic refinement of Canongia Lopes-Pádua force field for pyrrolidinium-based ionic liquids. J. Phys. Chem. B 119(20), 6242–6249 (2015)CrossRef Chaban, V.V., Voroshylova, I.V.: Systematic refinement of Canongia Lopes-Pádua force field for pyrrolidinium-based ionic liquids. J. Phys. Chem. B 119(20), 6242–6249 (2015)CrossRef
59.
go back to reference Köddermann, T., Paschek, D., Ludwig, R.: Molecular dynamic simulations of ionic liquids: a reliable description of structure, thermodynamics and dynamics. Chem. Phys. Chem. 8(17), 2464–2470 (2007)CrossRef Köddermann, T., Paschek, D., Ludwig, R.: Molecular dynamic simulations of ionic liquids: a reliable description of structure, thermodynamics and dynamics. Chem. Phys. Chem. 8(17), 2464–2470 (2007)CrossRef
60.
go back to reference Vergadou, N., Androulaki, E., Hill, J.-R., Economou, I.G.: Molecular simulations of imidazolium-based tricyanomethanide ionic liquids using an optimized classical force field. Phys. Chem. Chem. Phys. 18(9), 6850–6860 (2016)CrossRef Vergadou, N., Androulaki, E., Hill, J.-R., Economou, I.G.: Molecular simulations of imidazolium-based tricyanomethanide ionic liquids using an optimized classical force field. Phys. Chem. Chem. Phys. 18(9), 6850–6860 (2016)CrossRef
61.
go back to reference Liu, X., Zhou, G., Zhang, S., Yu, G.: Molecular simulations of phosphonium-based ionic liquid. Mol. Simul. 36(1), 79–86 (2010)CrossRef Liu, X., Zhou, G., Zhang, S., Yu, G.: Molecular simulations of phosphonium-based ionic liquid. Mol. Simul. 36(1), 79–86 (2010)CrossRef
62.
go back to reference Liu, X., Zhao, Y., Zhang, X., Zhou, G., Zhang, S.: Microstructures and interaction analyses of phosphonium-based ionic liquids: a simulation study. J. Phys. Chem. B 116(16), 4934–4942 (2012)CrossRef Liu, X., Zhao, Y., Zhang, X., Zhou, G., Zhang, S.: Microstructures and interaction analyses of phosphonium-based ionic liquids: a simulation study. J. Phys. Chem. B 116(16), 4934–4942 (2012)CrossRef
63.
go back to reference Wang, Y.-L., Sarman, S., Kloo, L., Antzutkin, O.N., Glavatskih, S., Laaksonen, A.: Solvation structures of water in trihexyltetradecylphosphonium-orthoborate ionic liquids. J. Chem. Phys. 145(6), 064507 (2016)CrossRef Wang, Y.-L., Sarman, S., Kloo, L., Antzutkin, O.N., Glavatskih, S., Laaksonen, A.: Solvation structures of water in trihexyltetradecylphosphonium-orthoborate ionic liquids. J. Chem. Phys. 145(6), 064507 (2016)CrossRef
64.
go back to reference Sarman, S., Wang, Y.-L., Rohlmann, P., Glavatskih, S., Laaksonen, A.: Rheology of phosphonium ionic liquids: a molecular dynamics and experimental study. Phys. Chem. Chem. Phys. 20(15), 10193–10203 (2018)CrossRef Sarman, S., Wang, Y.-L., Rohlmann, P., Glavatskih, S., Laaksonen, A.: Rheology of phosphonium ionic liquids: a molecular dynamics and experimental study. Phys. Chem. Chem. Phys. 20(15), 10193–10203 (2018)CrossRef
65.
go back to reference Pereira, G.F.L., Pereira, R.G., Salanne, M., Siqueira, L.J.A.: Molecular dynamics simulations of ether-modified phosphonium ionic liquid confined in between planar and porous graphene electrode models. J. Phys. Chem. C 123(17), 10816–10825 (2019)CrossRef Pereira, G.F.L., Pereira, R.G., Salanne, M., Siqueira, L.J.A.: Molecular dynamics simulations of ether-modified phosphonium ionic liquid confined in between planar and porous graphene electrode models. J. Phys. Chem. C 123(17), 10816–10825 (2019)CrossRef
66.
go back to reference Van Duin, A.C., Dasgupta, S., Lorant, F., Goddard, W.A.: Reaxff: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)CrossRef Van Duin, A.C., Dasgupta, S., Lorant, F., Goddard, W.A.: Reaxff: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)CrossRef
67.
go back to reference Zhang, B., van Duin, A.C., Johnson, J.K.: Development of a ReaxFF reactive force field for tetrabutylphosphonium glycinate/CO2 mixtures. J. Phys. Chem. B 118(41), 12008–12016 (2014)CrossRef Zhang, B., van Duin, A.C., Johnson, J.K.: Development of a ReaxFF reactive force field for tetrabutylphosphonium glycinate/CO2 mixtures. J. Phys. Chem. B 118(41), 12008–12016 (2014)CrossRef
68.
go back to reference Tsuzuki, S., Tokuda, H., Hayamizu, K., Watanabe, M.: Magnitude and directionality of interaction in ion pairs of ionic liquids: relationship with ionic conductivity. J. Phys. Chem. B 109(34), 16474–16481 (2005)CrossRef Tsuzuki, S., Tokuda, H., Hayamizu, K., Watanabe, M.: Magnitude and directionality of interaction in ion pairs of ionic liquids: relationship with ionic conductivity. J. Phys. Chem. B 109(34), 16474–16481 (2005)CrossRef
69.
go back to reference Maschio, L., Civalleri, B., Ugliengo, P., Gavezzotti, A.: Intermolecular interaction energies in molecular crystals: comparison and agreement of localized møller-plesset 2, dispersion-corrected density functional, and classical empirical two-body calculations. J. Phys. Chem. A 115(41), 11179–11186 (2011)CrossRef Maschio, L., Civalleri, B., Ugliengo, P., Gavezzotti, A.: Intermolecular interaction energies in molecular crystals: comparison and agreement of localized møller-plesset 2, dispersion-corrected density functional, and classical empirical two-body calculations. J. Phys. Chem. A 115(41), 11179–11186 (2011)CrossRef
70.
go back to reference Gontrani, L., Russina, O., Lo Celso, F., Caminiti, R., Annat, G., Triolo, A.: Liquid structure of trihexyltetradecylphosphonium chloride at ambient temperature: an x-ray scattering and simulation study. J. Phys. Chem. B 113(27), 9235–9240 (2009)CrossRef Gontrani, L., Russina, O., Lo Celso, F., Caminiti, R., Annat, G., Triolo, A.: Liquid structure of trihexyltetradecylphosphonium chloride at ambient temperature: an x-ray scattering and simulation study. J. Phys. Chem. B 113(27), 9235–9240 (2009)CrossRef
71.
go back to reference Martins, V.L., Sanchez-Ramirez, N., Ribeiro, M.C., Torresi, R.M.: Two phosphonium ionic liquids with high Li+ transport number. Phys. Chem. Chem. Phys. 17(35), 23041–23051 (2015)CrossRef Martins, V.L., Sanchez-Ramirez, N., Ribeiro, M.C., Torresi, R.M.: Two phosphonium ionic liquids with high Li+ transport number. Phys. Chem. Chem. Phys. 17(35), 23041–23051 (2015)CrossRef
72.
go back to reference Shaikh, A.R., Ashraf, M., AlMayef, T., Chawla, M., Poater, A., Cavallo, L.: Amino acid ionic liquids as potential candidates for CO2 capture: combined density functional theory and molecular dynamics simulations. Chem. Phys. Lett. 745, 137239 (2020)CrossRef Shaikh, A.R., Ashraf, M., AlMayef, T., Chawla, M., Poater, A., Cavallo, L.: Amino acid ionic liquids as potential candidates for CO2 capture: combined density functional theory and molecular dynamics simulations. Chem. Phys. Lett. 745, 137239 (2020)CrossRef
73.
go back to reference Zhao, Y., Tian, L., Pei, Y., Wang, H., Wang, J.: Effect of anionic structure on the LCST phase behavior of phosphonium ionic liquids in water. Ind. Eng. Chem. Res. 57(38), 12935–12941 (2018)CrossRef Zhao, Y., Tian, L., Pei, Y., Wang, H., Wang, J.: Effect of anionic structure on the LCST phase behavior of phosphonium ionic liquids in water. Ind. Eng. Chem. Res. 57(38), 12935–12941 (2018)CrossRef
74.
go back to reference Zhang, X., Huo, F., Liu, X., Dong, K., He, H., Yao, X., Zhang, S.: Influence of microstructure and interaction on viscosity of ionic liquids. Ind. Eng. Chem. Res. 54(13), 3505–3514 (2015)CrossRef Zhang, X., Huo, F., Liu, X., Dong, K., He, H., Yao, X., Zhang, S.: Influence of microstructure and interaction on viscosity of ionic liquids. Ind. Eng. Chem. Res. 54(13), 3505–3514 (2015)CrossRef
75.
go back to reference Laaksonen, A., Kusalik, P., Svishchev, I.: Three-dimensional structure in water-methanol mixtures. J. Phys. Chem. A 101(33), 5910–5918 (1997)CrossRef Laaksonen, A., Kusalik, P., Svishchev, I.: Three-dimensional structure in water-methanol mixtures. J. Phys. Chem. A 101(33), 5910–5918 (1997)CrossRef
76.
go back to reference Kulińska, K., Kuliński, T., Lyubartsev, A., Laaksonen, A., Adamiak, R.W.: Spatial distribution functions as a tool in the analysis of ribonucleic acids hydration-molecular dynamics studies. Comput. Chem. 24(3–4), 451–457 (2000)CrossRef Kulińska, K., Kuliński, T., Lyubartsev, A., Laaksonen, A., Adamiak, R.W.: Spatial distribution functions as a tool in the analysis of ribonucleic acids hydration-molecular dynamics studies. Comput. Chem. 24(3–4), 451–457 (2000)CrossRef
77.
go back to reference Kusalik, P.G., Svishchev, I.M.: The spatial structure in liquid water. Science 265(5176), 1219–1221 (1994)CrossRef Kusalik, P.G., Svishchev, I.M.: The spatial structure in liquid water. Science 265(5176), 1219–1221 (1994)CrossRef
78.
go back to reference Gillespie, R.J., Popelier, P.L.A.: Chemical Bonding and Molecular Geometry. Oxford University Press, Oxford (2001) Gillespie, R.J., Popelier, P.L.A.: Chemical Bonding and Molecular Geometry. Oxford University Press, Oxford (2001)
80.
go back to reference Koski, J.P., Moore, S.G., Clay, R.C., O’Hearn, K.A., Aktulga, H.M., Wilson, M.A., Rackers, J.A., Lane, J.M.D., Modine, N.A.: Water in an external electric field: comparing charge distribution methods using ReaxFF simulations. J. Chem. Theory Comput. 18(1), 580–594 (2022). https://doi.org/10.1021/acs.jctc.1c00975CrossRef Koski, J.P., Moore, S.G., Clay, R.C., O’Hearn, K.A., Aktulga, H.M., Wilson, M.A., Rackers, J.A., Lane, J.M.D., Modine, N.A.: Water in an external electric field: comparing charge distribution methods using ReaxFF simulations. J. Chem. Theory Comput. 18(1), 580–594 (2022). https://​doi.​org/​10.​1021/​acs.​jctc.​1c00975CrossRef
81.
go back to reference Dong, K., Zhang, S.: Hydrogen bonds: a structural insight into ionic liquids. Chem. Eur. J. 18(10), 2748–2761 (2012)CrossRef Dong, K., Zhang, S.: Hydrogen bonds: a structural insight into ionic liquids. Chem. Eur. J. 18(10), 2748–2761 (2012)CrossRef
82.
go back to reference Luo, J., Conrad, O., Vankelecom, I.F.: Physicochemical properties of phosphonium-based and ammonium-based protic ionic liquids. J. Mater. Chem. 22(38), 20574–20579 (2012)CrossRef Luo, J., Conrad, O., Vankelecom, I.F.: Physicochemical properties of phosphonium-based and ammonium-based protic ionic liquids. J. Mater. Chem. 22(38), 20574–20579 (2012)CrossRef
83.
go back to reference Guardia, E., Martí, J., García-Tarrés, L., Laria, D.: A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions. J. Mol. Liq. 117(1–3), 63–67 (2005)CrossRef Guardia, E., Martí, J., García-Tarrés, L., Laria, D.: A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions. J. Mol. Liq. 117(1–3), 63–67 (2005)CrossRef
84.
go back to reference Fitch, E.C.: Proactive Maintenance for Mechanical Systems, vol. 5. Elsevier, Stillwater (2013) Fitch, E.C.: Proactive Maintenance for Mechanical Systems, vol. 5. Elsevier, Stillwater (2013)
85.
go back to reference Quercia, G., Belisario, R., Rengifo, R.: Reduction of erosion rate by particle size distribution (PSD) modification of hematite as weighting agent for oil based drilling fluids. Wear 266(11–12), 1229–1236 (2009)CrossRef Quercia, G., Belisario, R., Rengifo, R.: Reduction of erosion rate by particle size distribution (PSD) modification of hematite as weighting agent for oil based drilling fluids. Wear 266(11–12), 1229–1236 (2009)CrossRef
86.
go back to reference Gao, X., Fang, J., Wang, H.: Sampling the isothermal-isobaric ensemble by Langevin dynamics. J. Chem. Phys. 144(12), 124113 (2016)CrossRef Gao, X., Fang, J., Wang, H.: Sampling the isothermal-isobaric ensemble by Langevin dynamics. J. Chem. Phys. 144(12), 124113 (2016)CrossRef
87.
go back to reference Wu, H., Maginn, E.J.: Water solubility and dynamics of CO2 capture ionic liquids having aprotic heterocyclic anions. Fluid Phase Equilib. 368, 72–79 (2014)CrossRef Wu, H., Maginn, E.J.: Water solubility and dynamics of CO2 capture ionic liquids having aprotic heterocyclic anions. Fluid Phase Equilib. 368, 72–79 (2014)CrossRef
88.
go back to reference Wang, Y.L., Shimpi, M.R., Sarman, S., Antzutkin, O.N., Glavatskih, S., Kloo, L., Laaksonen, A.: Atomistic insight into tetraalkylphosphonium bis (oxalato) borate ionic liquid/water mixtures. 2. Volumetric and dynamic properties. J. Phys. Chem. B 120(30), 7446–7455 (2016)CrossRef Wang, Y.L., Shimpi, M.R., Sarman, S., Antzutkin, O.N., Glavatskih, S., Kloo, L., Laaksonen, A.: Atomistic insight into tetraalkylphosphonium bis (oxalato) borate ionic liquid/water mixtures. 2. Volumetric and dynamic properties. J. Phys. Chem. B 120(30), 7446–7455 (2016)CrossRef
89.
go back to reference Venkatesan, S.S., Huda, M.M., Rai, N.: Molecular insights into ionic liquid/aqueous interface of phosphonium based phase-separable ionic liquids. AIP Adv. 9(4), 045115 (2019)CrossRef Venkatesan, S.S., Huda, M.M., Rai, N.: Molecular insights into ionic liquid/aqueous interface of phosphonium based phase-separable ionic liquids. AIP Adv. 9(4), 045115 (2019)CrossRef
90.
go back to reference Sharma, S., Gupta, A., Dhabal, D., Kashyap, H.K.: Pressure-dependent morphology of trihexyl (tetradecyl) phosphonium ionic liquids: A molecular dynamics study. J. Chem. Phys. 145(13), 134506 (2016)CrossRef Sharma, S., Gupta, A., Dhabal, D., Kashyap, H.K.: Pressure-dependent morphology of trihexyl (tetradecyl) phosphonium ionic liquids: A molecular dynamics study. J. Chem. Phys. 145(13), 134506 (2016)CrossRef
91.
go back to reference Mondal, A., Sunda, A.P.: Molecular dynamics simulations of ammonium/phosphonium-based protic ionic liquids: influence of alkyl to aryl group. Phys. Chem. Chem. Phys. 20(28), 19268–19275 (2018)CrossRef Mondal, A., Sunda, A.P.: Molecular dynamics simulations of ammonium/phosphonium-based protic ionic liquids: influence of alkyl to aryl group. Phys. Chem. Chem. Phys. 20(28), 19268–19275 (2018)CrossRef
92.
go back to reference Shimpi, M.R., Rohlmann, P., Shah, F.U., Glavatskih, S., Antzutkin, O.N.: Transition anionic complex in trihexyl (tetradecyl) phosphonium-bis (oxalato) borate ionic liquid-revisited. Phys. Chem. Chem. Phys. 23(10), 6190–6203 (2021)CrossRef Shimpi, M.R., Rohlmann, P., Shah, F.U., Glavatskih, S., Antzutkin, O.N.: Transition anionic complex in trihexyl (tetradecyl) phosphonium-bis (oxalato) borate ionic liquid-revisited. Phys. Chem. Chem. Phys. 23(10), 6190–6203 (2021)CrossRef
93.
go back to reference Kasahara, S., Kamio, E., Matsuyama, H.: Improvements in the CO2 permeation selectivities of amino acid ionic liquid-based facilitated transport membranes by controlling their gas absorption properties. J. Membr. Sci. 454, 155–162 (2014)CrossRef Kasahara, S., Kamio, E., Matsuyama, H.: Improvements in the CO2 permeation selectivities of amino acid ionic liquid-based facilitated transport membranes by controlling their gas absorption properties. J. Membr. Sci. 454, 155–162 (2014)CrossRef
94.
go back to reference Blahušiak, M., Schlosser, Š: Physical properties of phosphonium ionic liquid and its mixtures with dodecane and water. J. Chem. Thermodyn. 72, 54–64 (2014)CrossRef Blahušiak, M., Schlosser, Š: Physical properties of phosphonium ionic liquid and its mixtures with dodecane and water. J. Chem. Thermodyn. 72, 54–64 (2014)CrossRef
95.
go back to reference Marták, J., Schlosser, S.: Density, viscosity, and structure of equilibrium solvent phases in butyric acid extraction by phosphonium ionic liquid. J. Chem. Eng. Data 62(10), 3025–3035 (2017)CrossRef Marták, J., Schlosser, S.: Density, viscosity, and structure of equilibrium solvent phases in butyric acid extraction by phosphonium ionic liquid. J. Chem. Eng. Data 62(10), 3025–3035 (2017)CrossRef
96.
go back to reference Oster, K., Goodrich, P., Jacquemin, J., Hardacre, C., Ribeiro, A., Elsinawi, A.: A new insight into pure and water-saturated quaternary phosphonium-based carboxylate ionic liquids: density, heat capacity, ionic conductivity, thermogravimetric analysis, thermal conductivity and viscosity. J. Chem. Thermodyn. 121, 97–111 (2018)CrossRef Oster, K., Goodrich, P., Jacquemin, J., Hardacre, C., Ribeiro, A., Elsinawi, A.: A new insight into pure and water-saturated quaternary phosphonium-based carboxylate ionic liquids: density, heat capacity, ionic conductivity, thermogravimetric analysis, thermal conductivity and viscosity. J. Chem. Thermodyn. 121, 97–111 (2018)CrossRef
97.
go back to reference Seo, S., DeSilva, M.A., Xia, H., Brennecke, J.F.: Effect of cation on physical properties and CO2 solubility for phosphonium-based ionic liquids with 2-cyanopyrrolide anions. J. Phys. Chem. B 119(35), 11807–11814 (2015)CrossRef Seo, S., DeSilva, M.A., Xia, H., Brennecke, J.F.: Effect of cation on physical properties and CO2 solubility for phosphonium-based ionic liquids with 2-cyanopyrrolide anions. J. Phys. Chem. B 119(35), 11807–11814 (2015)CrossRef
98.
go back to reference Kolbeck, C., Lehmann, J., Lovelock, K., Cremer, T., Paape, N., Wasserscheid, P., Froba, A., Maier, F., Steinruck, H.-P.: Density and surface tension of ionic liquids. J. Phys. Chem. B 114(51), 17025–17036 (2010)CrossRef Kolbeck, C., Lehmann, J., Lovelock, K., Cremer, T., Paape, N., Wasserscheid, P., Froba, A., Maier, F., Steinruck, H.-P.: Density and surface tension of ionic liquids. J. Phys. Chem. B 114(51), 17025–17036 (2010)CrossRef
99.
go back to reference Tariq, M., Forte, P., Gomes, M.C., Lopes, J.C., Rebelo, L.: Densities and refractive indices of imidazolium-and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion. J. Chem. Thermodyn. 41(6), 790–798 (2009)CrossRef Tariq, M., Forte, P., Gomes, M.C., Lopes, J.C., Rebelo, L.: Densities and refractive indices of imidazolium-and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion. J. Chem. Thermodyn. 41(6), 790–798 (2009)CrossRef
100.
go back to reference Seki, S., Kobayashi, T., Kobayashi, Y., Takei, K., Miyashiro, H., Hayamizu, K., Tsuzuki, S., Mitsugi, T., Umebayashi, Y.: Effects of cation and anion on physical properties of room-temperature ionic liquids. J. Mol. Liq. 152(1–3), 9–13 (2010)CrossRef Seki, S., Kobayashi, T., Kobayashi, Y., Takei, K., Miyashiro, H., Hayamizu, K., Tsuzuki, S., Mitsugi, T., Umebayashi, Y.: Effects of cation and anion on physical properties of room-temperature ionic liquids. J. Mol. Liq. 152(1–3), 9–13 (2010)CrossRef
101.
go back to reference Montalbán, M., Bolívar, C., Diaz Banos, F.G., Víllora, G.: Effect of temperature, anion, and alkyl chain length on the density and refractive index of 1-alkyl-3-methylimidazolium-based ionic liquids. J. Chem. Eng. Data 60(7), 1986–1996 (2015)CrossRef Montalbán, M., Bolívar, C., Diaz Banos, F.G., Víllora, G.: Effect of temperature, anion, and alkyl chain length on the density and refractive index of 1-alkyl-3-methylimidazolium-based ionic liquids. J. Chem. Eng. Data 60(7), 1986–1996 (2015)CrossRef
102.
go back to reference Ebrahimi, M., Moosavi, F.: The effects of temperature, alkyl chain length, and anion type on thermophysical properties of the imidazolium based amino acid ionic liquids. J. Mol. Liq. 250, 121–130 (2018)CrossRef Ebrahimi, M., Moosavi, F.: The effects of temperature, alkyl chain length, and anion type on thermophysical properties of the imidazolium based amino acid ionic liquids. J. Mol. Liq. 250, 121–130 (2018)CrossRef
103.
go back to reference Hess, B.: Determining the shear viscosity of model liquids from molecular dynamics simulations. J. Chem. Phys. 116(1), 209–217 (2002)CrossRef Hess, B.: Determining the shear viscosity of model liquids from molecular dynamics simulations. J. Chem. Phys. 116(1), 209–217 (2002)CrossRef
104.
go back to reference Ramasamy, U.S., Len, M., Martini, A.: Correlating molecular structure to the behavior of linear styrene-butadiene viscosity modifiers. Tribol. Lett. 65(4), 1–8 (2017)CrossRef Ramasamy, U.S., Len, M., Martini, A.: Correlating molecular structure to the behavior of linear styrene-butadiene viscosity modifiers. Tribol. Lett. 65(4), 1–8 (2017)CrossRef
105.
go back to reference Len, M., Ramasamy, U.S., Lichter, S., Martini, A.: Thickening mechanisms of polyisobutylene in polyalphaolefin. Tribol. Lett. 66(1), 1–9 (2018)CrossRef Len, M., Ramasamy, U.S., Lichter, S., Martini, A.: Thickening mechanisms of polyisobutylene in polyalphaolefin. Tribol. Lett. 66(1), 1–9 (2018)CrossRef
106.
go back to reference Panwar, P., Michael, P., Devlin, M., Martini, A.: Critical shear rate of polymer-enhanced hydraulic fluids. Lubricants 8(12), 102 (2020)CrossRef Panwar, P., Michael, P., Devlin, M., Martini, A.: Critical shear rate of polymer-enhanced hydraulic fluids. Lubricants 8(12), 102 (2020)CrossRef
107.
go back to reference Mathas, D., Holweger, W., Wolf, M., Bohnert, C., Bakolas, V., Procelewska, J., Wang, L., Bair, S., Skylaris, C.-K.: Evaluation of methods for viscosity simulations of lubricants at different temperatures and pressures: a case study on PAO-2. Tribol. Trans. (just-accepted), 1–26 (2022) Mathas, D., Holweger, W., Wolf, M., Bohnert, C., Bakolas, V., Procelewska, J., Wang, L., Bair, S., Skylaris, C.-K.: Evaluation of methods for viscosity simulations of lubricants at different temperatures and pressures: a case study on PAO-2. Tribol. Trans. (just-accepted), 1–26 (2022)
108.
go back to reference Noda, A., Hayamizu, K., Watanabe, M.: Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B 105(20), 4603–4610 (2001)CrossRef Noda, A., Hayamizu, K., Watanabe, M.: Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B 105(20), 4603–4610 (2001)CrossRef
109.
go back to reference Ghatee, M.H., Bahrami, M.: Emergence of innovative properties by replacement of nitrogen atom with phosphorus atom in quaternary ammonium ionic liquids: Insights from ab initio calculations and MD simulations. Chem. Phys. 490, 92–105 (2017)CrossRef Ghatee, M.H., Bahrami, M.: Emergence of innovative properties by replacement of nitrogen atom with phosphorus atom in quaternary ammonium ionic liquids: Insights from ab initio calculations and MD simulations. Chem. Phys. 490, 92–105 (2017)CrossRef
110.
go back to reference J Evans, D., P Morriss, G.: Statistical Mechanics of Nonequilbrium Liquids. ANU Press, Canberra (2007) J Evans, D., P Morriss, G.: Statistical Mechanics of Nonequilbrium Liquids. ANU Press, Canberra (2007)
111.
go back to reference Li, A., Tian, Z., Yan, T., Jiang, D.-E., Dai, S.: Anion-functionalized task-specific ionic liquids: molecular origin of change in viscosity upon CO2 capture. J. Phys. Chem. B 118(51), 14880–14887 (2014)CrossRef Li, A., Tian, Z., Yan, T., Jiang, D.-E., Dai, S.: Anion-functionalized task-specific ionic liquids: molecular origin of change in viscosity upon CO2 capture. J. Phys. Chem. B 118(51), 14880–14887 (2014)CrossRef
112.
go back to reference Firaha, D.S., Gibalova, A.V., Holloczki, O.: Basic phosphonium ionic liquids as wittig reagents. ACS omega 2(6), 2901–2911 (2017)CrossRef Firaha, D.S., Gibalova, A.V., Holloczki, O.: Basic phosphonium ionic liquids as wittig reagents. ACS omega 2(6), 2901–2911 (2017)CrossRef
113.
go back to reference Barnhill, W.C., Qu, J., Luo, H., Meyer, H.M., III., Ma, C., Chi, M., Papke, B.L.: Phosphonium-organophosphate ionic liquids as lubricant additives: effects of cation structure on physicochemical and tribological characteristics. ACS Appl. Mater. Interfaces 6(24), 22585–22593 (2014)CrossRef Barnhill, W.C., Qu, J., Luo, H., Meyer, H.M., III., Ma, C., Chi, M., Papke, B.L.: Phosphonium-organophosphate ionic liquids as lubricant additives: effects of cation structure on physicochemical and tribological characteristics. ACS Appl. Mater. Interfaces 6(24), 22585–22593 (2014)CrossRef
114.
go back to reference Rauber, D., Zhang, P., Huch, V., Kraus, T., Hempelmann, R.: Lamellar structures in fluorinated phosphonium ionic liquids: the roles of fluorination and chain length. Phys. Chem. Chem. Phys. 19(40), 27251–27258 (2017)CrossRef Rauber, D., Zhang, P., Huch, V., Kraus, T., Hempelmann, R.: Lamellar structures in fluorinated phosphonium ionic liquids: the roles of fluorination and chain length. Phys. Chem. Chem. Phys. 19(40), 27251–27258 (2017)CrossRef
115.
go back to reference Yamaguchi, T.: Shear thinning and nonlinear structural deformation of ionic liquids with long alkyl chains studied by molecular dynamics simulation. J. Phys. Chem. B 123(29), 6260–6265 (2019)CrossRef Yamaguchi, T.: Shear thinning and nonlinear structural deformation of ionic liquids with long alkyl chains studied by molecular dynamics simulation. J. Phys. Chem. B 123(29), 6260–6265 (2019)CrossRef
116.
go back to reference Ma, Y., Liu, Y., Su, H., Wang, L., Zhang, J.: Relationship between hydrogen bond and viscosity for a series of pyridinium ionic liquids: molecular dynamics and quantum chemistry. J. Mol. Liq. 255, 176–184 (2018)CrossRef Ma, Y., Liu, Y., Su, H., Wang, L., Zhang, J.: Relationship between hydrogen bond and viscosity for a series of pyridinium ionic liquids: molecular dynamics and quantum chemistry. J. Mol. Liq. 255, 176–184 (2018)CrossRef
117.
go back to reference Santos, E., Albo, J., Daniel, C., Portugal, C., Crespo, J., Irabien, A.: Permeability modulation of supported magnetic ionic liquid membranes (SMILMs) by an external magnetic field. J. Membr. Sci. 430, 56–61 (2013)CrossRef Santos, E., Albo, J., Daniel, C., Portugal, C., Crespo, J., Irabien, A.: Permeability modulation of supported magnetic ionic liquid membranes (SMILMs) by an external magnetic field. J. Membr. Sci. 430, 56–61 (2013)CrossRef
118.
go back to reference Lourenço, T.C., Zhang, Y., Costa, L.T., Maginn, E.J.: A molecular dynamics study of lithium-containing aprotic heterocyclic ionic liquid electrolytes. J. Chem. Phys. 148(19), 193834 (2018)CrossRef Lourenço, T.C., Zhang, Y., Costa, L.T., Maginn, E.J.: A molecular dynamics study of lithium-containing aprotic heterocyclic ionic liquid electrolytes. J. Chem. Phys. 148(19), 193834 (2018)CrossRef
119.
go back to reference Sheridan, Q.R., Schneider, W.F., Maginn, E.J.: Anion dependent dynamics and water solubility explained by hydrogen bonding interactions in mixtures of water and aprotic heterocyclic anion ionic liquids. J. Phys. Chem. B 120(49), 12679–12686 (2016)CrossRef Sheridan, Q.R., Schneider, W.F., Maginn, E.J.: Anion dependent dynamics and water solubility explained by hydrogen bonding interactions in mixtures of water and aprotic heterocyclic anion ionic liquids. J. Phys. Chem. B 120(49), 12679–12686 (2016)CrossRef
120.
go back to reference Huang, W., Kong, L., Wang, X.: Electrical sliding friction lubricated with ionic liquids. Tribol. Lett. 65(1), 1–6 (2017)CrossRef Huang, W., Kong, L., Wang, X.: Electrical sliding friction lubricated with ionic liquids. Tribol. Lett. 65(1), 1–6 (2017)CrossRef
121.
go back to reference Gonda, A., Capan, R., Bechev, D., Sauer, B.: The influence of lubricant conductivity on bearing currents in the case of rolling bearing greases. Lubricants 7(12), 108 (2019)CrossRef Gonda, A., Capan, R., Bechev, D., Sauer, B.: The influence of lubricant conductivity on bearing currents in the case of rolling bearing greases. Lubricants 7(12), 108 (2019)CrossRef
122.
go back to reference Chen, Y., Jha, S., Raut, A., Zhang, W., Liang, H.: Performance characteristics of lubricants in electric and hybrid vehicles: a review of current and future needs. Front. Mech. Eng. 6, 82 (2020)CrossRef Chen, Y., Jha, S., Raut, A., Zhang, W., Liang, H.: Performance characteristics of lubricants in electric and hybrid vehicles: a review of current and future needs. Front. Mech. Eng. 6, 82 (2020)CrossRef
123.
go back to reference Harada, M., Yamanaka, A., Tanigaki, M., Tada, Y.: Mass and size effects on the transport properties of molten salts. J. Chem. Phys. 76(3), 1550–1556 (1982)CrossRef Harada, M., Yamanaka, A., Tanigaki, M., Tada, Y.: Mass and size effects on the transport properties of molten salts. J. Chem. Phys. 76(3), 1550–1556 (1982)CrossRef
124.
go back to reference Basouli, H., Mozaffari, F., Eslami, H.: Atomistic insights into structure, ion-pairing and ionic conductivity of 1-ethyl-3-methylimidazolium methylsulfate [Emim][MeSO4] ionic liquid from molecular dynamics simulation. J. Mol. Liq. 331, 115803 (2021)CrossRef Basouli, H., Mozaffari, F., Eslami, H.: Atomistic insights into structure, ion-pairing and ionic conductivity of 1-ethyl-3-methylimidazolium methylsulfate [Emim][MeSO4] ionic liquid from molecular dynamics simulation. J. Mol. Liq. 331, 115803 (2021)CrossRef
125.
go back to reference Hansen, J.-P., McDonald, I.R.: Theory of Simple Liquids: With Applications to Soft Matter. Academic Press, New York (2013) Hansen, J.-P., McDonald, I.R.: Theory of Simple Liquids: With Applications to Soft Matter. Academic Press, New York (2013)
126.
go back to reference Mao, Y., Zhang, Y.: Thermal conductivity, shear viscosity and specific heat of rigid water models. Chem. Phys. Lett. 542, 37–41 (2012)CrossRef Mao, Y., Zhang, Y.: Thermal conductivity, shear viscosity and specific heat of rigid water models. Chem. Phys. Lett. 542, 37–41 (2012)CrossRef
127.
go back to reference Gardas, R.L., Ge, R., Goodrich, P., Hardacre, C., Hussain, A., Rooney, D.W.: Thermophysical properties of amino acid-based ionic liquids. J. Chem. Eng. Data 55(4), 1505–1515 (2010)CrossRef Gardas, R.L., Ge, R., Goodrich, P., Hardacre, C., Hussain, A., Rooney, D.W.: Thermophysical properties of amino acid-based ionic liquids. J. Chem. Eng. Data 55(4), 1505–1515 (2010)CrossRef
128.
go back to reference Ferreira, A.F., Simões, P.N., Ferreira, A.G.: Quaternary phosphonium-based ionic liquids: thermal stability and heat capacity of the liquid phase. J. Chem. Thermodyn. 45(1), 16–27 (2012)CrossRef Ferreira, A.F., Simões, P.N., Ferreira, A.G.: Quaternary phosphonium-based ionic liquids: thermal stability and heat capacity of the liquid phase. J. Chem. Thermodyn. 45(1), 16–27 (2012)CrossRef
129.
go back to reference Oster, K., Jacquemin, J., Hardacre, C., Ribeiro, A., Elsinawi, A.: Further development of the predictive models for physical properties of pure ionic liquids: thermal conductivity and heat capacity. J. Chem. Thermodyn. 118, 1–15 (2018)CrossRef Oster, K., Jacquemin, J., Hardacre, C., Ribeiro, A., Elsinawi, A.: Further development of the predictive models for physical properties of pure ionic liquids: thermal conductivity and heat capacity. J. Chem. Thermodyn. 118, 1–15 (2018)CrossRef
130.
go back to reference Zhai, L., Zhong, Q., He, C., Wang, J.: Hydroxyl ammonium ionic liquids synthesized by water-bath microwave: synthesis and desulfurization. J. Hazard. Mater. 177(1–3), 807–813 (2010)CrossRef Zhai, L., Zhong, Q., He, C., Wang, J.: Hydroxyl ammonium ionic liquids synthesized by water-bath microwave: synthesis and desulfurization. J. Hazard. Mater. 177(1–3), 807–813 (2010)CrossRef
131.
go back to reference Adamová, G., Gardas, R.L., Rebelo, L.P.N., Robertson, A.J., Seddon, K.R.: Alkyltrioctylphosphonium chloride ionic liquids: synthesis and physicochemical properties. Dalton Trans. 40(47), 12750–12764 (2011)CrossRef Adamová, G., Gardas, R.L., Rebelo, L.P.N., Robertson, A.J., Seddon, K.R.: Alkyltrioctylphosphonium chloride ionic liquids: synthesis and physicochemical properties. Dalton Trans. 40(47), 12750–12764 (2011)CrossRef
132.
go back to reference Montanino, M., Alessandrini, F., Passerini, S., Appetecchi, G.B.: Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices. Electrochim. Acta 96, 124–133 (2013)CrossRef Montanino, M., Alessandrini, F., Passerini, S., Appetecchi, G.B.: Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices. Electrochim. Acta 96, 124–133 (2013)CrossRef
133.
go back to reference Verma, C., Ebenso, E.E., Quraishi, M.: Transition metal nanoparticles in ionic liquids: synthesis and stabilization. J. Mol. Liq. 276, 826–849 (2019)CrossRef Verma, C., Ebenso, E.E., Quraishi, M.: Transition metal nanoparticles in ionic liquids: synthesis and stabilization. J. Mol. Liq. 276, 826–849 (2019)CrossRef
134.
go back to reference Dong, R., Yu, Q., Bai, Y., Wu, Y., Ma, Z., Zhang, J., Zhang, C., Yu, B., Zhou, F., Liu, W., et al.: Towards superior lubricity and anticorrosion performances of proton-type ionic liquids additives for water-based lubricating fluids. Chem. Eng. J. 383, 123201 (2020)CrossRef Dong, R., Yu, Q., Bai, Y., Wu, Y., Ma, Z., Zhang, J., Zhang, C., Yu, B., Zhou, F., Liu, W., et al.: Towards superior lubricity and anticorrosion performances of proton-type ionic liquids additives for water-based lubricating fluids. Chem. Eng. J. 383, 123201 (2020)CrossRef
135.
go back to reference Wang, Y.L., Sarman, S., Glavatskih, S., Antzutkin, O.N., Rutland, M.W., Laaksonen, A.: Atomistic insight into tetraalkylphosphonium-bis (oxalato) borate ionic liquid/water mixtures. I. Local microscopic structure. J. Phys. Chem. B 119(16), 5251–5264 (2015)CrossRef Wang, Y.L., Sarman, S., Glavatskih, S., Antzutkin, O.N., Rutland, M.W., Laaksonen, A.: Atomistic insight into tetraalkylphosphonium-bis (oxalato) borate ionic liquid/water mixtures. I. Local microscopic structure. J. Phys. Chem. B 119(16), 5251–5264 (2015)CrossRef
136.
go back to reference Kroon, M.C., Buijs, W., Peters, C.J., Witkamp, G.-J.: Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim. Acta 465(1–2), 40–47 (2007)CrossRef Kroon, M.C., Buijs, W., Peters, C.J., Witkamp, G.-J.: Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim. Acta 465(1–2), 40–47 (2007)CrossRef
137.
go back to reference Golets, M., Shimpi, M., Wang, Y.-L., Antzutkin, O., Glavatskih, S., Laaksonen, A.: Understanding the thermal decomposition mechanism of a halogen-free chelated orthoborate-based ionic liquid: a combined computational and experimental study. Phys. Chem. Chem. Phys. 18(32), 22458–22466 (2016)CrossRef Golets, M., Shimpi, M., Wang, Y.-L., Antzutkin, O., Glavatskih, S., Laaksonen, A.: Understanding the thermal decomposition mechanism of a halogen-free chelated orthoborate-based ionic liquid: a combined computational and experimental study. Phys. Chem. Chem. Phys. 18(32), 22458–22466 (2016)CrossRef
138.
go back to reference Sun, Z., Pan, J., Guo, J., Yan, F.: The alkaline stability of anion exchange membrane for fuel cell applications: the effects of alkaline media. Adv. Sci. 5(8), 1800065 (2018)CrossRef Sun, Z., Pan, J., Guo, J., Yan, F.: The alkaline stability of anion exchange membrane for fuel cell applications: the effects of alkaline media. Adv. Sci. 5(8), 1800065 (2018)CrossRef
139.
go back to reference Thasneema, K., Thayyil, M.S., Rosalin, T., Elyas, K., Dipin, T., Sahu, P.K., Kumar, N.K., Saheer, V., Messali, M., Hadda, T.B.: Thermal and spectroscopic investigations on three phosphonium based ionic liquids for industrial and biological applications. J. Mol. Liq. 307, 112960 (2020)CrossRef Thasneema, K., Thayyil, M.S., Rosalin, T., Elyas, K., Dipin, T., Sahu, P.K., Kumar, N.K., Saheer, V., Messali, M., Hadda, T.B.: Thermal and spectroscopic investigations on three phosphonium based ionic liquids for industrial and biological applications. J. Mol. Liq. 307, 112960 (2020)CrossRef
140.
go back to reference Senftle, T.P., Hong, S., Islam, M.M., Kylasa, S.B., Zheng, Y., Shin, Y.K., Junkermeier, C., Engel-Herbert, R., Janik, M.J., Aktulga, H.M., Verstraelen, T., Grama, A., van Duin, A.C.T.: The ReaxFF reactive force-field: development, applications and future directions. NPJ Comput. Mater. 2, 15011 (2016)CrossRef Senftle, T.P., Hong, S., Islam, M.M., Kylasa, S.B., Zheng, Y., Shin, Y.K., Junkermeier, C., Engel-Herbert, R., Janik, M.J., Aktulga, H.M., Verstraelen, T., Grama, A., van Duin, A.C.T.: The ReaxFF reactive force-field: development, applications and future directions. NPJ Comput. Mater. 2, 15011 (2016)CrossRef
141.
go back to reference Martini, A., Eder, S.J., Dörr, N.: Tribochemistry: a review of reactive molecular dynamics simulations. Lubricants 8(4), 44 (2020)CrossRef Martini, A., Eder, S.J., Dörr, N.: Tribochemistry: a review of reactive molecular dynamics simulations. Lubricants 8(4), 44 (2020)CrossRef
142.
go back to reference Han, S., Li, X., Guo, L., Sun, H., Zheng, M., Ge, W.: Refining fuel composition of rp-3 chemical surrogate models by reactive molecular dynamics and machine learning. Energy Fuels 34(9), 11381–11394 (2020)CrossRef Han, S., Li, X., Guo, L., Sun, H., Zheng, M., Ge, W.: Refining fuel composition of rp-3 chemical surrogate models by reactive molecular dynamics and machine learning. Energy Fuels 34(9), 11381–11394 (2020)CrossRef
143.
go back to reference Gao, M., Li, X., Guo, L.: Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics. Fuel Process. Technol. 178, 197–205 (2018)CrossRef Gao, M., Li, X., Guo, L.: Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics. Fuel Process. Technol. 178, 197–205 (2018)CrossRef
144.
go back to reference Xin, L., Liu, C., Liu, Y., Huo, E., Li, Q., Wang, X., Cheng, Q.: Thermal decomposition mechanism of some hydrocarbons by ReaxFF-based molecular dynamics and density functional theory study. Fuel 275, 117885 (2020)CrossRef Xin, L., Liu, C., Liu, Y., Huo, E., Li, Q., Wang, X., Cheng, Q.: Thermal decomposition mechanism of some hydrocarbons by ReaxFF-based molecular dynamics and density functional theory study. Fuel 275, 117885 (2020)CrossRef
145.
go back to reference Chenoweth, K., Cheung, S., Van Duin, A.C., Goddard, W.A., Kober, E.M.: Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field. J. Am. Chem. Soc. 127(19), 7192–7202 (2005)CrossRef Chenoweth, K., Cheung, S., Van Duin, A.C., Goddard, W.A., Kober, E.M.: Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field. J. Am. Chem. Soc. 127(19), 7192–7202 (2005)CrossRef
146.
go back to reference Liu, Y., Hu, J., Hou, H., Wang, B.: Development and application of a ReaxFF reactive force field for molecular dynamics of perfluorinatedketones thermal decomposition. Chem. Phys. 538, 110888 (2020)CrossRef Liu, Y., Hu, J., Hou, H., Wang, B.: Development and application of a ReaxFF reactive force field for molecular dynamics of perfluorinatedketones thermal decomposition. Chem. Phys. 538, 110888 (2020)CrossRef
148.
go back to reference Cao, Y., Liu, C., Zhang, H., Xu, X., Li, Q.: Thermal decomposition of HFO-1234yf through ReaxFF molecular dynamics simulation. Appl. Therm. Eng. 126, 330–338 (2017)CrossRef Cao, Y., Liu, C., Zhang, H., Xu, X., Li, Q.: Thermal decomposition of HFO-1234yf through ReaxFF molecular dynamics simulation. Appl. Therm. Eng. 126, 330–338 (2017)CrossRef
149.
go back to reference Lyu, R., Huang, Z., Deng, H., Wei, Y., Mou, C., Wang, L.: Anatomies for the thermal decomposition behavior and product rule of 5,5-dinitro-2h,2h–3,3-bi-1,2,4-triazole. RSC Adv. 11(63), 40182–40192 (2021)CrossRef Lyu, R., Huang, Z., Deng, H., Wei, Y., Mou, C., Wang, L.: Anatomies for the thermal decomposition behavior and product rule of 5,5-dinitro-2h,2h–3,3-bi-1,2,4-triazole. RSC Adv. 11(63), 40182–40192 (2021)CrossRef
150.
go back to reference Lan, G., Li, J., Zhang, G., Ruan, J., Lu, Z., Jin, S., Cao, D., Wang, J.: Thermal decomposition mechanism study of 3-nitro-1, 2, 4-triazol-5-one (NTO): combined TG-FTIR-MS techniques and ReaxFF reactive molecular dynamics simulations. Fuel 295, 120655 (2021)CrossRef Lan, G., Li, J., Zhang, G., Ruan, J., Lu, Z., Jin, S., Cao, D., Wang, J.: Thermal decomposition mechanism study of 3-nitro-1, 2, 4-triazol-5-one (NTO): combined TG-FTIR-MS techniques and ReaxFF reactive molecular dynamics simulations. Fuel 295, 120655 (2021)CrossRef
151.
go back to reference Khajeh, A., Bhuiyan, F.H., Mogonye, J.-E., Pesce-Rodriguez, R.A., Berkebile, S., Martini, A.: Thermal decomposition of tricresyl phosphate on ferrous surfaces. J. Phys. Chem. C 125(9), 5076–5087 (2021)CrossRef Khajeh, A., Bhuiyan, F.H., Mogonye, J.-E., Pesce-Rodriguez, R.A., Berkebile, S., Martini, A.: Thermal decomposition of tricresyl phosphate on ferrous surfaces. J. Phys. Chem. C 125(9), 5076–5087 (2021)CrossRef
152.
go back to reference Ewen, J.P., Latorre, C.A., Gattinoni, C., Khajeh, A., Moore, J.D., Remias, J.E., Martini, A., Dini, D.: Substituent effects on the thermal decomposition of phosphate esters on ferrous surfaces. J. Phys. Chem. C 124(18), 9852–9865 (2020)CrossRef Ewen, J.P., Latorre, C.A., Gattinoni, C., Khajeh, A., Moore, J.D., Remias, J.E., Martini, A., Dini, D.: Substituent effects on the thermal decomposition of phosphate esters on ferrous surfaces. J. Phys. Chem. C 124(18), 9852–9865 (2020)CrossRef
153.
go back to reference Khajeh, A., Rahman, M.H., Liu, T., Panwar, P., Patel, M., Menezes, P.L., Martini, A.: Thermal decomposition of phosphonium salicylate and phosphonium benzoate ionic liquids. J. Mol. Liq. 352, 118700 (2021)CrossRef Khajeh, A., Rahman, M.H., Liu, T., Panwar, P., Patel, M., Menezes, P.L., Martini, A.: Thermal decomposition of phosphonium salicylate and phosphonium benzoate ionic liquids. J. Mol. Liq. 352, 118700 (2021)CrossRef
154.
go back to reference Mendonca, A.C., Padua, A.A., Malfreyt, P.: Nonequilibrium molecular simulations of new ionic lubricants at metallic surfaces: prediction of the friction. J. Chem. Theory Comput. 9(3), 1600–1610 (2013)CrossRef Mendonca, A.C., Padua, A.A., Malfreyt, P.: Nonequilibrium molecular simulations of new ionic lubricants at metallic surfaces: prediction of the friction. J. Chem. Theory Comput. 9(3), 1600–1610 (2013)CrossRef
155.
go back to reference Pivnic, K., Bresme, F., Kornyshev, A.A., Urbakh, M.: Electrotunable friction in diluted room temperature ionic liquids: implications for nanotribology. ACS Appl. Nano Mater. 3(11), 10708–10719 (2020)CrossRef Pivnic, K., Bresme, F., Kornyshev, A.A., Urbakh, M.: Electrotunable friction in diluted room temperature ionic liquids: implications for nanotribology. ACS Appl. Nano Mater. 3(11), 10708–10719 (2020)CrossRef
156.
go back to reference Voeltzel, N., Fillot, N., Vergne, P., Joly, L.: Orders of magnitude changes in the friction of an ionic liquid on carbonaceous surfaces. J. Phys. Chem. C 122(4), 2145–2154 (2018)CrossRef Voeltzel, N., Fillot, N., Vergne, P., Joly, L.: Orders of magnitude changes in the friction of an ionic liquid on carbonaceous surfaces. J. Phys. Chem. C 122(4), 2145–2154 (2018)CrossRef
157.
go back to reference Voeltzel, N., Giuliani, A., Fillot, N., Vergne, P., Joly, L.: Nanolubrication by ionic liquids: molecular dynamics simulations reveal an anomalous effective rheology. Phys. Chem. Chem. Phys. 17(35), 23226–23235 (2015)CrossRef Voeltzel, N., Giuliani, A., Fillot, N., Vergne, P., Joly, L.: Nanolubrication by ionic liquids: molecular dynamics simulations reveal an anomalous effective rheology. Phys. Chem. Chem. Phys. 17(35), 23226–23235 (2015)CrossRef
158.
go back to reference Fajardo, O.Y., Bresme, F., Kornyshev, A.A., Urbakh, M.: Water in ionic liquid lubricants: friend and foe. ACS Nano 11(7), 6825–6831 (2017)CrossRef Fajardo, O.Y., Bresme, F., Kornyshev, A.A., Urbakh, M.: Water in ionic liquid lubricants: friend and foe. ACS Nano 11(7), 6825–6831 (2017)CrossRef
159.
go back to reference Bahrami, M., Ghatee, M.H., Ayatollahi, S.F.: Simulation of wetting and interfacial behavior of quaternary ammonium and phosphonium ionic liquid nanodroplets over face-centered cubic metal surfaces. J. Phys. Chem. B 124(14), 2835–2847 (2020)CrossRef Bahrami, M., Ghatee, M.H., Ayatollahi, S.F.: Simulation of wetting and interfacial behavior of quaternary ammonium and phosphonium ionic liquid nanodroplets over face-centered cubic metal surfaces. J. Phys. Chem. B 124(14), 2835–2847 (2020)CrossRef
160.
go back to reference Wang, Y.-L., Golets, M., Li, B., Sarman, S., Laaksonen, A.: Interfacial structures of trihexyltetradecylphosphonium-bis (mandelato) borate ionic liquid confined between gold electrodes. ACS Appl. Mater. Interfaces 9(5), 4976–4987 (2017)CrossRef Wang, Y.-L., Golets, M., Li, B., Sarman, S., Laaksonen, A.: Interfacial structures of trihexyltetradecylphosphonium-bis (mandelato) borate ionic liquid confined between gold electrodes. ACS Appl. Mater. Interfaces 9(5), 4976–4987 (2017)CrossRef
161.
go back to reference Alexander, J.S., Maxwell, C., Pencer, J., Saoudi, M.: Equilibrium molecular dynamics calculations of thermal conductivity: a how-to for the beginners. CNL Nuclear Rev. 9(1), 11–25 (2020)CrossRef Alexander, J.S., Maxwell, C., Pencer, J., Saoudi, M.: Equilibrium molecular dynamics calculations of thermal conductivity: a how-to for the beginners. CNL Nuclear Rev. 9(1), 11–25 (2020)CrossRef
162.
go back to reference Müller-Plathe, F.: A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106(14), 6082–6085 (1997)CrossRef Müller-Plathe, F.: A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106(14), 6082–6085 (1997)CrossRef
163.
go back to reference Salanne, M., Marrocchelli, D., Merlet, C., Ohtori, N., Madden, P.A.: Thermal conductivity of ionic systems from equilibrium molecular dynamics. J. Phys.: Condens. Matter 23(10), 102101 (2011) Salanne, M., Marrocchelli, D., Merlet, C., Ohtori, N., Madden, P.A.: Thermal conductivity of ionic systems from equilibrium molecular dynamics. J. Phys.: Condens. Matter 23(10), 102101 (2011)
164.
go back to reference Ishii, Y., Sato, K., Salanne, M., Madden, P.A., Ohtori, N.: Thermal conductivity of molten alkali metal fluorides (LiF, NaF, KF) and their mixtures. J. Phys. Chem. B 118(12), 3385–3391 (2014)CrossRef Ishii, Y., Sato, K., Salanne, M., Madden, P.A., Ohtori, N.: Thermal conductivity of molten alkali metal fluorides (LiF, NaF, KF) and their mixtures. J. Phys. Chem. B 118(12), 3385–3391 (2014)CrossRef
165.
go back to reference Awad, A.N., Mohammed, S.S.: A study of enhancement of the properties of lubricant oil. Am. J. Chem. 4(1), 68–72 (2014) Awad, A.N., Mohammed, S.S.: A study of enhancement of the properties of lubricant oil. Am. J. Chem. 4(1), 68–72 (2014)
166.
go back to reference Shah, J.K., Brennecke, J.F., Maginn, E.J.: Thermodynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate from monte carlo simulations. Green Chem. 4(2), 112–118 (2002)CrossRef Shah, J.K., Brennecke, J.F., Maginn, E.J.: Thermodynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate from monte carlo simulations. Green Chem. 4(2), 112–118 (2002)CrossRef
167.
go back to reference Androulaki, E., Vergadou, N., Ramos, J., Economou, I.G.: Structure, thermodynamic and transport properties of imidazolium-based bis (trifluoromethylsulfonyl) imide ionic liquids from molecular dynamics simulations. Mol. Phys. 110(11–12), 1139–1152 (2012)CrossRef Androulaki, E., Vergadou, N., Ramos, J., Economou, I.G.: Structure, thermodynamic and transport properties of imidazolium-based bis (trifluoromethylsulfonyl) imide ionic liquids from molecular dynamics simulations. Mol. Phys. 110(11–12), 1139–1152 (2012)CrossRef
168.
go back to reference Konieczny, J.K., Szefczyk, B.: Structure of alkylimidazolium-based ionic liquids at the interface with vacuum and water: a molecular dynamics study. J. Phys. Chem. B 119(9), 3795–3807 (2015)CrossRef Konieczny, J.K., Szefczyk, B.: Structure of alkylimidazolium-based ionic liquids at the interface with vacuum and water: a molecular dynamics study. J. Phys. Chem. B 119(9), 3795–3807 (2015)CrossRef
169.
go back to reference AlTuwaim, M.S., Alkhaldi, K.H., Al-Jimaz, A.S., Mohammad, A.A.: Temperature dependence of physicochemical properties of imidazolium-, pyroldinium-, and phosphonium-based ionic liquids. J. Chem. Eng. Data 59(6), 1955–1963 (2014)CrossRef AlTuwaim, M.S., Alkhaldi, K.H., Al-Jimaz, A.S., Mohammad, A.A.: Temperature dependence of physicochemical properties of imidazolium-, pyroldinium-, and phosphonium-based ionic liquids. J. Chem. Eng. Data 59(6), 1955–1963 (2014)CrossRef
170.
go back to reference Bhattacharjee, A., Lopes-da-Silva, J.A., Freire, M.G., Coutinho, J.A., Carvalho, P.J.: Thermophysical properties of phosphonium-based ionic liquids. Fluid Phase Equilib. 400, 103–113 (2015)CrossRef Bhattacharjee, A., Lopes-da-Silva, J.A., Freire, M.G., Coutinho, J.A., Carvalho, P.J.: Thermophysical properties of phosphonium-based ionic liquids. Fluid Phase Equilib. 400, 103–113 (2015)CrossRef
171.
go back to reference Rivera, N., García, A., Fernández-González, A., Blanco, D., González, R., Battez, A.H.: Tribological behavior of three fatty acid ionic liquids in the lubrication of different material pairs. J. Mol. Liq. 296, 111858 (2019)CrossRef Rivera, N., García, A., Fernández-González, A., Blanco, D., González, R., Battez, A.H.: Tribological behavior of three fatty acid ionic liquids in the lubrication of different material pairs. J. Mol. Liq. 296, 111858 (2019)CrossRef
172.
go back to reference Fajardo, O., Bresme, F., Kornyshev, A., Urbakh, M.: Electrotunable lubricity with ionic liquid nanoscale films. Sci. Rep. 5(1), 1–7 (2015)CrossRef Fajardo, O., Bresme, F., Kornyshev, A., Urbakh, M.: Electrotunable lubricity with ionic liquid nanoscale films. Sci. Rep. 5(1), 1–7 (2015)CrossRef
173.
go back to reference Fajardo, O.Y., Bresme, F., Kornyshev, A.A., Urbakh, M.: Electrotunable friction with ionic liquid lubricants: how important is the molecular structure of the ions? J. Phys. Chem. Lett. 6(20), 3998–4004 (2015)CrossRef Fajardo, O.Y., Bresme, F., Kornyshev, A.A., Urbakh, M.: Electrotunable friction with ionic liquid lubricants: how important is the molecular structure of the ions? J. Phys. Chem. Lett. 6(20), 3998–4004 (2015)CrossRef
Metadata
Title
Review of Molecular Dynamics Simulations of Phosphonium Ionic Liquid Lubricants
Authors
Ting Liu
Pawan Panwar
Arash Khajeh
Md Hafizur Rahman
Pradeep L. Menezes
Ashlie Martini
Publication date
01-06-2022
Publisher
Springer US
Published in
Tribology Letters / Issue 2/2022
Print ISSN: 1023-8883
Electronic ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-022-01583-6

Other articles of this Issue 2/2022

Tribology Letters 2/2022 Go to the issue

Premium Partners