Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 3-4/2020

22-02-2020 | ORIGINAL ARTICLE

Review on direct metal laser deposition manufacturing technology for the Ti-6Al-4V alloy

Authors: P. N. Sibisi, A. P. I. Popoola, N. K. K. Arthur, S. L. Pityana

Published in: The International Journal of Advanced Manufacturing Technology | Issue 3-4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Direct laser metal deposition (DLMD) is a breaking edge laser-based additive manufacturing (LAM) technique with the possibility of changing the perception of design and manufacturing as a whole. It is well suitable for building and repairing applications in the aerospace industry which usually requires high level of accuracy and customization of parts; this technique enables the fabrication of materials known to pose difficulties during processing such as titanium alloys. Ti-6Al-4V, which is the most employed titanium-based alloy is one of the materials that are most explored for additive manufacturing process. However, this process is currently at its pioneer stage and very little is known about the fundamental metallurgy and physio-chemical basis that govern the process. Currently, the major problems faced in additive manufacturing include evolution of residual stresses leading to deformed parts and formation of defects such as pores and cracks which are detrimental to the quality of deposits. The presence of these unwanted defects on additively manufactured parts depends on the complex mechanisms taking place in the melt pool during melting, cooling, and solidification which are dependent on processing variables. In addition, during fabrication, some feedstock powder does not melt and thus does not make up part of the final product. The present text entails classification of LAM technologies, operational principles of DLMD, feedstock quality requirements, material laser interaction mechanism, and metallurgy of Ti-6AL-4V alloy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in Alsi10mg parts processed by selective laser melting. Addit Manuf 1:77–86 Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in Alsi10mg parts processed by selective laser melting. Addit Manuf 1:77–86
2.
go back to reference Huang R, Riddle M, Graziano D, Warren J, Das S, Nimbalkar S, Cresko J, Masanet E (2016) Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J Clean Prod 135:1559–1570 Huang R, Riddle M, Graziano D, Warren J, Das S, Nimbalkar S, Cresko J, Masanet E (2016) Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J Clean Prod 135:1559–1570
3.
go back to reference Asgari H, Baxter C, Hosseinkhani K, Mohammadi M (2017) On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder. Mater Sci Eng A 707:148–158 Asgari H, Baxter C, Hosseinkhani K, Mohammadi M (2017) On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder. Mater Sci Eng A 707:148–158
4.
go back to reference Liu R, Wang Z, Sparks T, Liou F, Newkirk J (2017) Aerospace applications of laser additive manufacturing. In Laser additive manufacturing. Woodhead Publishing, Cambridge, pp 351–371 Liu R, Wang Z, Sparks T, Liou F, Newkirk J (2017) Aerospace applications of laser additive manufacturing. In Laser additive manufacturing. Woodhead Publishing, Cambridge, pp 351–371
5.
go back to reference Rajala R, Westerlund M, Lampikoski T (2016) Environmental sustainability in industrial manufacturing: re-examining the greening of Interface’s business model. J Clean Prod 115:52–61 Rajala R, Westerlund M, Lampikoski T (2016) Environmental sustainability in industrial manufacturing: re-examining the greening of Interface’s business model. J Clean Prod 115:52–61
6.
go back to reference Ndou N, Akinlabi ET, Pityana SL Shongwe MB, (2016) Microstructure of Ti6Al4V reinforced by coating W particles through laser metal deposition. In the Proceeding of the World Congress on Engineering and Computer Science, held in San Francisco, California, USA on the 19th -21st October 2016 Ndou N, Akinlabi ET, Pityana SL Shongwe MB, (2016) Microstructure of Ti6Al4V reinforced by coating W particles through laser metal deposition. In the Proceeding of the World Congress on Engineering and Computer Science, held in San Francisco, California, USA on the 19th -21st October 2016
7.
go back to reference Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CC, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89 Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CC, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89
8.
go back to reference Slotwinski JA, Garboczi EJ, Stutzman PE, Ferraris CF, Watson SS, Peltz MA (2014) Characterization of metal powders used for additive manufacturing. J Res Natl Inst Stand Tech 119:460–493 Slotwinski JA, Garboczi EJ, Stutzman PE, Ferraris CF, Watson SS, Peltz MA (2014) Characterization of metal powders used for additive manufacturing. J Res Natl Inst Stand Tech 119:460–493
9.
go back to reference Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83(1–4):389–405 Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83(1–4):389–405
10.
go back to reference du Preez WB, Damm OFRA, Trollip NG, John MJ, (2001) Advanced materials for application in the aerospace and automotive industries. In Science real and relevant: the 2nd CSIR biennial conference, CSIR international convention Centre in Pretoria, South Africa on 17-18 November 2001 du Preez WB, Damm OFRA, Trollip NG, John MJ, (2001) Advanced materials for application in the aerospace and automotive industries. In Science real and relevant: the 2nd CSIR biennial conference, CSIR international convention Centre in Pretoria, South Africa on 17-18 November 2001
11.
go back to reference Bauereiß A, Scharowsky T, Körner C (2014) Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J Mater Process Technol 214(11):2522–2528 Bauereiß A, Scharowsky T, Körner C (2014) Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J Mater Process Technol 214(11):2522–2528
12.
go back to reference Watson JK, Taminger KMB (2018) A decision-support model for selecting additive manufacturing versus subtractive manufacturing based on energy consumption. J Clean Prod 176:1316–1322 Watson JK, Taminger KMB (2018) A decision-support model for selecting additive manufacturing versus subtractive manufacturing based on energy consumption. J Clean Prod 176:1316–1322
13.
go back to reference Renderos M, Torregaray A, Gutierrez-Orrantia ME, Lamikiz A, Saintier N, Girot F (2017) Microstructure characterization of recycled IN718 powder and resulting laser clad material. Mater Charact 134:103–113 Renderos M, Torregaray A, Gutierrez-Orrantia ME, Lamikiz A, Saintier N, Girot F (2017) Microstructure characterization of recycled IN718 powder and resulting laser clad material. Mater Charact 134:103–113
14.
go back to reference Carroll PA, Pinkerton AJ, Allen J, Syed WUH, Sezer HK, Brown P, Ng G, Scudamore R, Li L, (2006) The effect of powder recycling in direct metal laser deposition on powder and manufactured part characteristics. In Proceedings of AVT-139 specialists meeting cost effective manufacture via net-shape processing in Neuilly, Paris, France on the 23rd -27th march 2006 Carroll PA, Pinkerton AJ, Allen J, Syed WUH, Sezer HK, Brown P, Ng G, Scudamore R, Li L, (2006) The effect of powder recycling in direct metal laser deposition on powder and manufactured part characteristics. In Proceedings of AVT-139 specialists meeting cost effective manufacture via net-shape processing in Neuilly, Paris, France on the 23rd -27th march 2006
15.
go back to reference Seyda, V., Kaufmann, N. AND Emmelmann, C., 2012. Investigation of aging processes of Ti-6Al-4 V powder material in laser melting. Phys Procedia, 39, 425–431 Seyda, V., Kaufmann, N. AND Emmelmann, C., 2012. Investigation of aging processes of Ti-6Al-4 V powder material in laser melting. Phys Procedia, 39, 425–431
16.
go back to reference Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360 Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360
17.
go back to reference Wong KV, Hernandez A (2012) A review of additive manufacturing. International scholarly research notices ISRN Mech Eng, 1, 1–10 Wong KV, Hernandez A (2012) A review of additive manufacturing. International scholarly research notices ISRN Mech Eng, 1, 1–10
18.
go back to reference Francois MM, Sun A, King WE, Henson NJ, Tourret D, Bronkhorst CA, Carlson NN, Newman CK, Haut TS, Bakosi J, Gibbs JW (2017) Modeling of additive manufacturing processes for metals: challenges and opportunities. Curr Opinion Solid State Mater Sci 21(4):198–206 Francois MM, Sun A, King WE, Henson NJ, Tourret D, Bronkhorst CA, Carlson NN, Newman CK, Haut TS, Bakosi J, Gibbs JW (2017) Modeling of additive manufacturing processes for metals: challenges and opportunities. Curr Opinion Solid State Mater Sci 21(4):198–206
19.
go back to reference Shukla M, Mahamood RM, Akinlabi ET, Pityana S (2012) Effect of laser power and powder flow rate on properties of laser metal deposited Ti6Al4V. Int J Mech Mechatron Eng 6(11):2475–2479 Shukla M, Mahamood RM, Akinlabi ET, Pityana S (2012) Effect of laser power and powder flow rate on properties of laser metal deposited Ti6Al4V. Int J Mech Mechatron Eng 6(11):2475–2479
20.
go back to reference Wang Z, Palmer TA, Beese AM (2016) Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110:226–235 Wang Z, Palmer TA, Beese AM (2016) Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110:226–235
21.
go back to reference Michaleris P (2014) Modeling metal deposition in heat transfer analyses of additive manufacturing processes. Finite Elem Anal Des 86:51–60 Michaleris P (2014) Modeling metal deposition in heat transfer analyses of additive manufacturing processes. Finite Elem Anal Des 86:51–60
22.
go back to reference Thompson SM, Bian L, Shamsaei N, Yadollahi A (2015) An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit Manuf 8:36–62 Thompson SM, Bian L, Shamsaei N, Yadollahi A (2015) An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit Manuf 8:36–62
23.
go back to reference Portolés L, Jordá O, Jordá L, Uriondo A, Esperon-Miguez M, Perinpanayagam S (2016) A qualification procedure to manufacture and repair aerospace parts with electron beam melting. J Manuf Syst 41:65–75 Portolés L, Jordá O, Jordá L, Uriondo A, Esperon-Miguez M, Perinpanayagam S (2016) A qualification procedure to manufacture and repair aerospace parts with electron beam melting. J Manuf Syst 41:65–75
24.
go back to reference Kannatey-Asibu E Jr (2009) Principles of laser materials processing, vol 4. John Wiley & Sons, Hoboken Kannatey-Asibu E Jr (2009) Principles of laser materials processing, vol 4. John Wiley & Sons, Hoboken
25.
go back to reference Byren RW, Reeder RA, Raytheon Co, 1999. Multi-mode laser oscillator with large intermode spacing. Patentee LLP (U.S. Patent 5,974,060) Byren RW, Reeder RA, Raytheon Co, 1999. Multi-mode laser oscillator with large intermode spacing. Patentee LLP (U.S. Patent 5,974,060)
26.
go back to reference Fotovvati B, Wayne SF, Lewis G, Asadi E (2018) A review on melt-pool characteristics in laser welding of metals. Adv Mater Sci Eng 2018:1–18 Fotovvati B, Wayne SF, Lewis G, Asadi E (2018) A review on melt-pool characteristics in laser welding of metals. Adv Mater Sci Eng 2018:1–18
27.
go back to reference Brandt M (ed) (2016) Laser additive manufacturing: materials, design, technologies, and applications. Woodhead Publishing Brandt M (ed) (2016) Laser additive manufacturing: materials, design, technologies, and applications. Woodhead Publishing
28.
go back to reference Majumdar JD & Manna I, (2013) Laser-assisted fabrication of materials. Laser-assisted fabrication of materials: Springer Series in Materials Science, Volume 161. ISBN 978–3–642-28358-1. Springer-Verlag Berlin Heidelberg, 2013 Majumdar JD & Manna I, (2013) Laser-assisted fabrication of materials. Laser-assisted fabrication of materials: Springer Series in Materials Science, Volume 161. ISBN 978–3–642-28358-1. Springer-Verlag Berlin Heidelberg, 2013
29.
go back to reference Mahamood, R.M., Akinlabi, E.T., Shukla, M. & Pityana, S., 2014. Revolutionary additive manufacturing: an overview Mahamood, R.M., Akinlabi, E.T., Shukla, M. & Pityana, S., 2014. Revolutionary additive manufacturing: an overview
30.
go back to reference Caiazzo F, Alfieri V (2018) Laser-aided directed energy deposition of steel powder over flat surfaces and edges. Materials 11(435):1–7 Caiazzo F, Alfieri V (2018) Laser-aided directed energy deposition of steel powder over flat surfaces and edges. Materials 11(435):1–7
31.
go back to reference Kumar S, Pityana S (2011) Laser-based additive manufacturing of metals. In: Advanced Materials Research, vol 227. Trans Tech Publications, Stafa-Zurich, pp 92–95 Kumar S, Pityana S (2011) Laser-based additive manufacturing of metals. In: Advanced Materials Research, vol 227. Trans Tech Publications, Stafa-Zurich, pp 92–95
32.
go back to reference Popoola, P., Farotade, G., Fatoba, O. AND Popoola, O., 2016. Laser engineering net shaping method in the area of development of functionally graded materials (FGMs) for aero engine applications-a review. In Fiber Laser. IntechOpen London Popoola, P., Farotade, G., Fatoba, O. AND Popoola, O., 2016. Laser engineering net shaping method in the area of development of functionally graded materials (FGMs) for aero engine applications-a review. In Fiber Laser. IntechOpen London
33.
go back to reference Nakano T, Ishimoto T (2015) Powder-based additive manufacturing for development of tailor-made implants for orthopedic applications. KONA Powder Part J 32:75–84 Nakano T, Ishimoto T (2015) Powder-based additive manufacturing for development of tailor-made implants for orthopedic applications. KONA Powder Part J 32:75–84
34.
go back to reference Du, W., Bai, Q. and Zhang, B., 2016. A Novel Method for Additive/Subtractive Hybrid Manufacturing of Metallic Parts. Procedia Manufacturing, 5, 1018–1030 Du, W., Bai, Q. and Zhang, B., 2016. A Novel Method for Additive/Subtractive Hybrid Manufacturing of Metallic Parts. Procedia Manufacturing, 5, 1018–1030
35.
go back to reference Hu Y, Wang H, Ning F, Cong W, 2016, June. Laser engineered net shaping of commercially pure titanium: effects of fabricating variables. In ASME 11th international manufacturing science and engineering conference held at Blacksburg, Virginia, USA on the 27 June – 1 July 2016 Hu Y, Wang H, Ning F, Cong W, 2016, June. Laser engineered net shaping of commercially pure titanium: effects of fabricating variables. In ASME 11th international manufacturing science and engineering conference held at Blacksburg, Virginia, USA on the 27 June – 1 July 2016
36.
go back to reference Palčič I, Balažic M, Milfelner M, Buchmeister B (2009) Potential of laser engineered net shaping (LENS) technology. Mater Manuf Process 24(7–8):750–753 Palčič I, Balažic M, Milfelner M, Buchmeister B (2009) Potential of laser engineered net shaping (LENS) technology. Mater Manuf Process 24(7–8):750–753
37.
go back to reference Sun P, Fang ZZ, Xia Y, Zhang Y, Zhou C (2016) A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing. Powder Technol 301:331–335 Sun P, Fang ZZ, Xia Y, Zhang Y, Zhou C (2016) A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing. Powder Technol 301:331–335
38.
go back to reference Anderson IE, White EM, Dehoff R (2018) Feedstock powder processing research needs for additive manufacturing development. Curr Opinion Solid State Mater Sci 22(1):8–15 Anderson IE, White EM, Dehoff R (2018) Feedstock powder processing research needs for additive manufacturing development. Curr Opinion Solid State Mater Sci 22(1):8–15
39.
go back to reference O’leary R, Setchi R, Prickett PW, (2015) An investigation into the recycling of Ti-6Al-4V powder used within SLM to improve sustainability O’leary R, Setchi R, Prickett PW, (2015) An investigation into the recycling of Ti-6Al-4V powder used within SLM to improve sustainability
40.
go back to reference Bagheri A, Shamsaei N, Thompson S, (2015) November. Microstructure and mechanical properties of Ti-6Al-4V parts fabricated by laser engineered net shaping fatigue and cyclic deformation of superelastic and shape memory alloys view project fatigue of polymeric materials view project. In ASME 2015 International Mechanical Engineering Congress and Exposition in Houston, Texas, USA on the 13th -19th November 2015 Bagheri A, Shamsaei N, Thompson S, (2015) November. Microstructure and mechanical properties of Ti-6Al-4V parts fabricated by laser engineered net shaping fatigue and cyclic deformation of superelastic and shape memory alloys view project fatigue of polymeric materials view project. In ASME 2015 International Mechanical Engineering Congress and Exposition in Houston, Texas, USA on the 13th -19th November 2015
41.
go back to reference Krishna BV, Bose S, Bandyopadhyay A (2007) Low stiffness porous Ti structures for load-bearing implants. Acta Biomater 3(6):997–1006 Krishna BV, Bose S, Bandyopadhyay A (2007) Low stiffness porous Ti structures for load-bearing implants. Acta Biomater 3(6):997–1006
42.
go back to reference Qiu C, Ravi GA, Dance C, Ranson A, Dilworth S, Attallah MM (2015) Fabrication of large Ti–6Al–4V structures by direct laser deposition. J Alloys Compd 629:351–361 Qiu C, Ravi GA, Dance C, Ranson A, Dilworth S, Attallah MM (2015) Fabrication of large Ti–6Al–4V structures by direct laser deposition. J Alloys Compd 629:351–361
43.
go back to reference Yadav R (2009) Definitions in laser technology. J Cutan Aesthet Surg 2(1):1–7 Yadav R (2009) Definitions in laser technology. J Cutan Aesthet Surg 2(1):1–7
44.
go back to reference Roehling TT, Wu SS, Khairallah SA, Roehling JD, Soezeri SS, Crumb MF, Matthews MJ (2017) Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing. Acta Mater 128:197–206 Roehling TT, Wu SS, Khairallah SA, Roehling JD, Soezeri SS, Crumb MF, Matthews MJ (2017) Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing. Acta Mater 128:197–206
45.
go back to reference Shamsaei, N., Yadollahi, A., Bian, L. AND Thompson, S.M., 2015. An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control. Addit Manuf, 8, 12–35 Shamsaei, N., Yadollahi, A., Bian, L. AND Thompson, S.M., 2015. An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control. Addit Manuf, 8, 12–35
46.
go back to reference Arthur, N., Malabi, K., Baloyi, P., Moller, H., Pityana, S., 2016. Influence of Process Parameters on Layer Build-up and Microstructure of Ti-6Al-4V (ELI) Alloy on the Optomect LENS™. In the 17th RAPDASA Annual International Conference, Vaal, Gauteng, South Africa, 2-4 November 2016 Arthur, N., Malabi, K., Baloyi, P., Moller, H., Pityana, S., 2016. Influence of Process Parameters on Layer Build-up and Microstructure of Ti-6Al-4V (ELI) Alloy on the Optomect LENS™. In the 17th RAPDASA Annual International Conference, Vaal, Gauteng, South Africa, 2-4 November 2016
47.
go back to reference Bayode, B.L., Lethabane, M.L., Olubambi, P.A., Sigalas, I., Shongwe, M.B. and Ramakokovhu, M.M., 2017. Densification and Micro-structural Characteristics of Spark Plasma Sintered Ti-Zr-Ta Powders. Powder Technology, 321, 471–478 Bayode, B.L., Lethabane, M.L., Olubambi, P.A., Sigalas, I., Shongwe, M.B. and Ramakokovhu, M.M., 2017. Densification and Micro-structural Characteristics of Spark Plasma Sintered Ti-Zr-Ta Powders. Powder Technology, 321, 471–478
48.
go back to reference Pupo Y, Delgado J, Serenó L, Ciurana J (2013) Scanning space analysis in selective laser melting for CoCrMo powder. Procedia Eng 63:370–378 Pupo Y, Delgado J, Serenó L, Ciurana J (2013) Scanning space analysis in selective laser melting for CoCrMo powder. Procedia Eng 63:370–378
49.
go back to reference Tamsaout T, Kheloufi K, Amara EH, Arthur N, Pityana S (2017) CFD model of laser additive manufacturing process of cylinders. S Afr J Ind Eng 28(3):178–187 Tamsaout T, Kheloufi K, Amara EH, Arthur N, Pityana S (2017) CFD model of laser additive manufacturing process of cylinders. S Afr J Ind Eng 28(3):178–187
50.
go back to reference Balla VK, Bandyopadhyay PP, Bose S, Bandyopadhyay A (2007) Compositionally graded yttria-stabilized zirconia coating on stainless steel using laser engineered net shaping (LENS™). Scr Mater 57(9):861–864 Balla VK, Bandyopadhyay PP, Bose S, Bandyopadhyay A (2007) Compositionally graded yttria-stabilized zirconia coating on stainless steel using laser engineered net shaping (LENS™). Scr Mater 57(9):861–864
51.
go back to reference Rao, H., Giet, S., Yang, K., Wu, X. and Davies, C.H., 2016. The Influence of Processing Parameters on Aluminium Alloy A357 Manufactured by Selective Laser Melting. Materials & Design, 109, 334–346 Rao, H., Giet, S., Yang, K., Wu, X. and Davies, C.H., 2016. The Influence of Processing Parameters on Aluminium Alloy A357 Manufactured by Selective Laser Melting. Materials & Design, 109, 334–346
52.
go back to reference Heigel JC, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit Manuf 5:9–19 Heigel JC, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit Manuf 5:9–19
53.
go back to reference Sun S, Durandet Y, Brandt M (2007) Melt pool temperature and its effect on clad formation in pulsed Nd: yttrium-aluminum-garnet laser cladding of Stellite 6. J Laser Appl 19(1):32–40 Sun S, Durandet Y, Brandt M (2007) Melt pool temperature and its effect on clad formation in pulsed Nd: yttrium-aluminum-garnet laser cladding of Stellite 6. J Laser Appl 19(1):32–40
54.
go back to reference Ahsan MN, Pinkerton AJ (2011) An analytical–numerical model of laser direct metal deposition track and microstructure formation. Model Simul Mater Sci Eng 19(5):1–22 Ahsan MN, Pinkerton AJ (2011) An analytical–numerical model of laser direct metal deposition track and microstructure formation. Model Simul Mater Sci Eng 19(5):1–22
55.
go back to reference Limmaneevichitr C, Kou S (2000) Experiments to simulate effect of Marangoni convection on weld pool shape. Weld J 79(8):231–237 Limmaneevichitr C, Kou S (2000) Experiments to simulate effect of Marangoni convection on weld pool shape. Weld J 79(8):231–237
56.
go back to reference Kidess, A., Kenjereš, S., Righolt, B.W. AND Kleijn, C.R., 2016. Marangoni driven turbulence in high energy surface melting processes. Int J Therm Sci, 104, 412–422 Kidess, A., Kenjereš, S., Righolt, B.W. AND Kleijn, C.R., 2016. Marangoni driven turbulence in high energy surface melting processes. Int J Therm Sci, 104, 412–422
57.
go back to reference Saldi ZS, (2012) Marangoni driven free surface flows in liquid weld pools. Doctoral Thesis, Delft University of Technology Saldi ZS, (2012) Marangoni driven free surface flows in liquid weld pools. Doctoral Thesis, Delft University of Technology
58.
go back to reference Vora HD, (2013) Integrated computational and experimental approach to control physical texture during laser machining of structural ceramics. Doctoral Thesis, University of North Texas Vora HD, (2013) Integrated computational and experimental approach to control physical texture during laser machining of structural ceramics. Doctoral Thesis, University of North Texas
59.
go back to reference Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45 Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45
60.
go back to reference Acharya R (2014) Multiphysics modeling and statistical process optimization of the scanning laser epitaxy process applied to additive manufacturing of turbine engine hot-section Superalloy components. Doctoral dissertation. Georgia Institute of Technology, Atlanta Acharya R (2014) Multiphysics modeling and statistical process optimization of the scanning laser epitaxy process applied to additive manufacturing of turbine engine hot-section Superalloy components. Doctoral dissertation. Georgia Institute of Technology, Atlanta
61.
go back to reference Benedetti M, Fontanari V, Bandini M, Zanini F, Carmignato S (2018) Low-and high-cycle fatigue resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: mean stress and defect sensitivity. Int J Fatigue 107:96–109 Benedetti M, Fontanari V, Bandini M, Zanini F, Carmignato S (2018) Low-and high-cycle fatigue resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: mean stress and defect sensitivity. Int J Fatigue 107:96–109
62.
go back to reference Carroll BE, Palmer TA, Beese AM (2015) Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater 87:309–320 Carroll BE, Palmer TA, Beese AM (2015) Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater 87:309–320
63.
go back to reference Fatoba OS, Akinlabi ET, Makhatha ME (2017) Influence of rapid solidification on the thermophysical and fatigue properties of laser additive manufactured Ti-6Al-4V alloy. In: Aluminium alloys-recent trends in processing, Characterization, Mechanical behavior and applications. IntechOpen, London Fatoba OS, Akinlabi ET, Makhatha ME (2017) Influence of rapid solidification on the thermophysical and fatigue properties of laser additive manufactured Ti-6Al-4V alloy. In: Aluminium alloys-recent trends in processing, Characterization, Mechanical behavior and applications. IntechOpen, London
64.
go back to reference Gong H, Rafi K, Starr T, Stucker B, (2012) August. Effect of defects on fatigue tests of as-built Ti-6Al-4V parts fabricated by selective laser melting. In Annual International Solid Freeform Fabrication Symposium in Austin, Texas, USA on the 13th-15thAugust 2012 Gong H, Rafi K, Starr T, Stucker B, (2012) August. Effect of defects on fatigue tests of as-built Ti-6Al-4V parts fabricated by selective laser melting. In Annual International Solid Freeform Fabrication Symposium in Austin, Texas, USA on the 13th-15thAugust 2012
65.
go back to reference Tang L, Ruan J, Landers RG, Liou F (2008) Variable powder flow rate control in laser metal deposition processes. J Manuf Sci Eng 130(4):1–10 Tang L, Ruan J, Landers RG, Liou F (2008) Variable powder flow rate control in laser metal deposition processes. J Manuf Sci Eng 130(4):1–10
66.
go back to reference Bidare P, Maier RRJ, Beck RJ, Shephard JD, Moore AJ (2017) An open-architecture metal powder bed fusion system for in-situ process measurements. Addit Manuf 16:177–185 Bidare P, Maier RRJ, Beck RJ, Shephard JD, Moore AJ (2017) An open-architecture metal powder bed fusion system for in-situ process measurements. Addit Manuf 16:177–185
67.
go back to reference Mumith A, Thomas M, Shah Z, Coathup M, Blunn G (2018) Additive manufacturing: current concepts, future trends. Bone Jt J 100(4):455–460 Mumith A, Thomas M, Shah Z, Coathup M, Blunn G (2018) Additive manufacturing: current concepts, future trends. Bone Jt J 100(4):455–460
68.
go back to reference Brandão, A., Gerard, R., Gumpinger, J., Beretta, S., Makaya, A., Pambaguian, L. And Ghidini, T., 2017. Challenges in additive manufacturing of space parts: powder feedstock cross-contamination and its impact on end products. Materials, 10(5), 522–538 Brandão, A., Gerard, R., Gumpinger, J., Beretta, S., Makaya, A., Pambaguian, L. And Ghidini, T., 2017. Challenges in additive manufacturing of space parts: powder feedstock cross-contamination and its impact on end products. Materials, 10(5), 522–538
69.
go back to reference Renderos M, Girot F, Lamikiz A, Torregaray A, Saintier N (2016) Ni based powder reconditioning and reuse for LMD process. Phys Procedia 83:769–777 Renderos M, Girot F, Lamikiz A, Torregaray A, Saintier N (2016) Ni based powder reconditioning and reuse for LMD process. Phys Procedia 83:769–777
70.
go back to reference Adebiyi DI (2015) Mitigation of abrasive wear damage of Ti–6Al–4V by laser surface alloying. Mater Des 74:67–75 Adebiyi DI (2015) Mitigation of abrasive wear damage of Ti–6Al–4V by laser surface alloying. Mater Des 74:67–75
71.
go back to reference Sibisi, P.N., Popoola, A.P.I., Kanyane, L.R., Fatoba, O.S., Adesina, O.S., Arthur, N.K.K. AND Pityana, S.L., 2019. Microstructure and microhardness characterization of Cp-Ti/SiAlON composite coatings on Ti-6Al-4V by laser cladding. Procedia Manuf, 35, 272–277 Sibisi, P.N., Popoola, A.P.I., Kanyane, L.R., Fatoba, O.S., Adesina, O.S., Arthur, N.K.K. AND Pityana, S.L., 2019. Microstructure and microhardness characterization of Cp-Ti/SiAlON composite coatings on Ti-6Al-4V by laser cladding. Procedia Manuf, 35, 272–277
72.
go back to reference Lütjering G, Williams JC, Gysler A, (2000) Microstructure and mechanical properties of titanium alloys. In Microstructure and Properties of Materials, 2, 1–77 Lütjering G, Williams JC, Gysler A, (2000) Microstructure and mechanical properties of titanium alloys. In Microstructure and Properties of Materials, 2, 1–77
73.
go back to reference Boyer RR (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng A 213(1–2):103–114 Boyer RR (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng A 213(1–2):103–114
74.
go back to reference Pederson R (2002) Microstructure and phase transformation of Ti-6Al-4V. Luleå Tekniska Universitet, Doctoral dissertation Pederson R (2002) Microstructure and phase transformation of Ti-6Al-4V. Luleå Tekniska Universitet, Doctoral dissertation
75.
go back to reference Boyer RR (2010) Attributes, characteristics, and applications of titanium and its alloys. J Miner Met Mater Soc 62(5):21–24 Boyer RR (2010) Attributes, characteristics, and applications of titanium and its alloys. J Miner Met Mater Soc 62(5):21–24
76.
go back to reference Gammon, L.M., Briggs, R.D., Packard, J.M., Batson, K.W., Boyer, R., Domby, C.W., 2004. Metallography and microstructures of titanium and its alloys. ASM handbook, 9, 899–917 Gammon, L.M., Briggs, R.D., Packard, J.M., Batson, K.W., Boyer, R., Domby, C.W., 2004. Metallography and microstructures of titanium and its alloys. ASM handbook, 9, 899–917
77.
go back to reference Froes FH ed., 2015. Titanium: physical metallurgy, processing, and applications. ASM International Froes FH ed., 2015. Titanium: physical metallurgy, processing, and applications. ASM International
78.
go back to reference Marsumi Y, Pramono AW (2014) Influence of niobium or molybdenum in titanium alloy for permanent implant application. In: Advanced Materials Research, vol 900, pp 53–63 Marsumi Y, Pramono AW (2014) Influence of niobium or molybdenum in titanium alloy for permanent implant application. In: Advanced Materials Research, vol 900, pp 53–63
79.
go back to reference Wanhill R, and Barter S (2011) Fatigue of beta processed and beta heat-treated titanium alloys. Springer Science & Business Media, Berlin Wanhill R, and Barter S (2011) Fatigue of beta processed and beta heat-treated titanium alloys. Springer Science & Business Media, Berlin
80.
go back to reference Fan X, Li Q, Zhao A, Shi Y, Mei W (2017) The effect of initial structure on phase transformation in continuous heating of A TA15 titanium alloy. Metals 7(6):2–12 Fan X, Li Q, Zhao A, Shi Y, Mei W (2017) The effect of initial structure on phase transformation in continuous heating of A TA15 titanium alloy. Metals 7(6):2–12
81.
go back to reference Sieniawski, J., Ziaja, W., Kubiak, K. AND Motyka, M., 2013. Microstructure and mechanical properties of high strength two-phase titanium alloys. In Titanium alloys-advances in properties control. IntechOpen London Sieniawski, J., Ziaja, W., Kubiak, K. AND Motyka, M., 2013. Microstructure and mechanical properties of high strength two-phase titanium alloys. In Titanium alloys-advances in properties control. IntechOpen London
82.
go back to reference Knowles CR, (2012) Residual stress measurement and structural integrity evaluation of SLM Ti-6Al-4V. Doctoral dissertation, University of Cape Town Knowles CR, (2012) Residual stress measurement and structural integrity evaluation of SLM Ti-6Al-4V. Doctoral dissertation, University of Cape Town
83.
go back to reference Löffler K (2013) Developments in disk laser welding. In: Handbook of laser welding technologies. Woodhead publishing, Cambridge, pp 73–102 Löffler K (2013) Developments in disk laser welding. In: Handbook of laser welding technologies. Woodhead publishing, Cambridge, pp 73–102
84.
go back to reference Aversa A, Marchese G, Saboori A, Bassini E, Manfredi D, Biamino S, Ugues D, Fino P, Lombardi M (2019) New aluminum alloys specifically designed for laser powder bed fusion: a review. Materials 12(7):1–19 Aversa A, Marchese G, Saboori A, Bassini E, Manfredi D, Biamino S, Ugues D, Fino P, Lombardi M (2019) New aluminum alloys specifically designed for laser powder bed fusion: a review. Materials 12(7):1–19
Metadata
Title
Review on direct metal laser deposition manufacturing technology for the Ti-6Al-4V alloy
Authors
P. N. Sibisi
A. P. I. Popoola
N. K. K. Arthur
S. L. Pityana
Publication date
22-02-2020
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 3-4/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04851-3

Other articles of this Issue 3-4/2020

The International Journal of Advanced Manufacturing Technology 3-4/2020 Go to the issue

Premium Partners