Skip to main content
Top

2018 | OriginalPaper | Chapter

Reviewing the Novel Machine Learning Tools for Materials Design

Authors : Amir Mosavi, Timon Rabczuk, Annamária R. Varkonyi-Koczy

Published in: Recent Advances in Technology Research and Education

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Computational materials design is a rapidly evolving field of challenges and opportunities aiming at development and application of multi-scale methods to simulate, predict and select innovative materials with high accuracy. Today the latest advancements in machine learning, deep learning, internet of things (IoT), big data, and intelligent optimization have highly revolutionized the computational methodologies used for materials design innovation. Such novelties in computation enable the development of problem-specific solvers with vast potential applications in industry and business. This paper reviews the state of the art of technological advancements that machine learning tools, in particular, have brought for materials design innovation. Further via presenting a case study the potential of such novel computational tools are discussed for the virtual design and simulation of innovative materials in modeling the fundamental properties and behavior of a wide range of multi-scale materials design problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Artrith, N., Urban, A.: An implementation of artificial neural-network potentials for atomistic materials simulations. Comput. Mater. Sci. 114, 135–150 (2016)CrossRef Artrith, N., Urban, A.: An implementation of artificial neural-network potentials for atomistic materials simulations. Comput. Mater. Sci. 114, 135–150 (2016)CrossRef
3.
go back to reference Battiti, R., Brunato, M.: The LION Way: Machine Learning, Lionlab (2015) Battiti, R., Brunato, M.: The LION Way: Machine Learning, Lionlab (2015)
4.
go back to reference Brunato, M., Battiti, R.: Learning and intelligent optimization: one ring to rule them all. Proc. VLDB Endow. 6, 1176–1177 (2013)CrossRef Brunato, M., Battiti, R.: Learning and intelligent optimization: one ring to rule them all. Proc. VLDB Endow. 6, 1176–1177 (2013)CrossRef
6.
go back to reference Ceder, G.: Challenges for materials design. Mater. Res. 35, 693–701 (2010) Ceder, G.: Challenges for materials design. Mater. Res. 35, 693–701 (2010)
7.
go back to reference Fischer, C.: Predicting crystal structure by merging data mining. Nature 5, 641–646 (2006)CrossRef Fischer, C.: Predicting crystal structure by merging data mining. Nature 5, 641–646 (2006)CrossRef
8.
go back to reference Jain, A.: A high-throughput infrastructure for density functional theory calculations. Comp. Mater. Sci. 50, 2295–2310 (2011)CrossRef Jain, A.: A high-throughput infrastructure for density functional theory calculations. Comp. Mater. Sci. 50, 2295–2310 (2011)CrossRef
9.
go back to reference Nanthakumar, S., Zhuang, X., Park, H., Rabczuk, T.: Topology optimization of flexoelectric structures. J. Mech. Phys. Solids 105, 217–234 (2017)MathSciNetCrossRef Nanthakumar, S., Zhuang, X., Park, H., Rabczuk, T.: Topology optimization of flexoelectric structures. J. Mech. Phys. Solids 105, 217–234 (2017)MathSciNetCrossRef
10.
go back to reference Lencer, D.: A map for phase-change materials. Nat. Mater. 7, 972–977 (2008)CrossRef Lencer, D.: A map for phase-change materials. Nat. Mater. 7, 972–977 (2008)CrossRef
11.
go back to reference Mosavi, A.: Decision-making software architecture; the visualization and data mining assisted approach. Inf. Comput. Sci. 3, 12–26 (2014) Mosavi, A.: Decision-making software architecture; the visualization and data mining assisted approach. Inf. Comput. Sci. 3, 12–26 (2014)
12.
go back to reference Milani, A.: Multiple criteria decision making with life cycle assessment for material selection of composites. Express Polym. Lett. 5, 1062–1074 (2011)CrossRef Milani, A.: Multiple criteria decision making with life cycle assessment for material selection of composites. Express Polym. Lett. 5, 1062–1074 (2011)CrossRef
13.
go back to reference Mosavi, A., Vaezipour, A.: Reactive search optimization; application to multiobjective optimization problems. Appl. Math. 3, 1572–1582 (2012)CrossRef Mosavi, A., Vaezipour, A.: Reactive search optimization; application to multiobjective optimization problems. Appl. Math. 3, 1572–1582 (2012)CrossRef
14.
go back to reference Mosavi, A.: A multicriteria decision making environment for engineering design and production decision-making. Int. J. Comput. Appl. 69, 26–38 (2013) Mosavi, A.: A multicriteria decision making environment for engineering design and production decision-making. Int. J. Comput. Appl. 69, 26–38 (2013)
15.
go back to reference Mosavi, A.: Decision-making in complicated geometrical problems. Int. J. Comput. Appl. 87, 22–25 (2014) Mosavi, A.: Decision-making in complicated geometrical problems. Int. J. Comput. Appl. 87, 22–25 (2014)
16.
go back to reference Mosavi, A., Varkonyi, A.: Learning in robotics. Int. J. Comput. Appl. 157, 8–11 (2017) Mosavi, A., Varkonyi, A.: Learning in robotics. Int. J. Comput. Appl. 157, 8–11 (2017)
17.
go back to reference Mcdowell, D.: Simulation-assisted design of materials. Microstruct. 65, 617–647 (2010) Mcdowell, D.: Simulation-assisted design of materials. Microstruct. 65, 617–647 (2010)
18.
go back to reference Mosavi, A., et al.: Multiple criteria decision making integrated with mechanical modeling of draping for material selection of textile composites. In: Composite Materials 18 (2012) Mosavi, A., et al.: Multiple criteria decision making integrated with mechanical modeling of draping for material selection of textile composites. In: Composite Materials 18 (2012)
19.
go back to reference Saito, T.: Computational materials design, vol. 34. Springer Science & Business Media, Heidelberg (2013) Saito, T.: Computational materials design, vol. 34. Springer Science & Business Media, Heidelberg (2013)
20.
go back to reference Stucke, D.: Predictions of new crystalline states. Nano Lett. 3, 1183–1186 (2003)CrossRef Stucke, D.: Predictions of new crystalline states. Nano Lett. 3, 1183–1186 (2003)CrossRef
21.
go back to reference Mosavi, A.: Optimal engineering design. Technical report, University of Debrecen (2013) Mosavi, A.: Optimal engineering design. Technical report, University of Debrecen (2013)
22.
go back to reference Curtarolo, S.: High-throughput computational materials design. Nature 12, 191–201 (2013)CrossRef Curtarolo, S.: High-throughput computational materials design. Nature 12, 191–201 (2013)CrossRef
23.
go back to reference Setyawan, W., Curtarolo, S.: High-throughput electronic band structure calculations: challenges and tools. Comp. Mater. Sci. 49, 299–312 (2010)CrossRef Setyawan, W., Curtarolo, S.: High-throughput electronic band structure calculations: challenges and tools. Comp. Mater. Sci. 49, 299–312 (2010)CrossRef
24.
go back to reference Kolmogorov, A.: Prediction of new crystal structure phases. Phys. Rev. 73, 180–195 (2006)CrossRef Kolmogorov, A.: Prediction of new crystal structure phases. Phys. Rev. 73, 180–195 (2006)CrossRef
25.
26.
go back to reference Levy, O.: Uncovering compounds by synergy of cluster expansion and high-throughput methods. J. Am. Chem. Soc. 132, 4830–4833 (2010)CrossRef Levy, O.: Uncovering compounds by synergy of cluster expansion and high-throughput methods. J. Am. Chem. Soc. 132, 4830–4833 (2010)CrossRef
27.
go back to reference Bhadeshia, H.: Neural networks in materials science. Mater. Sci. 25, 504–510 (2009)MathSciNet Bhadeshia, H.: Neural networks in materials science. Mater. Sci. 25, 504–510 (2009)MathSciNet
28.
go back to reference Mosavi, A.: Computational modeling of the multi-field problems in engineering: a data-driven approach. In: Frontiers of Structural and Civil Engineering. Springer (2017) Mosavi, A.: Computational modeling of the multi-field problems in engineering: a data-driven approach. In: Frontiers of Structural and Civil Engineering. Springer (2017)
29.
go back to reference Mosavi, A., Varkonyi-Koczy, A.R.: Integration of machine learning and optimization for robot learning. Adv. Intell. Syst. Comput. 519, 349–355 (2017) Mosavi, A., Varkonyi-Koczy, A.R.: Integration of machine learning and optimization for robot learning. Adv. Intell. Syst. Comput. 519, 349–355 (2017)
30.
go back to reference Mosavi, A., Rabczuk, T.: Learning and intelligent optimization for computational materials design innovation. In: Learning and Intelligent Optimization. Springer (2017) Mosavi, A., Rabczuk, T.: Learning and intelligent optimization for computational materials design innovation. In: Learning and Intelligent Optimization. Springer (2017)
31.
go back to reference Mosavi, A.: Decision-making in complicated geometrical problems. Int. J. Comput. Appl. 87, 22–25 (2014) Mosavi, A.: Decision-making in complicated geometrical problems. Int. J. Comput. Appl. 87, 22–25 (2014)
32.
go back to reference Mosavi, A.: Reconsidering the multiple criteria decision making problems of construction workers with the aid of Grapheur. In: ANSYS and EnginSoft (2011) Mosavi, A.: Reconsidering the multiple criteria decision making problems of construction workers with the aid of Grapheur. In: ANSYS and EnginSoft (2011)
33.
go back to reference Xiong, W.: Design and accelerated insertion of materials. Comp. Mater. 2, 150–159 (2016) Xiong, W.: Design and accelerated insertion of materials. Comp. Mater. 2, 150–159 (2016)
34.
go back to reference Chou, J.: Machine learning in concrete strength simulations: multi-nation data analytics. Constr. Build. Mater. 73, 771–780 (2014)CrossRef Chou, J.: Machine learning in concrete strength simulations: multi-nation data analytics. Constr. Build. Mater. 73, 771–780 (2014)CrossRef
35.
go back to reference Shandiz, M., Gauvin, R.: Application of machine learning methods for the prediction of crystal system of cathode materials. Comput. Mater. Sci. 117, 270–278 (2016)CrossRef Shandiz, M., Gauvin, R.: Application of machine learning methods for the prediction of crystal system of cathode materials. Comput. Mater. Sci. 117, 270–278 (2016)CrossRef
36.
go back to reference Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101 (2016)MathSciNetCrossRef Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101 (2016)MathSciNetCrossRef
37.
go back to reference Takahashi, K., Tanaka, Y.: Material synthesis and design from first principle calculations and machine learning. Comput. Mater. Sci. 112, 364–367 (2016)CrossRef Takahashi, K., Tanaka, Y.: Material synthesis and design from first principle calculations and machine learning. Comput. Mater. Sci. 112, 364–367 (2016)CrossRef
38.
go back to reference Khan, A.: Correlating dynamical mechanical properties with temperature. Comput. Mater. Sci. 45, 257–265 (2009)CrossRef Khan, A.: Correlating dynamical mechanical properties with temperature. Comput. Mater. Sci. 45, 257–265 (2009)CrossRef
39.
go back to reference Pierro, M.: Multi-model ensemble for day ahead prediction of photovoltaic power generation. Sol. Energy 134, 132–146 (2016)CrossRef Pierro, M.: Multi-model ensemble for day ahead prediction of photovoltaic power generation. Sol. Energy 134, 132–146 (2016)CrossRef
40.
go back to reference Panchal, J.: Computational modeling in materials engineering. Design 45, 4–25 (2013) Panchal, J.: Computational modeling in materials engineering. Design 45, 4–25 (2013)
41.
go back to reference Wang, X.: Human breath-print identification by E-nose, using information-theoretic feature selection prior to classification. Sens. Actuators 217, 165–174 (2015)CrossRef Wang, X.: Human breath-print identification by E-nose, using information-theoretic feature selection prior to classification. Sens. Actuators 217, 165–174 (2015)CrossRef
42.
go back to reference DeCost, B., Holm, E.: A computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 110, 126–133 (2015)CrossRef DeCost, B., Holm, E.: A computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 110, 126–133 (2015)CrossRef
43.
go back to reference Nanthakumar, S., Valizadeh, N., Park, H., Rabczuk, T.: Surface effects on shape and topology optimization of nanostructures. Comput. Mech. 56, 97–112 (2015)MathSciNetCrossRefMATH Nanthakumar, S., Valizadeh, N., Park, H., Rabczuk, T.: Surface effects on shape and topology optimization of nanostructures. Comput. Mech. 56, 97–112 (2015)MathSciNetCrossRefMATH
44.
go back to reference McKinsey, G.I.: Big Data: The Next Frontier for Innovation, Competition and Productivity. McKinsey Global Institute (2011) McKinsey, G.I.: Big Data: The Next Frontier for Innovation, Competition and Productivity. McKinsey Global Institute (2011)
45.
go back to reference Hamdia, K.: Predicting the fracture toughness of PNCs. MatScience 102, 304–313 (2015) Hamdia, K.: Predicting the fracture toughness of PNCs. MatScience 102, 304–313 (2015)
48.
go back to reference Brunato, M., Battiti, R.: Grapheur: a software architecture for reactive and interactive optimization. In: Learning and Intelligent Optimization, pp. 232–246 (2010) Brunato, M., Battiti, R.: Grapheur: a software architecture for reactive and interactive optimization. In: Learning and Intelligent Optimization, pp. 232–246 (2010)
Metadata
Title
Reviewing the Novel Machine Learning Tools for Materials Design
Authors
Amir Mosavi
Timon Rabczuk
Annamária R. Varkonyi-Koczy
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67459-9_7

Premium Partner