Skip to main content
Top

2020 | OriginalPaper | Chapter

Revised Fundamental Properties and Crystal Engineering of Spinel Ferrite Nanoparticles

Authors : Rafaella Casado Silva, Walmir Eno Pottker, Alane Stephanye A. Batista, Jefferson Ferraz Damasceno Felix Araujo, Felipe de Almeida La Porta

Published in: Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Extensive research on ferrite-based materials and their application in field of electronics is of great importance in near future. In the last decade, several experiments have been conducted for developing different forms of ferrite-based materials through controlling its size, composition, and morphology. Such studies indicate that the chemical and physical properties of these materials can in principle be manipulated based on the desired application and are highly relevant from the technological point of view. However, the relationship between the closed structure and the composition of these advanced nanoscale materials is still debatable. In this chapter, the chemical structure of spinel ferrite nanoparticles has been studied using crystal engineering. It is quite evident that the change in the morphology of its particles and in the degree of defects alter their magnetic, optical and catalytic properties significantly. This makes these materials suitable for use in electronic devices such as high-density recording media and as a medical guide.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Naseri, M.G., Saion, E.B., Ahangar, H.A., Hashim, M., Shaari, A.H.: Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method. Powder Technol. 212(1), 80–88 (2011)CrossRef Naseri, M.G., Saion, E.B., Ahangar, H.A., Hashim, M., Shaari, A.H.: Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method. Powder Technol. 212(1), 80–88 (2011)CrossRef
3.
go back to reference Joy, D.C.: Chemical analysis of ferrites. Talanta Rev. 30, 299–315 (1983)CrossRef Joy, D.C.: Chemical analysis of ferrites. Talanta Rev. 30, 299–315 (1983)CrossRef
4.
go back to reference Chen, C.H.: Magnetism and Metallurgy of Solt Magnetic Materials. Courier Dover Publications (1986) Chen, C.H.: Magnetism and Metallurgy of Solt Magnetic Materials. Courier Dover Publications (1986)
5.
go back to reference Cullity, B.D.: Introduction to Magnetic Materials. Addison-Wesley, MA (1972) Cullity, B.D.: Introduction to Magnetic Materials. Addison-Wesley, MA (1972)
6.
go back to reference Griffiths, D.J.: Introdution to Electrodynamics, 3rd edn. N. J. Prentice Hall, Upper Saddle River (1999) Griffiths, D.J.: Introdution to Electrodynamics, 3rd edn. N. J. Prentice Hall, Upper Saddle River (1999)
7.
8.
go back to reference Moskowitz, B.M.: Hitchhiker Guide to Magnetism, 3rd edn. (2006) Moskowitz, B.M.: Hitchhiker Guide to Magnetism, 3rd edn. (2006)
9.
go back to reference Sinnecker, J., Grossinger, R., Turtelli, R.S., Exel, G., Greifeneder, G., Kuss, C.: J. Magn. Magn. Mater., 194 (1994) Sinnecker, J., Grossinger, R., Turtelli, R.S., Exel, G., Greifeneder, G., Kuss, C.: J. Magn. Magn. Mater., 194 (1994)
10.
go back to reference Hsu, C., McGuire, T.R.: Magnetism and Magnetic Materials. Academic Press, New York (1968) Hsu, C., McGuire, T.R.: Magnetism and Magnetic Materials. Academic Press, New York (1968)
11.
go back to reference Airimioaei, M., et al.: Synthesis and functional properties of the Ni1−xMnxFe2O4 ferrites. J. Alloys Compd. 509(31), 8065–8072 (2011) CrossRef Airimioaei, M., et al.: Synthesis and functional properties of the Ni1−xMnxFe2O4 ferrites. J. Alloys Compd. 509(31), 8065–8072 (2011) CrossRef
12.
go back to reference González-Carreño, T., Morales, M.P., Serna, C.J.: Barium ferrite nanoparticles prepared directly by aerosol pyrolysis. Mater. Lett. 43(3), 97–101 (2000)CrossRef González-Carreño, T., Morales, M.P., Serna, C.J.: Barium ferrite nanoparticles prepared directly by aerosol pyrolysis. Mater. Lett. 43(3), 97–101 (2000)CrossRef
13.
go back to reference Bate, G.: Magnetic recording materials since 1975. J. Magn. Magn. Mater. 100(1–3), 413–424 (1991)CrossRef Bate, G.: Magnetic recording materials since 1975. J. Magn. Magn. Mater. 100(1–3), 413–424 (1991)CrossRef
14.
go back to reference Joseyphus, R.J., Narayanasamy, A., Nigam, A.K., Krishnan, R.: Effect of mechanical milling on the magnetic properties of garnets. J. Magn. Magn. Mater. 296(1), 57–64 (2006)CrossRef Joseyphus, R.J., Narayanasamy, A., Nigam, A.K., Krishnan, R.: Effect of mechanical milling on the magnetic properties of garnets. J. Magn. Magn. Mater. 296(1), 57–64 (2006)CrossRef
15.
go back to reference Garskaite, E., et al.: On the synthesis and characterization of iron-containing garnets (Y3Fe5O12, YIG and Fe3Al5O12, IAG). Chem. Phys. 323(2–3), 204–210 (2006)CrossRef Garskaite, E., et al.: On the synthesis and characterization of iron-containing garnets (Y3Fe5O12, YIG and Fe3Al5O12, IAG). Chem. Phys. 323(2–3), 204–210 (2006)CrossRef
16.
go back to reference Niaz Akhtar, M., et al.: Y3Fe5O12 nanoparticulate garnet ferrites: comprehensive study on the synthesis and characterization fabricated by various routes. J. Magn. Magn. Mater. 368, 393–400 (2014)CrossRef Niaz Akhtar, M., et al.: Y3Fe5O12 nanoparticulate garnet ferrites: comprehensive study on the synthesis and characterization fabricated by various routes. J. Magn. Magn. Mater. 368, 393–400 (2014)CrossRef
17.
go back to reference Andersen, H.L., Saura-Múzquiz, M., Granados-Miralles, C., Canévet, E., Lock, N., Christensen, M.: Crystalline and magnetic structure-property relationship in spinel ferrite nanoparticles. Nanoscale 10(31), 14902–14914 (2018)CrossRef Andersen, H.L., Saura-Múzquiz, M., Granados-Miralles, C., Canévet, E., Lock, N., Christensen, M.: Crystalline and magnetic structure-property relationship in spinel ferrite nanoparticles. Nanoscale 10(31), 14902–14914 (2018)CrossRef
18.
go back to reference Lazarević, Z.Ž., et al.: Nanodimensional spinel NiFe2O4 and ZnFe2O4 ferrites prepared by soft mechanochemical synthesis. J. Appl. Phys. 113(18), 0–11 (2013)CrossRef Lazarević, Z.Ž., et al.: Nanodimensional spinel NiFe2O4 and ZnFe2O4 ferrites prepared by soft mechanochemical synthesis. J. Appl. Phys. 113(18), 0–11 (2013)CrossRef
19.
go back to reference Smit, J.: Ferrites: Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Application (1959) Smit, J.: Ferrites: Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Application (1959)
20.
go back to reference Zhang, Y., Shi, Q., Schliesser, J., Woodfield, B.F., Nan, Z.: Magnetic and thermodynamic properties of nanosized Zn ferrite with normal spinal structure synthesized using a facile method. Inorg. Chem. 53(19), 10463–10470 (2014)CrossRef Zhang, Y., Shi, Q., Schliesser, J., Woodfield, B.F., Nan, Z.: Magnetic and thermodynamic properties of nanosized Zn ferrite with normal spinal structure synthesized using a facile method. Inorg. Chem. 53(19), 10463–10470 (2014)CrossRef
21.
go back to reference Thomas, J.J., Shinde, A.B., Krishna, P.S.R., Kalarikkal, N.: Temperature dependent neutron diffraction and Mössbauer studies in zinc ferrite nanoparticles. Mater. Res. Bull. 48(4), 1506–1511 (2013)CrossRef Thomas, J.J., Shinde, A.B., Krishna, P.S.R., Kalarikkal, N.: Temperature dependent neutron diffraction and Mössbauer studies in zinc ferrite nanoparticles. Mater. Res. Bull. 48(4), 1506–1511 (2013)CrossRef
22.
go back to reference Pottker, W.E., et al.: Influence of order-disorder effects on the magnetic and optical properties of NiFe2O4 nanoparticles. Ceram. Int. 44(14), 17290–17297 (2018)CrossRef Pottker, W.E., et al.: Influence of order-disorder effects on the magnetic and optical properties of NiFe2O4 nanoparticles. Ceram. Int. 44(14), 17290–17297 (2018)CrossRef
23.
go back to reference Chen, D., Chen, D., Jiao, X., Zhao, Y., He, M.: Hydrothermal synthesis and characterization of octahedral nickel ferrite particles. Powder Technol. 133(1–3), 247–250 (2003)CrossRef Chen, D., Chen, D., Jiao, X., Zhao, Y., He, M.: Hydrothermal synthesis and characterization of octahedral nickel ferrite particles. Powder Technol. 133(1–3), 247–250 (2003)CrossRef
24.
go back to reference Sutka, A., Mezinskis, G.: Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci. 6(2), 128–141 (2012)CrossRef Sutka, A., Mezinskis, G.: Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci. 6(2), 128–141 (2012)CrossRef
25.
go back to reference Hessien, M.M., Rashad, M.M., El-Barawy, K.: Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method. J. Magn. Magn. Mater. 320(3–4), 336–343 (2008)CrossRef Hessien, M.M., Rashad, M.M., El-Barawy, K.: Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method. J. Magn. Magn. Mater. 320(3–4), 336–343 (2008)CrossRef
26.
go back to reference Chen, D., Jiao, X., Cheng, G.: Hydrothermal synthesis of zinc oxide powders with different morphologies. Solid State Commun. 113(6), 363–366 (1999)CrossRef Chen, D., Jiao, X., Cheng, G.: Hydrothermal synthesis of zinc oxide powders with different morphologies. Solid State Commun. 113(6), 363–366 (1999)CrossRef
27.
go back to reference Sapieszko, R.S., Matijevic, E.: Preparation of well defined colloidal particles by thermal decomposition of metal chelates—2. Cobalt and nickel. Corrosion 36(10), 522–530 (1980)CrossRef Sapieszko, R.S., Matijevic, E.: Preparation of well defined colloidal particles by thermal decomposition of metal chelates—2. Cobalt and nickel. Corrosion 36(10), 522–530 (1980)CrossRef
28.
go back to reference Dell’Agli, G.M.G.: Hydrothermal synthesis of ZrO2-Y2O3 solid solutions at low temperature. J. Eur. Ceram. Soc. 20, 139–145 (2000)CrossRef Dell’Agli, G.M.G.: Hydrothermal synthesis of ZrO2-Y2O3 solid solutions at low temperature. J. Eur. Ceram. Soc. 20, 139–145 (2000)CrossRef
29.
go back to reference Burda, C., Chen, X., Narayanan, R., El-sayed, M.A.: Chemistry and Properties of Nanocrystals of Different Shapes (2005) Burda, C., Chen, X., Narayanan, R., El-sayed, M.A.: Chemistry and Properties of Nanocrystals of Different Shapes (2005)
30.
go back to reference Wang, X., Zhuang, J., Peng, Q., Li, Y.: A general strategy for nanocrystal synthesis. Nature 437(7055), 121–124 (2005)CrossRef Wang, X., Zhuang, J., Peng, Q., Li, Y.: A general strategy for nanocrystal synthesis. Nature 437(7055), 121–124 (2005)CrossRef
31.
go back to reference Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46(8), 1222–1244 (2007)CrossRef Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46(8), 1222–1244 (2007)CrossRef
32.
go back to reference Wang, J.: Prepare highly crystalline NiFe2O4 nanoparticles with improved magnetic properties. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 127(1), 81–84 (2006)CrossRef Wang, J.: Prepare highly crystalline NiFe2O4 nanoparticles with improved magnetic properties. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 127(1), 81–84 (2006)CrossRef
33.
go back to reference Xie, H., Shen, D., Wang, X., Shen, G.: Microwave hydrothermal synthesis and visible-light photocatalytic activity of γ-Bi2MoO6 nanoplates. Mater. Chem. Phys. 110(2–3), 332–336 (2008)CrossRef Xie, H., Shen, D., Wang, X., Shen, G.: Microwave hydrothermal synthesis and visible-light photocatalytic activity of γ-Bi2MoO6 nanoplates. Mater. Chem. Phys. 110(2–3), 332–336 (2008)CrossRef
34.
go back to reference Verma, S., Joy, P.A., Khollam, Y.B., Potdar, H.S., Deshpande, S.B.: Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method. Mater. Lett. 58(6), 1092–1095 (2004)CrossRef Verma, S., Joy, P.A., Khollam, Y.B., Potdar, H.S., Deshpande, S.B.: Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method. Mater. Lett. 58(6), 1092–1095 (2004)CrossRef
35.
go back to reference Kim, C.K., Lee, J.H., Katoh, S., Murakami, R., Yoshimura, M.: Synthesis of Co-, Co-Zn and Ni-Zn ferrite powders by the microwave-hydrothermal method. Mater. Res. Bull. 36(12), 2241–2250 (2001)CrossRef Kim, C.K., Lee, J.H., Katoh, S., Murakami, R., Yoshimura, M.: Synthesis of Co-, Co-Zn and Ni-Zn ferrite powders by the microwave-hydrothermal method. Mater. Res. Bull. 36(12), 2241–2250 (2001)CrossRef
36.
go back to reference Khollam, Y.: Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater. Lett. 56(October), 571–577 (2002)CrossRef Khollam, Y.: Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater. Lett. 56(October), 571–577 (2002)CrossRef
37.
go back to reference Bensebaa, F., Zavaliche, F., L’Ecuyer, P., Cochrane, R.W., Veres, T.: Microwave synthesis and characterization of Co-ferrite nanoparticles. J. Colloid Interface Sci. 277(1), 104–110 (2004)CrossRef Bensebaa, F., Zavaliche, F., L’Ecuyer, P., Cochrane, R.W., Veres, T.: Microwave synthesis and characterization of Co-ferrite nanoparticles. J. Colloid Interface Sci. 277(1), 104–110 (2004)CrossRef
38.
go back to reference Kumada, N.K.N., Komarneni, S.: Microwave hydrothermal synthesis of ABi2O6 (A = Mg, Zn). Mater. Lett. 33(9), 1411–1414 (1998) Kumada, N.K.N., Komarneni, S.: Microwave hydrothermal synthesis of ABi2O6 (A = Mg, Zn). Mater. Lett. 33(9), 1411–1414 (1998)
39.
go back to reference Khollam, Y.B., Deshpande, S.B., Khanna, P.K., Joy, P.A., Potdar, H.S.: Microwave-accelerated hydrothermal synthesis of blue white phosphor: Sr2CeO4. Mater. Lett. 58(20), 2521–2524 (2004)CrossRef Khollam, Y.B., Deshpande, S.B., Khanna, P.K., Joy, P.A., Potdar, H.S.: Microwave-accelerated hydrothermal synthesis of blue white phosphor: Sr2CeO4. Mater. Lett. 58(20), 2521–2524 (2004)CrossRef
40.
go back to reference Abothu, I.R., Liu, S.F., Komarneni, S., Li, Q.H.: Processing of Pb(Zr0.52Ti0.48)O3 (PZT) ceramics from microwave and conventional hydrothermal powders. Mater. Res. Bull. 34(9), 1411–1419 (1999)CrossRef Abothu, I.R., Liu, S.F., Komarneni, S., Li, Q.H.: Processing of Pb(Zr0.52Ti0.48)O3 (PZT) ceramics from microwave and conventional hydrothermal powders. Mater. Res. Bull. 34(9), 1411–1419 (1999)CrossRef
41.
go back to reference Vadivel Murugan, A., Sonawane, R.S., Kale, B.B., Apte, S.K., Kulkarni, A.V.: Microwave-solvothermal synthesis of nanocrystalline cadmium sulfide. Mater. Chem. Phys. 71(1), 98–102 (2001)CrossRef Vadivel Murugan, A., Sonawane, R.S., Kale, B.B., Apte, S.K., Kulkarni, A.V.: Microwave-solvothermal synthesis of nanocrystalline cadmium sulfide. Mater. Chem. Phys. 71(1), 98–102 (2001)CrossRef
42.
go back to reference Khollam, Y.B., Deshpande, A.S., Patil, A.J., Potdar, H.S., Deshpande, S.B., Date, S.K.: Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwave-hydrothermal route. Mater. Chem. Phys. 71(3), 235–241 (2001)CrossRef Khollam, Y.B., Deshpande, A.S., Patil, A.J., Potdar, H.S., Deshpande, S.B., Date, S.K.: Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwave-hydrothermal route. Mater. Chem. Phys. 71(3), 235–241 (2001)CrossRef
43.
go back to reference Selvan, R.K., Augustin, C.O., Berchmans, L.J., Saraswathi, R.: Combustion synthesis of CuFe2O4. Mater. Res. Bull. 38(1), 41–54 (2003)CrossRef Selvan, R.K., Augustin, C.O., Berchmans, L.J., Saraswathi, R.: Combustion synthesis of CuFe2O4. Mater. Res. Bull. 38(1), 41–54 (2003)CrossRef
44.
go back to reference Sertkol, M., Köseoǧlu, Y., Baykal, A., Kavas, H., Toprak, M.S.: Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. J. Magn. Magn. Mater. 322(7), 866–871 (2010)CrossRef Sertkol, M., Köseoǧlu, Y., Baykal, A., Kavas, H., Toprak, M.S.: Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. J. Magn. Magn. Mater. 322(7), 866–871 (2010)CrossRef
45.
go back to reference Yu, L., Cao, S., Liu, Y., Wang, J., Jing, C., Zhang, J.: Thermal and structural analysis on the nanocrystalline NiCuZn ferrite synthesis in different atmospheres. J. Magn. Magn. Mater. 301(1), 100–106 (2006)CrossRef Yu, L., Cao, S., Liu, Y., Wang, J., Jing, C., Zhang, J.: Thermal and structural analysis on the nanocrystalline NiCuZn ferrite synthesis in different atmospheres. J. Magn. Magn. Mater. 301(1), 100–106 (2006)CrossRef
46.
go back to reference Wu, K.H., Ting, T.H., Li, M.C., Ho, W.D.: Sol-gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels. J. Magn. Magn. Mater. 298(1), 25–32 (2006)CrossRef Wu, K.H., Ting, T.H., Li, M.C., Ho, W.D.: Sol-gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels. J. Magn. Magn. Mater. 298(1), 25–32 (2006)CrossRef
47.
go back to reference Costa, A.C.F.M., Morelli, M.R., Kiminami, R.H.G.A.: Microstructure and magnetic properties of Ni1−xZnxFe2O4 synthesized by combustion reaction. J. Mater. Sci. 42(3), 779–783 (2007)CrossRef Costa, A.C.F.M., Morelli, M.R., Kiminami, R.H.G.A.: Microstructure and magnetic properties of Ni1−xZnxFe2O4 synthesized by combustion reaction. J. Mater. Sci. 42(3), 779–783 (2007)CrossRef
48.
go back to reference George, M., Mary John, A., Nair, S.S., Joy, P.A., Anantharaman, M.R.: Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302(1), 190–195 (2006)CrossRef George, M., Mary John, A., Nair, S.S., Joy, P.A., Anantharaman, M.R.: Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302(1), 190–195 (2006)CrossRef
49.
go back to reference Mukasyan, A.S., Epstein, P., Dinka, P.: Solution combustion synthesis of nanomaterials solution combustion synthesis of nanomaterials. Proc. Combust. Inst. 31(Jan 2007), 1789–1795 (2016) Mukasyan, A.S., Epstein, P., Dinka, P.: Solution combustion synthesis of nanomaterials solution combustion synthesis of nanomaterials. Proc. Combust. Inst. 31(Jan 2007), 1789–1795 (2016)
50.
go back to reference Cao, G.: Nanostructures & Nanomaterials, 2nd edn. Imperial College Press, University of Washington, USA (2004)CrossRef Cao, G.: Nanostructures & Nanomaterials, 2nd edn. Imperial College Press, University of Washington, USA (2004)CrossRef
51.
go back to reference Masip, E.M.: Síntesis electroquímica de nanopartículas de ferrita de cobalto, caracterizacíon y aplicaciones biomédicas. Dissertação, p. 220 (2015) Masip, E.M.: Síntesis electroquímica de nanopartículas de ferrita de cobalto, caracterizacíon y aplicaciones biomédicas. Dissertação, p. 220 (2015)
52.
go back to reference Goldman, A.: Modem Ferrite Technology, 2nd edn. Springer, Pittsburgh, PA, USA (2006) Goldman, A.: Modem Ferrite Technology, 2nd edn. Springer, Pittsburgh, PA, USA (2006)
53.
go back to reference Snelling, E.C.: Soft Ferrites: Properties and Applications, 1a edn. Iliffe (1969) Snelling, E.C.: Soft Ferrites: Properties and Applications, 1a edn. Iliffe (1969)
54.
go back to reference Buschow, K.H.J. (ed.) Handbook of Magnetic Materials, p. 542. Van der Waals-Zeeman Institute University of Amsterdam; Elsevier, Netherlands (2006) Buschow, K.H.J. (ed.) Handbook of Magnetic Materials, p. 542. Van der Waals-Zeeman Institute University of Amsterdam; Elsevier, Netherlands (2006)
55.
go back to reference Sivakumar, N., Narayanasamy, A., Shinoda, K., Chinnasamy, C.N., Jeyadevan, B., Greneche, J.M.: Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. J. Appl. Phys. 102(1), 013916 (2007)CrossRef Sivakumar, N., Narayanasamy, A., Shinoda, K., Chinnasamy, C.N., Jeyadevan, B., Greneche, J.M.: Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. J. Appl. Phys. 102(1), 013916 (2007)CrossRef
56.
go back to reference Shiau, F.-S., Fang, T.-T., Leu, T.-H.: Effect of particle-size distribution on the microstructural evolution in the intermediate stage of sintering. J. Am. Ceram. Soc. 80(2), 286–290 (2005)CrossRef Shiau, F.-S., Fang, T.-T., Leu, T.-H.: Effect of particle-size distribution on the microstructural evolution in the intermediate stage of sintering. J. Am. Ceram. Soc. 80(2), 286–290 (2005)CrossRef
57.
go back to reference Naidu, K.C.B., Madhuri, W.: Hydrothermal synthesis of NiFe2O4 nano-particles: structural, morphological, optical, electrical and magnetic properties. Bull. Mater. Sci. 40(2), 417–425 (2017)CrossRef Naidu, K.C.B., Madhuri, W.: Hydrothermal synthesis of NiFe2O4 nano-particles: structural, morphological, optical, electrical and magnetic properties. Bull. Mater. Sci. 40(2), 417–425 (2017)CrossRef
58.
go back to reference Huo, J., Wei, M.: Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Mater. Lett. 63(13–14), 1183–1184 (2009)CrossRef Huo, J., Wei, M.: Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Mater. Lett. 63(13–14), 1183–1184 (2009)CrossRef
59.
go back to reference Moradmard, H., Farjami Shayesteh, S., Tohidi, P., Abbas, Z., Khaleghi, M.: Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloys Compd. 650, 116–122 (2015)CrossRef Moradmard, H., Farjami Shayesteh, S., Tohidi, P., Abbas, Z., Khaleghi, M.: Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloys Compd. 650, 116–122 (2015)CrossRef
60.
go back to reference Wang, J., Ren, F., Yi, R., Yan, A., Qiu, G., Liu, X.: Solvothermal synthesis and magnetic properties of size-controlled nickel ferrite nanoparticles. J. Alloys Compd. 479(1–2), 791–796 (2009)CrossRef Wang, J., Ren, F., Yi, R., Yan, A., Qiu, G., Liu, X.: Solvothermal synthesis and magnetic properties of size-controlled nickel ferrite nanoparticles. J. Alloys Compd. 479(1–2), 791–796 (2009)CrossRef
61.
go back to reference Hamdeh, H.H., Mahmoud, M.H., Elshahawy, A.M., Makhlouf, Salah A.: Synthesis of highly ordered 30 nm NiFe2O4 particles by the microwave-combustion method. J. Magn. Magn. Mater. 369, 55–61 (2014)CrossRef Hamdeh, H.H., Mahmoud, M.H., Elshahawy, A.M., Makhlouf, Salah A.: Synthesis of highly ordered 30 nm NiFe2O4 particles by the microwave-combustion method. J. Magn. Magn. Mater. 369, 55–61 (2014)CrossRef
62.
go back to reference Issa, B., Obaidat, I.M., Albiss, B.A., Haik, Y.: Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14(11), 21266–21305 (2013)CrossRef Issa, B., Obaidat, I.M., Albiss, B.A., Haik, Y.: Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14(11), 21266–21305 (2013)CrossRef
63.
go back to reference Bean, C.P., Livingston, J.D.: Superparamagnetism. J. Appl. Phys. 30(4), S120–S129 (1959)CrossRef Bean, C.P., Livingston, J.D.: Superparamagnetism. J. Appl. Phys. 30(4), S120–S129 (1959)CrossRef
64.
go back to reference Kotnala, R.K., Shah, J.: Ferrite Materials: Nano to Spintronics Regime, vol. 23. Elsevier (2015) Kotnala, R.K., Shah, J.: Ferrite Materials: Nano to Spintronics Regime, vol. 23. Elsevier (2015)
65.
go back to reference Zhang, M., et al.: Size effects on magnetic properties of Ni0.5Zn0.5Fe2O4 prepared by sol-gel method. Adv. Mater. Sci. Eng. 044317(2010), 3–11 (2016) Zhang, M., et al.: Size effects on magnetic properties of Ni0.5Zn0.5Fe2O4 prepared by sol-gel method. Adv. Mater. Sci. Eng. 044317(2010), 3–11 (2016)
66.
go back to reference Liu, C., Zhang, Z.J.: Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chem. Mater. 13(6), 2092–2096 (2001)CrossRef Liu, C., Zhang, Z.J.: Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chem. Mater. 13(6), 2092–2096 (2001)CrossRef
67.
go back to reference Sechovský, V.: Magnetism in solids: general introduction. Encycl. Mater. Sci. Technol., 5018–5032 (2001) Sechovský, V.: Magnetism in solids: general introduction. Encycl. Mater. Sci. Technol., 5018–5032 (2001)
68.
go back to reference Cullity, B.D.: Fine particles and thin films. In: Introduction to Magnetic Materials, p. 385. Addison-Wesley, Ed. London (1972) Cullity, B.D.: Fine particles and thin films. In: Introduction to Magnetic Materials, p. 385. Addison-Wesley, Ed. London (1972)
69.
go back to reference Rikken, R.S.M., Nolte, R.J.M., Maan, J.C., Van Hest, J.C.M., Wilson, D.A., Christianen, P.C.M.: Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter 10(9), 1295–1308 (2014)CrossRef Rikken, R.S.M., Nolte, R.J.M., Maan, J.C., Van Hest, J.C.M., Wilson, D.A., Christianen, P.C.M.: Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter 10(9), 1295–1308 (2014)CrossRef
70.
go back to reference Li, L., et al.: Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3(8), 595–615 (2013)CrossRef Li, L., et al.: Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3(8), 595–615 (2013)CrossRef
71.
go back to reference Hutamaningtyas, E., Utari, Suharyana, Purnama, B., Wijayanta, A.T.: Effects of the synthesis temperature on the crystalline structure and the magnetic properties of cobalt ferrite nanoparticles prepared via coprecipitation. J. Korean Phys. Soc. 69(4), 584–588 (2016)CrossRef Hutamaningtyas, E., Utari, Suharyana, Purnama, B., Wijayanta, A.T.: Effects of the synthesis temperature on the crystalline structure and the magnetic properties of cobalt ferrite nanoparticles prepared via coprecipitation. J. Korean Phys. Soc. 69(4), 584–588 (2016)CrossRef
72.
go back to reference Šepelák, V., Schultze, D., Krumeich, F., Steinike, U., Becker, K.D.: Mechanically induced cation redistribution in magnesium ferrite and its thermal stability. Solid State Ionics 141–142, 677–682 (2001)CrossRef Šepelák, V., Schultze, D., Krumeich, F., Steinike, U., Becker, K.D.: Mechanically induced cation redistribution in magnesium ferrite and its thermal stability. Solid State Ionics 141–142, 677–682 (2001)CrossRef
73.
go back to reference Maensiri, S., Masingboon, C., Boonchom, B., Seraphin, S.: A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr. Mater. 56(9), 797–800 (2007)CrossRef Maensiri, S., Masingboon, C., Boonchom, B., Seraphin, S.: A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr. Mater. 56(9), 797–800 (2007)CrossRef
74.
go back to reference Lu, L.T., et al.: Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale 7(46), 19596–19610 (2015)CrossRef Lu, L.T., et al.: Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale 7(46), 19596–19610 (2015)CrossRef
75.
go back to reference El Maalam, K., et al.: The effects of synthesis conditions on the magnetic properties of zinc ferrite spinel nanoparticles. J. Phys. Conf. Ser. 758(1), 012008 (2016)CrossRef El Maalam, K., et al.: The effects of synthesis conditions on the magnetic properties of zinc ferrite spinel nanoparticles. J. Phys. Conf. Ser. 758(1), 012008 (2016)CrossRef
76.
go back to reference Berkowitz, A.E., Schuele, W.J.: Magnetic properties of some ferrite micropowders. J. Appl. Phys. 30(4), S134–S135 (1959)CrossRef Berkowitz, A.E., Schuele, W.J.: Magnetic properties of some ferrite micropowders. J. Appl. Phys. 30(4), S134–S135 (1959)CrossRef
77.
go back to reference Maaz, K., Mumtaz, A., Hasanain, S.K., Ceylan, A.: Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308(2), 289–295 (2007)CrossRef Maaz, K., Mumtaz, A., Hasanain, S.K., Ceylan, A.: Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308(2), 289–295 (2007)CrossRef
78.
go back to reference Lima, A.C., et al.: The effect of Sr2+ on the structure and magnetic properties of nanocrystalline cobalt ferrite. Mater. Lett. 145, 56–58 (2015)CrossRef Lima, A.C., et al.: The effect of Sr2+ on the structure and magnetic properties of nanocrystalline cobalt ferrite. Mater. Lett. 145, 56–58 (2015)CrossRef
79.
go back to reference Skomski, R.: Simple Models of Magnetism. New York (2008) Skomski, R.: Simple Models of Magnetism. New York (2008)
80.
go back to reference Qiu, J., Wang, C., Gu, M.: Photocatalytic properties and optical absorption of zinc ferrite nanometer films. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 112(1), 1–4 (2004)CrossRef Qiu, J., Wang, C., Gu, M.: Photocatalytic properties and optical absorption of zinc ferrite nanometer films. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 112(1), 1–4 (2004)CrossRef
81.
go back to reference Sapna, Budhiraja, N., Kumar, V., Singh, S.K.: Shape-controlled synthesis of superparamagnetic ZnFe2O4 hierarchical structures and their comparative structural, optical and magnetic properties. Ceram. Int. 45(1), 1067–1076 (2019)CrossRef Sapna, Budhiraja, N., Kumar, V., Singh, S.K.: Shape-controlled synthesis of superparamagnetic ZnFe2O4 hierarchical structures and their comparative structural, optical and magnetic properties. Ceram. Int. 45(1), 1067–1076 (2019)CrossRef
82.
go back to reference Cao, Y., Qin, H., Niu, X., Jia, D.: Simple solid-state chemical synthesis and gas-sensing properties of spinel ferrite materials with different morphologies. Ceram. Int. 42(9), 10697–10703 (2016)CrossRef Cao, Y., Qin, H., Niu, X., Jia, D.: Simple solid-state chemical synthesis and gas-sensing properties of spinel ferrite materials with different morphologies. Ceram. Int. 42(9), 10697–10703 (2016)CrossRef
83.
go back to reference Singh, A., Singh, A., Singh, S., Tandon, P., Yadav, B.C., Yadav, R.R.: Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications. J. Alloys Compd. 618, 475–483 (2015)CrossRef Singh, A., Singh, A., Singh, S., Tandon, P., Yadav, B.C., Yadav, R.R.: Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications. J. Alloys Compd. 618, 475–483 (2015)CrossRef
84.
go back to reference Spaldin, N.: Magnetic Material: Fundamentals and Device Applications (2003) Spaldin, N.: Magnetic Material: Fundamentals and Device Applications (2003)
85.
go back to reference Aakash, A., Chowdhury, R., Das, D., Mukherjee, S.: Effect of doping of manganese ions on the structural and magnetic properties of nickel ferrite. Ceram. Int. 42(6), 7742–7747 (2016)CrossRef Aakash, A., Chowdhury, R., Das, D., Mukherjee, S.: Effect of doping of manganese ions on the structural and magnetic properties of nickel ferrite. Ceram. Int. 42(6), 7742–7747 (2016)CrossRef
86.
go back to reference Zhang, C.F., Zhong, X.C., Yu, H.Y., Liu, Z.W., Zeng, D.C.: Effects of cobalt doping on the microstructure and magnetic properties of Mn-Zn ferrites prepared by the co-precipitation method. Phys. B Condens. Matter 404(16), 2327–2331 (2009)CrossRef Zhang, C.F., Zhong, X.C., Yu, H.Y., Liu, Z.W., Zeng, D.C.: Effects of cobalt doping on the microstructure and magnetic properties of Mn-Zn ferrites prepared by the co-precipitation method. Phys. B Condens. Matter 404(16), 2327–2331 (2009)CrossRef
87.
go back to reference Feng, J., Guo, L.Q., Xu, X., Qi, S.Y., Zhang, M.L.: Hydrothermal synthesis and characterization of Mn1−xZnxFe2O4 nanoparticles. Phys. B Condens. Matter 394(1), 100–103 (2007)CrossRef Feng, J., Guo, L.Q., Xu, X., Qi, S.Y., Zhang, M.L.: Hydrothermal synthesis and characterization of Mn1−xZnxFe2O4 nanoparticles. Phys. B Condens. Matter 394(1), 100–103 (2007)CrossRef
88.
go back to reference Justin Joseyphus, R., Narayanasamy, A., Shinoda, K., Jeyadevan, B., Tohji, K.: Synthesis and magnetic properties of the size-controlled Mn-Zn ferrite nanoparticles by oxidation method. J. Phys. Chem. Solids 67(7), 1510–1517 (2006)CrossRef Justin Joseyphus, R., Narayanasamy, A., Shinoda, K., Jeyadevan, B., Tohji, K.: Synthesis and magnetic properties of the size-controlled Mn-Zn ferrite nanoparticles by oxidation method. J. Phys. Chem. Solids 67(7), 1510–1517 (2006)CrossRef
89.
go back to reference Singh, A.K., Singh, A.K., Goel, T.C., Mendiratta, R.G.: High performance Ni-substituted Mn-Zn ferrites processed by soft chemical technique. J. Magn. Magn. Mater. 281(2–3), 276–280 (2004)CrossRef Singh, A.K., Singh, A.K., Goel, T.C., Mendiratta, R.G.: High performance Ni-substituted Mn-Zn ferrites processed by soft chemical technique. J. Magn. Magn. Mater. 281(2–3), 276–280 (2004)CrossRef
90.
go back to reference Singh, A.K., Goel, T.C., Mendiratta, R.G., Thakur, O.P., Prakash, C.: Magnetic properties of Mn-substituted Ni-Zn ferrites. J. Appl. Phys. 92(7), 3872–3876 (2002)CrossRef Singh, A.K., Goel, T.C., Mendiratta, R.G., Thakur, O.P., Prakash, C.: Magnetic properties of Mn-substituted Ni-Zn ferrites. J. Appl. Phys. 92(7), 3872–3876 (2002)CrossRef
91.
go back to reference Naik, M.M., Naik, H.S.B., Nagaraju, G., Vinuth, M., Vinu, K., Rashmi, S.K.: Effect of aluminium doping on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method. J. Mater. Sci.: Mater. Electron. 29(23), 20395–20414 (2018) Naik, M.M., Naik, H.S.B., Nagaraju, G., Vinuth, M., Vinu, K., Rashmi, S.K.: Effect of aluminium doping on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method. J. Mater. Sci.: Mater. Electron. 29(23), 20395–20414 (2018)
92.
go back to reference Lassoued, A., Lassoued, M.S., Dkhil, B., Ammar, S., Gadri, A.: Photocatalytic degradation of methyl orange dye by NiFe2O4 nanoparticles under visible irradiation: effect of varying the synthesis temperature. J. Mater. Sci.: Mater. Electron. 29(9), 7057–7067 (2018) Lassoued, A., Lassoued, M.S., Dkhil, B., Ammar, S., Gadri, A.: Photocatalytic degradation of methyl orange dye by NiFe2O4 nanoparticles under visible irradiation: effect of varying the synthesis temperature. J. Mater. Sci.: Mater. Electron. 29(9), 7057–7067 (2018)
93.
go back to reference Jesudoss, S.K., et al.: Studies on the efficient dual performance of Mn1−xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity. J. Photochem. Photobiol. B Biol. 165, 121–132 (2016)CrossRef Jesudoss, S.K., et al.: Studies on the efficient dual performance of Mn1−xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity. J. Photochem. Photobiol. B Biol. 165, 121–132 (2016)CrossRef
94.
go back to reference Rashmi, S.K., Naik, H.S.B., Jayadevappa, H., Sudhamani, C.N., Patil, S.B., Naik, M.M.: Influence of Sm3+ ions on structural, optical and solar light driven photocatalytic activity of spinel MnFe2O4 nanoparticles. J. Solid State Chem. 255(June), 178–192 (2017)CrossRef Rashmi, S.K., Naik, H.S.B., Jayadevappa, H., Sudhamani, C.N., Patil, S.B., Naik, M.M.: Influence of Sm3+ ions on structural, optical and solar light driven photocatalytic activity of spinel MnFe2O4 nanoparticles. J. Solid State Chem. 255(June), 178–192 (2017)CrossRef
95.
go back to reference Murashkina, A.A., Murzin, P.D., Rudakova, A.V., Ryabchuk, V.K., Emeline, A.V., Bahnemann, D.W.: Influence of the dopant concentration on the photocatalytic activity: Al-doped TiO2. J. Phys. Chem. C 119(44), 24695–24703 (2015)CrossRef Murashkina, A.A., Murzin, P.D., Rudakova, A.V., Ryabchuk, V.K., Emeline, A.V., Bahnemann, D.W.: Influence of the dopant concentration on the photocatalytic activity: Al-doped TiO2. J. Phys. Chem. C 119(44), 24695–24703 (2015)CrossRef
96.
go back to reference Melo, R.S., Banerjee, P., Franco, A.: Hydrothermal synthesis of nickel doped cobalt ferrite nanoparticles: optical and magnetic properties. J. Mater. Sci.: Mater. Electron. 29(17), 14657–14667 (2018) Melo, R.S., Banerjee, P., Franco, A.: Hydrothermal synthesis of nickel doped cobalt ferrite nanoparticles: optical and magnetic properties. J. Mater. Sci.: Mater. Electron. 29(17), 14657–14667 (2018)
97.
go back to reference Brus, L.E.: Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80(9), 4403–4409 (1984)CrossRef Brus, L.E.: Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80(9), 4403–4409 (1984)CrossRef
98.
go back to reference Ravindra, A.V., Padhan, P., Prellier, W.: Electronic structure and optical band gap of CoFe2O4 thin films. Appl. Phys. Lett. 101(16), 1–5 (2012)CrossRef Ravindra, A.V., Padhan, P., Prellier, W.: Electronic structure and optical band gap of CoFe2O4 thin films. Appl. Phys. Lett. 101(16), 1–5 (2012)CrossRef
99.
go back to reference Holinsworth, B.S., et al.: Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Appl. Phys. Lett. 103(8), 2–6 (2013)CrossRef Holinsworth, B.S., et al.: Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Appl. Phys. Lett. 103(8), 2–6 (2013)CrossRef
Metadata
Title
Revised Fundamental Properties and Crystal Engineering of Spinel Ferrite Nanoparticles
Authors
Rafaella Casado Silva
Walmir Eno Pottker
Alane Stephanye A. Batista
Jefferson Ferraz Damasceno Felix Araujo
Felipe de Almeida La Porta
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-31403-3_20

Premium Partners