Skip to main content
Top
Published in: Designs, Codes and Cryptography 11/2023

19-07-2023

Revisiting algebraic attacks on MinRank and on the rank decoding problem

Authors: Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Jean-Pierre Tillich

Published in: Designs, Codes and Cryptography | Issue 11/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Rank Decoding problem (RD) is at the core of rank-based cryptography. Cryptosystems such as ROLLO and RQC, which made it to the second round of the NIST Post-Quantum Standardization Process, as well as the Durandal signature scheme, rely on it or its variants. This problem can also be seen as a structured version of MinRank, which is ubiquitous in multivariate cryptography. Recently, Bardet et al. (in: Canteaut and Ishai, Advances in cryptology—EUROCRYPT 2020, Springer, Cham, 2020; Advances in cryptology—ASIACRYPT 2020, international conference on the theory and application of cryptology and information security, 2020. Proceedings, 2020) proposed attacks based on two new algebraic modelings, namely the MaxMinors modeling which is specific to RD and the Support-Minors modeling which applies to MinRank in general. Both improved significantly the complexity of algebraic attacks on these two problems. In the case of RD and contrarily to what was believed up to now, these new attacks were shown to be able to outperform combinatorial attacks and this even for very small field sizes. However, we prove here that the analysis performed in Bardet et al. (in: Advances in cryptology—ASIACRYPT 2020, international conference on the theory and application of cryptology and information security, 2020. Proceedings, 2020) for one of these attacks which consists in mixing the MaxMinors modeling with the Support-Minors modeling to solve RD is too optimistic and leads to underestimate the overall complexity. This is done by exhibiting linear dependencies between these equations and by considering an \({{\mathbb {F}}}_{q^m}\) version of these modelings which turns out to be instrumental for getting a better understanding of both systems. Moreover, by working over \({{\mathbb {F}}}_{q^m}\) rather than over \({{\mathbb {F}}}_{q}\), we are able to drastically reduce the number of variables in the system and we (i) still keep enough algebraic equations to be able to solve the system, (ii) are able to analyze rigorously the complexity of our approach. This new approach may improve the older MaxMinors approach on RD from Bardet et al. (in: Canteaut and Ishai, Advances in cryptology—EUROCRYPT 2020, Springer, Cham, 2020; Advances in cryptology—ASIACRYPT 2020, international conference on the theory and application of cryptology and information security, 2020. Proceedings, 2020) for certain parameters. We also introduce a new hybrid approach on the Support-Minors system whose impact is much more general since it applies to any MinRank problem. This technique improves significantly the complexity of the Support-Minors approach for small to moderate field sizes.
Appendix
Available only for authorised users
Footnotes
1
A more canonical definition will be given in Sect. 2.
 
2
For instance in \({{\mathbb {F}}}_{q^2}\), \(f=\beta _1z_1+\beta _2z_2\) admits all multiples of \((\beta _2/\beta _1,1)\) as solution, whereas \({{\,\textrm{Unfold}\,}}(f) = \lbrace z_1,z_2\rbrace \) admits only (0, 0) as a solution in the algebraic closure of \({{\mathbb {F}}}_{q^2}\).
 
3
For affine systems, degree falls correspond to linear combinations between polynomials of a given degree that yield nonzero polynomials of smaller degree.
 
4
We abusively use the same name \(\varphi :{{\mathbb {F}}}_{q}^{m\times n}\rightarrow {{\mathbb {F}}}_{q}^{mn}\) and \({{\mathbb {F}}}_{q}^{m\times (n-a)}\rightarrow {{\mathbb {F}}}_{q}^{m(n-a)}\).
 
Literature
1.
go back to reference Aguilar Melchor C., Aragon N., Bettaieb S., Bidoux L., Blazy O., Deneuville J.C., Gaborit P., Hauteville A., Zémor G.: Ouroboros-R. First round submission to the NIST post-quantum cryptography call (2017). https://pqc-ouroborosr.org. Aguilar Melchor C., Aragon N., Bettaieb S., Bidoux L., Blazy O., Deneuville J.C., Gaborit P., Hauteville A., Zémor G.: Ouroboros-R. First round submission to the NIST post-quantum cryptography call (2017). https://​pqc-ouroborosr.​org.
2.
go back to reference Aguilar Melchor C., Aragon N., Bettaieb S., Bidoux L., Blazy O., Deneuville J.C., Gaborit P., Zémor G.: Rank quasi cyclic (RQC). First round submission to the NIST post-quantum cryptography call (2017). https://pqc-rqc.org. Aguilar Melchor C., Aragon N., Bettaieb S., Bidoux L., Blazy O., Deneuville J.C., Gaborit P., Zémor G.: Rank quasi cyclic (RQC). First round submission to the NIST post-quantum cryptography call (2017). https://​pqc-rqc.​org.
3.
go back to reference Aguilar Melchor C., Aragon N., Bettaieb S., Bidoux L., Blazy O., Deneuville J.C., Gaborit P., Zémor G., Couvreur A., Hauteville A.: Rank quasi cyclic (RQC). Second round submission to the NIST post-quantum cryptography call (2019). https://pqc-rqc.org. Aguilar Melchor C., Aragon N., Bettaieb S., Bidoux L., Blazy O., Deneuville J.C., Gaborit P., Zémor G., Couvreur A., Hauteville A.: Rank quasi cyclic (RQC). Second round submission to the NIST post-quantum cryptography call (2019). https://​pqc-rqc.​org.
4.
go back to reference Aguilar Melchor C., Aragon N., Bettaieb S., Bidoux L., Blazy O., Bros M., Couvreur A., Deneuville J.C., Gaborit P., Zémor G., Hauteville A.: Rank quasi cyclic (RQC). Second Round submission to NIST Post-Quantum Cryptography call (2020). https://pqc-rqc.org. Aguilar Melchor C., Aragon N., Bettaieb S., Bidoux L., Blazy O., Bros M., Couvreur A., Deneuville J.C., Gaborit P., Zémor G., Hauteville A.: Rank quasi cyclic (RQC). Second Round submission to NIST Post-Quantum Cryptography call (2020). https://​pqc-rqc.​org.
5.
go back to reference Aguilar Melchor C., Aragon N., Dyseryn V., Gaborit P., Zémor G.: LRPC codes with multiple syndromes: near ideal-size KEMs without ideals (2022). arXiv:2206.11961. Aguilar Melchor C., Aragon N., Dyseryn V., Gaborit P., Zémor G.: LRPC codes with multiple syndromes: near ideal-size KEMs without ideals (2022). arXiv:​2206.​11961.
11.
go back to reference Aragon N., Gaborit P., Hauteville A., Tillich J.P.: A new algorithm for solving the rank syndrome decoding problem. In: 2018 IEEE International Symposium on Information Theory, ISIT 2018, Vail, CO, USA, June 17–22, 2018. pp. 2421–2425. IEEE (2018). https://doi.org/10.1109/ISIT.2018.8437464. Aragon N., Gaborit P., Hauteville A., Tillich J.P.: A new algorithm for solving the rank syndrome decoding problem. In: 2018 IEEE International Symposium on Information Theory, ISIT 2018, Vail, CO, USA, June 17–22, 2018. pp. 2421–2425. IEEE (2018). https://​doi.​org/​10.​1109/​ISIT.​2018.​8437464.
12.
go back to reference Aragon N., Blazy O., Deneuville J.C., Gaborit P., Hauteville A., Ruatta O., Tillich J.P., Zémor G., Aguilar Melchor C., Bettaieb S., Bidoux L., Bardet M., Otmani A.: ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER). Second round submission to the NIST post-quantum cryptography call (2019). https://pqc-rollo.org. Aragon N., Blazy O., Deneuville J.C., Gaborit P., Hauteville A., Ruatta O., Tillich J.P., Zémor G., Aguilar Melchor C., Bettaieb S., Bidoux L., Bardet M., Otmani A.: ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER). Second round submission to the NIST post-quantum cryptography call (2019). https://​pqc-rollo.​org.
13.
go back to reference Aragon N., Blazy O., Gaborit P., Hauteville A., Zémor G.: Durandal: a rank metric based signature scheme. In: Advances in Cryptology—EUROCRYPT 2019—38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III. LNCS, vol. 11478, pp. 728–758. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-17659-4_25. Aragon N., Blazy O., Gaborit P., Hauteville A., Zémor G.: Durandal: a rank metric based signature scheme. In: Advances in Cryptology—EUROCRYPT 2019—38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III. LNCS, vol. 11478, pp. 728–758. Springer, Heidelberg (2019). https://​doi.​org/​10.​1007/​978-3-030-17659-4_​25.
14.
go back to reference Baena J., Briaud P., Cabarcas D., Perlner R.A., Smith-Tone D., Verbel J.A.: Improving support-minors rank attacks: applications to GeMSS and Rainbow. IACR Cryptol. ePrint Arch., accepted for publication in CRYPTO 2022, p. 1677 (2021). https://eprint.iacr.org/2021/1677. Baena J., Briaud P., Cabarcas D., Perlner R.A., Smith-Tone D., Verbel J.A.: Improving support-minors rank attacks: applications to GeMSS and Rainbow. IACR Cryptol. ePrint Arch., accepted for publication in CRYPTO 2022, p. 1677 (2021). https://​eprint.​iacr.​org/​2021/​1677.
15.
go back to reference Bardet M., Briaud P.: An algebraic approach to the rank support learning problem. In: Cheon J.H., Tillich J.P. (eds.) Post-Quantum Cryptography, vol. 12841, pp. 442–462. LNCS. Springer, Cham (2021).CrossRef Bardet M., Briaud P.: An algebraic approach to the rank support learning problem. In: Cheon J.H., Tillich J.P. (eds.) Post-Quantum Cryptography, vol. 12841, pp. 442–462. LNCS. Springer, Cham (2021).CrossRef
16.
go back to reference Bardet M., Briaud P., Bros M., Gaborit P., Neiger V., Ruatta O., Tillich J.: An algebraic attack on rank metric code-based cryptosystems. In: Canteaut A., Ishai Y. (eds.) Advances in Cryptology—EUROCRYPT 2020, pp. 64–93. Springer, Cham (2020) arXiv:1910.00810. Bardet M., Briaud P., Bros M., Gaborit P., Neiger V., Ruatta O., Tillich J.: An algebraic attack on rank metric code-based cryptosystems. In: Canteaut A., Ishai Y. (eds.) Advances in Cryptology—EUROCRYPT 2020, pp. 64–93. Springer, Cham (2020) arXiv:​1910.​00810.
17.
go back to reference Bardet M., Bros M., Cabarcas D., Gaborit P., Perlner R., Smith-Tone D., Tillich J.P., Verbel J.: Improvements of algebraic attacks for solving the rank decoding and minrank problems. In: Advances in Cryptology—ASIACRYPT 2020, International Conference on the Theory and Application of Cryptology and Information Security, 2020. Proceedings. pp. 507–536 (2020). https://doi.org/10.1007/978-3-030-64837-4_17. Bardet M., Bros M., Cabarcas D., Gaborit P., Perlner R., Smith-Tone D., Tillich J.P., Verbel J.: Improvements of algebraic attacks for solving the rank decoding and minrank problems. In: Advances in Cryptology—ASIACRYPT 2020, International Conference on the Theory and Application of Cryptology and Information Security, 2020. Proceedings. pp. 507–536 (2020). https://​doi.​org/​10.​1007/​978-3-030-64837-4_​17.
18.
go back to reference Bellini E., Caullery F., Gaborit P., Manzano M., Mateu V.: Improved Veron identification and signature schemes in the rank metric. In: Proc. IEEE Int. Symposium Inf. Theory—ISIT 2019, pp. 1872–1876. IEEE, Paris (2019). arXiv:1903.10212. Bellini E., Caullery F., Gaborit P., Manzano M., Mateu V.: Improved Veron identification and signature schemes in the rank metric. In: Proc. IEEE Int. Symposium Inf. Theory—ISIT 2019, pp. 1872–1876. IEEE, Paris (2019). arXiv:​1903.​10212.
19.
go back to reference Bellini E., Gaborit P., Hasikos A., Mateu V.: Enhancing code based zero-knowledge proofs using rank metric. In: Krenn S., Shulman H., Vaudenay S. (eds.) Cryptology and Network Security—19th International Conference, CANS 2020, Vienna, Austria, 14–16 December 2020, Proceedings. Lecture Notes in Computer Science, vol. 12579, pp. 570–592. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65411-5_28. Bellini E., Gaborit P., Hasikos A., Mateu V.: Enhancing code based zero-knowledge proofs using rank metric. In: Krenn S., Shulman H., Vaudenay S. (eds.) Cryptology and Network Security—19th International Conference, CANS 2020, Vienna, Austria, 14–16 December 2020, Proceedings. Lecture Notes in Computer Science, vol. 12579, pp. 570–592. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-65411-5_​28.
20.
go back to reference Bellini E., Esser A., Sanna C., Verbel J.: MR-DSS—smaller MinRank-based (ring-)signatures. In: Cheon J.H. Johansson J.T. (eds.) Post-Quantum Cryptography 2022. LNCS, vol. 13512. Springer, Berlin (2022). https://eprint.iacr.org/2022/973. Bellini E., Esser A., Sanna C., Verbel J.: MR-DSS—smaller MinRank-based (ring-)signatures. In: Cheon J.H. Johansson J.T. (eds.) Post-Quantum Cryptography 2022. LNCS, vol. 13512. Springer, Berlin (2022). https://​eprint.​iacr.​org/​2022/​973.
24.
25.
go back to reference Bruns W., Vetter U.: Determinantal Rings. LNCS, vol. 1327. Springer, Berlin (1988). Bruns W., Vetter U.: Determinantal Rings. LNCS, vol. 1327. Springer, Berlin (1988).
26.
go back to reference Buss J.F., Frandsen G.S., Shallit J.O.: The computational complexity of some problems of linear algebra. J. Comput. Syst. Sci. 58(3), 572–596 (1999).MathSciNetCrossRefMATH Buss J.F., Frandsen G.S., Shallit J.O.: The computational complexity of some problems of linear algebra. J. Comput. Syst. Sci. 58(3), 572–596 (1999).MathSciNetCrossRefMATH
28.
go back to reference Chabaud F., Stern J.: The cryptographic security of the syndrome decoding problem for rank distance codes. In: Advances in Cryptology—ASIACRYPT 1996, vol. 1163, pp. 368–381. LNCS. Springer, Kyongju (1996). Chabaud F., Stern J.: The cryptographic security of the syndrome decoding problem for rank distance codes. In: Advances in Cryptology—ASIACRYPT 1996, vol. 1163, pp. 368–381. LNCS. Springer, Kyongju (1996).
30.
go back to reference Couvreur A., Gaborit P., Gauthier-Umaña V., Otmani A., Tillich J.P.: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes. Des. Codes Cryptogr. 73(2), 641–666 (2014).MathSciNetCrossRefMATH Couvreur A., Gaborit P., Gauthier-Umaña V., Otmani A., Tillich J.P.: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes. Des. Codes Cryptogr. 73(2), 641–666 (2014).MathSciNetCrossRefMATH
34.
go back to reference Gabidulin E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985).MathSciNetMATH Gabidulin E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985).MathSciNetMATH
35.
go back to reference Gabidulin E.M., Paramonov A.V., Tretjakov O.V.: Ideals over a non-commutative ring and their applications to cryptography. In: Advances in Cryptology—EUROCRYPT’91. pp. 482–489. LNCS, No. 547. Brighton (1991). Gabidulin E.M., Paramonov A.V., Tretjakov O.V.: Ideals over a non-commutative ring and their applications to cryptography. In: Advances in Cryptology—EUROCRYPT’91. pp. 482–489. LNCS, No. 547. Brighton (1991).
36.
go back to reference Gaborit P., Zémor G.: On the hardness of the decoding and the minimum distance problems for rank codes. IEEE Trans. Inform. Theory 62(12), 7245–7252 (2016).MathSciNetCrossRefMATH Gaborit P., Zémor G.: On the hardness of the decoding and the minimum distance problems for rank codes. IEEE Trans. Inform. Theory 62(12), 7245–7252 (2016).MathSciNetCrossRefMATH
37.
39.
go back to reference Gaborit P., Ruatta O., Schrek J., Zémor G.: New results for rank-based cryptography. In: Progress in Cryptology—AFRICACRYPT 2014. LNCS, vol. 8469, pp. 1–12 (2014). Gaborit P., Ruatta O., Schrek J., Zémor G.: New results for rank-based cryptography. In: Progress in Cryptology—AFRICACRYPT 2014. LNCS, vol. 8469, pp. 1–12 (2014).
40.
go back to reference Gaborit P., Ruatta O., Schrek J.: On the complexity of the rank syndrome decoding problem. IEEE Trans. Inform. Theory 62(2), 1006–1019 (2016).MathSciNetCrossRefMATH Gaborit P., Ruatta O., Schrek J.: On the complexity of the rank syndrome decoding problem. IEEE Trans. Inform. Theory 62(2), 1006–1019 (2016).MathSciNetCrossRefMATH
42.
go back to reference Goubin L., Courtois N.: Cryptanalysis of the TTM cryptosystem. In: Okamoto T. (ed.) Advances in Cryptology–ASIACRYPT 2000, vol. 1976, pp. 44–57. LNCS. Springer, Berlin (2000).CrossRef Goubin L., Courtois N.: Cryptanalysis of the TTM cryptosystem. In: Okamoto T. (ed.) Advances in Cryptology–ASIACRYPT 2000, vol. 1976, pp. 44–57. LNCS. Springer, Berlin (2000).CrossRef
43.
go back to reference Hoffstein J., Pipher J., Silverman J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler J. (ed.) Algorithmic Number Theory, 3rd International Symposium, ANTS-III, Portland, OR, USA, 21–25 June 1998, Proceedings. LNCS, vol. 1423, pp. 267–288. Springer, Berlin (1998). Hoffstein J., Pipher J., Silverman J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler J. (ed.) Algorithmic Number Theory, 3rd International Symposium, ANTS-III, Portland, OR, USA, 21–25 June 1998, Proceedings. LNCS, vol. 1423, pp. 267–288. Springer, Berlin (1998).
46.
49.
go back to reference Overbeck R.: A new structural attack for GPT and variants. In: Mycrypt. LNCS, vol. 3715, pp. 50–63 (2005). Overbeck R.: A new structural attack for GPT and variants. In: Mycrypt. LNCS, vol. 3715, pp. 50–63 (2005).
50.
go back to reference Petzoldt A., Chen M., Yang B., Tao C., Ding J.: Design principles for HFEv- based multivariate signature schemes. In: Iwata T., Cheon J.H. (eds.) Advances in Cryptology—ASIACRYPT 2015—21st International Conference on the Theory and Application of Cryptology and Information Security, Auckland, New Zealand, 29 November–3 December 2015, Proceedings, Part I. LNCS, vol. 9452, pp. 311–334. Springer, Cham (2015). https://doi.org/10.1007/978-3-662-48797-6_14. Petzoldt A., Chen M., Yang B., Tao C., Ding J.: Design principles for HFEv- based multivariate signature schemes. In: Iwata T., Cheon J.H. (eds.) Advances in Cryptology—ASIACRYPT 2015—21st International Conference on the Theory and Application of Cryptology and Information Security, Auckland, New Zealand, 29 November–3 December 2015, Proceedings, Part I. LNCS, vol. 9452, pp. 311–334. Springer, Cham (2015). https://​doi.​org/​10.​1007/​978-3-662-48797-6_​14.
51.
go back to reference Sidelnikov V.M., Shestakov S.: On the insecurity of cryptosystems based on generalized Reed-Solomon codes. Discret. Math. Appl. 1(4), 439–444 (1992).MATH Sidelnikov V.M., Shestakov S.: On the insecurity of cryptosystems based on generalized Reed-Solomon codes. Discret. Math. Appl. 1(4), 439–444 (1992).MATH
52.
go back to reference Stern J.: A new identification scheme based on syndrome decoding. In: Stinson D. (ed.) Advances in Cryptology–CRYPTO’93, vol. 773, pp. 13–21. LNCS. Springer, Berlin (1993).CrossRef Stern J.: A new identification scheme based on syndrome decoding. In: Stinson D. (ed.) Advances in Cryptology–CRYPTO’93, vol. 773, pp. 13–21. LNCS. Springer, Berlin (1993).CrossRef
53.
go back to reference Tao C., Petzoldt A., Ding J.: Efficient key recovery for all HFE signature variants. In: Malkin T., Peikert C. (eds.) Advances in Cryptology—CRYPTO 2021—41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12825, pp. 70–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_4. Tao C., Petzoldt A., Ding J.: Efficient key recovery for all HFE signature variants. In: Malkin T., Peikert C. (eds.) Advances in Cryptology—CRYPTO 2021—41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12825, pp. 70–93. Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-84242-0_​4.
Metadata
Title
Revisiting algebraic attacks on MinRank and on the rank decoding problem
Authors
Magali Bardet
Pierre Briaud
Maxime Bros
Philippe Gaborit
Jean-Pierre Tillich
Publication date
19-07-2023
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 11/2023
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-023-01265-x

Other articles of this Issue 11/2023

Designs, Codes and Cryptography 11/2023 Go to the issue

Premium Partner