Skip to main content
Top
Published in: Journal of Materials Science 16/2017

04-05-2017 | Chemical routes to materials

RhAg/rGO nanocatalyst: ligand-controlled synthesis and superior catalytic performances for the reduction of 4-nitrophenol

Authors: Changlong Wang, Roberto Ciganda, Luis Yate, Sergio Moya, Lionel Salmon, Jaime Ruiz, Didier Astruc

Published in: Journal of Materials Science | Issue 16/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The design of ultrafine, highly efficient and recyclable heterogeneous bimetallic nanoparticles catalysts is challenging. In this work, we report for the first time the preparation of ultrafine and monodispersed bimetallic RhAg nanoparticles that are uniformly supported on reduced graphene oxide (rGO) nanosheets (RhAg/rGO). A key is the presence of the tris(triazolyl)-polyethylene glycol (tristrz-PEG) ligand as a weak stabilizing agent. This amphiphilic tridentate ligand not only enables the formation of ultrafine RhAg NPs, but also allows quantitative fixation of the NPs onto the rGO, which avoids metal loss and further improves catalytic efficiency. The RhAg/rGO catalysts were characterized by various techniques including UV–Vis, ICP-AES, TEM, HRTEM, STEM, EDX and XPS. By varying the molar ratios of Rh to Ag, the highest catalytic activity in the reduction of 4-nitrophenol by NaBH4 was obtained for RhAg0.5/rGO with a remarkable reaction rate of k app = 14.8 × 10−3 s−1 (k nor = 1415 s−1 g−1). Moreover, the catalyst was recycled, and its amount was reduced to 100 ppm of RhAg0.5/rGO while retaining an exceptional catalytic efficiency. The present work contributes to the effective design of ultrafine bimetallic NPs/graphene-based nanocomposites and to the fabrication of very efficient and cost-effective catalysts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 122:1179–1201CrossRef Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 122:1179–1201CrossRef
2.
go back to reference Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 41:8099–8139CrossRef Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 41:8099–8139CrossRef
3.
go back to reference Wang D, Li Y (2011) Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater 23:1044–1060CrossRef Wang D, Li Y (2011) Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater 23:1044–1060CrossRef
4.
go back to reference Liu X, Wang D, Li Y (2012) Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 7:448–466CrossRef Liu X, Wang D, Li Y (2012) Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 7:448–466CrossRef
5.
go back to reference Peng X, Pan Q, Rempel GL (2008) Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem Soc Rev 37:1619–1628CrossRef Peng X, Pan Q, Rempel GL (2008) Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem Soc Rev 37:1619–1628CrossRef
6.
go back to reference Wu B, Zheng N (2013) Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8:168–197CrossRef Wu B, Zheng N (2013) Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8:168–197CrossRef
7.
go back to reference Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng D, Zboril R, Varma RS (2015) Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44:7540–7590CrossRef Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng D, Zboril R, Varma RS (2015) Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44:7540–7590CrossRef
8.
go back to reference Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190CrossRef Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190CrossRef
9.
go back to reference Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM (2011) Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem Sci 2:1632–1646CrossRef Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM (2011) Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem Sci 2:1632–1646CrossRef
10.
go back to reference Gao F, Goodman DW (2012) Pd–Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles. Chem Soc Rev 41:8009–8020CrossRef Gao F, Goodman DW (2012) Pd–Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles. Chem Soc Rev 41:8009–8020CrossRef
11.
go back to reference Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 106:845–910CrossRef Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 106:845–910CrossRef
12.
go back to reference Hutchings GJ, Kiely CJ (2013) Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition. Acc Chem Res 46:1759–1772CrossRef Hutchings GJ, Kiely CJ (2013) Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition. Acc Chem Res 46:1759–1772CrossRef
13.
go back to reference Edwards JK, Freakley SJ, Carley AF, Kiely CJ, Hutchings GJ (2014) Strategies for designing supported gold–palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. Acc Chem Res 47:845–854CrossRef Edwards JK, Freakley SJ, Carley AF, Kiely CJ, Hutchings GJ (2014) Strategies for designing supported gold–palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. Acc Chem Res 47:845–854CrossRef
14.
go back to reference Zhang L, Xie Z, Gong J (2016) Shape-controlled synthesis of Au–Pd bimetallic nanocrystals for catalytic applications. Chem Soc Rev 45:3916–3934CrossRef Zhang L, Xie Z, Gong J (2016) Shape-controlled synthesis of Au–Pd bimetallic nanocrystals for catalytic applications. Chem Soc Rev 45:3916–3934CrossRef
15.
go back to reference Astruc D, Lu F, Ruiz J (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872CrossRef Astruc D, Lu F, Ruiz J (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872CrossRef
16.
go back to reference Zhang HJ, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Catalytically highly active top gold atom on palladium nanocluster. Nat Mater 11:49–52CrossRef Zhang HJ, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Catalytically highly active top gold atom on palladium nanocluster. Nat Mater 11:49–52CrossRef
17.
go back to reference Aita T, Kohyama M, Haruta M (2013) Electron microscopy study of gold nanoparticles deposited on transition metal oxides. Acc Chem Res 46:1773–1782CrossRef Aita T, Kohyama M, Haruta M (2013) Electron microscopy study of gold nanoparticles deposited on transition metal oxides. Acc Chem Res 46:1773–1782CrossRef
18.
go back to reference Lopez-Sanchez JA, Dimitratos N, Hammond C, Brett GL, Kesavan L, White S, Miedziak P, Tiruvalam R, Jenkins RL, Carley AF, Knight D, Kiely CJ, Hutchings GJ (2011) Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat Chem 3:551–556CrossRef Lopez-Sanchez JA, Dimitratos N, Hammond C, Brett GL, Kesavan L, White S, Miedziak P, Tiruvalam R, Jenkins RL, Carley AF, Knight D, Kiely CJ, Hutchings GJ (2011) Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat Chem 3:551–556CrossRef
19.
go back to reference Sarina S, Zhu H, Jaatinen E, Xiao Q, Liu H, Jia J, Chen C, Zhao J (2013) Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J Am Chem Soc 135:5793–5801CrossRef Sarina S, Zhu H, Jaatinen E, Xiao Q, Liu H, Jia J, Chen C, Zhao J (2013) Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J Am Chem Soc 135:5793–5801CrossRef
21.
go back to reference Singh AK, Singh AK, Xu Q (2013) Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5:652–676CrossRef Singh AK, Singh AK, Xu Q (2013) Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5:652–676CrossRef
22.
go back to reference Yuan Y, Yan N, Dyson PJ (2012) Advances in the rational design of rhodium nanoparticle catalysts: control via manipulation of the nanoparticle core and stabilizer. ACS Catal 2:1057–1069CrossRef Yuan Y, Yan N, Dyson PJ (2012) Advances in the rational design of rhodium nanoparticle catalysts: control via manipulation of the nanoparticle core and stabilizer. ACS Catal 2:1057–1069CrossRef
23.
go back to reference Garcia S, Zhang L, Piburn GW, Henkelman G, Humphrey SM (2014) Microwave synthesis of classically immiscible rhodium–silver and rhodium–gold alloy nanoparticles: highly active hydrogenation catalysts. ACS Nano 8:11512–11521CrossRef Garcia S, Zhang L, Piburn GW, Henkelman G, Humphrey SM (2014) Microwave synthesis of classically immiscible rhodium–silver and rhodium–gold alloy nanoparticles: highly active hydrogenation catalysts. ACS Nano 8:11512–11521CrossRef
24.
go back to reference Yasukawa T, Miyamura H, Kobayashi S (2012) Polymer-incarcerated chiral Rh/Ag nanoparticles for asymmetric 1,4-addition reactions of arylboronic acids to enones: remarkable effects of bimetallic structure on activity and metal leaching. J Am Chem Soc 134:16963–16966CrossRef Yasukawa T, Miyamura H, Kobayashi S (2012) Polymer-incarcerated chiral Rh/Ag nanoparticles for asymmetric 1,4-addition reactions of arylboronic acids to enones: remarkable effects of bimetallic structure on activity and metal leaching. J Am Chem Soc 134:16963–16966CrossRef
25.
go back to reference Yasukawa T, Suzuki A, Miyamura H, Nishino K, Kobayashi S (2015) Chiral metal nanoparticle systems as heterogeneous catalysts beyond homogeneous metal complex catalysts for asymmetric addition of arylboronic acids to α, β-unsaturated carbonyl compounds. J Am Chem Soc 137:6616–6623CrossRef Yasukawa T, Suzuki A, Miyamura H, Nishino K, Kobayashi S (2015) Chiral metal nanoparticle systems as heterogeneous catalysts beyond homogeneous metal complex catalysts for asymmetric addition of arylboronic acids to α, β-unsaturated carbonyl compounds. J Am Chem Soc 137:6616–6623CrossRef
26.
go back to reference Hirakawa K, Toshima N (2003) Ag/Rh bimetallic nanoparticles formed by self-assembly from Ag and Rh monometallic nanoparticles in solution. Chem Lett 32:8–79CrossRef Hirakawa K, Toshima N (2003) Ag/Rh bimetallic nanoparticles formed by self-assembly from Ag and Rh monometallic nanoparticles in solution. Chem Lett 32:8–79CrossRef
27.
go back to reference Toshima N, Kanemaru M, Shiraishi Y, Koga Y (2005) Spontaneous formation of core/shell bimetallic nanoparticles: a calorimetric study. J Phys Chem B 109:16326–16331CrossRef Toshima N, Kanemaru M, Shiraishi Y, Koga Y (2005) Spontaneous formation of core/shell bimetallic nanoparticles: a calorimetric study. J Phys Chem B 109:16326–16331CrossRef
28.
go back to reference Yang A, Sakata O, Kusada K, Yayama T, Yoshikawa H, Ishimoto T, Koyama M, Kobayashi H, Kitagawa H (2014) The valence band structure of AgxRh1–x alloy nanoparticles. Appl Phys Lett 105:153109CrossRef Yang A, Sakata O, Kusada K, Yayama T, Yoshikawa H, Ishimoto T, Koyama M, Kobayashi H, Kitagawa H (2014) The valence band structure of AgxRh1–x alloy nanoparticles. Appl Phys Lett 105:153109CrossRef
29.
go back to reference Kusada K, Yamauchi M, Kobayashi H, Kitagawa H, Kubota Y (2010) Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd. J Am Chem Soc 132:15896–15898CrossRef Kusada K, Yamauchi M, Kobayashi H, Kitagawa H, Kubota Y (2010) Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd. J Am Chem Soc 132:15896–15898CrossRef
30.
go back to reference Dai Y, Wang Y, Liu B, Yang Y (2015) Metallic nanocatalysis: an accelerating seamless integration with nanotechnology. Small 11:268–289CrossRef Dai Y, Wang Y, Liu B, Yang Y (2015) Metallic nanocatalysis: an accelerating seamless integration with nanotechnology. Small 11:268–289CrossRef
31.
go back to reference Chen S, Thota S, Wang X, Zhao J (2016) From solid to core@shell to hollow Pt–Ag nanocrystals: thermally controlled surface segregation to enhance catalytic activity and durability. J Mater Chem A 4:9038–9043CrossRef Chen S, Thota S, Wang X, Zhao J (2016) From solid to core@shell to hollow Pt–Ag nanocrystals: thermally controlled surface segregation to enhance catalytic activity and durability. J Mater Chem A 4:9038–9043CrossRef
32.
go back to reference Roy A, Debnath B, Sahoo R, Chandrakumar KRS, Ray C, Jana J, Pal T (2016) Enhanced catalytic activity of Ag/Rh bimetallic nanomaterial: evidence of an ensemble effect. J Phys Chem C 120:5457–5467CrossRef Roy A, Debnath B, Sahoo R, Chandrakumar KRS, Ray C, Jana J, Pal T (2016) Enhanced catalytic activity of Ag/Rh bimetallic nanomaterial: evidence of an ensemble effect. J Phys Chem C 120:5457–5467CrossRef
33.
go back to reference Wang C, Ciganda R, Salmon L, Gregurec D, Irigoyen J, Moya S, Ruiz J, Astruc D (2016) Highly efficient transition metal nanoparticle catalysts in aqueous solutions. Angew Chem Int Ed 55:3091–3095CrossRef Wang C, Ciganda R, Salmon L, Gregurec D, Irigoyen J, Moya S, Ruiz J, Astruc D (2016) Highly efficient transition metal nanoparticle catalysts in aqueous solutions. Angew Chem Int Ed 55:3091–3095CrossRef
34.
go back to reference Wang C, Wang D, Yu S, Cornilleau T, Ruiz J, Salmon L, Astruc D (2016) Design and applications of an efficient amphiphilic “click” CuI catalyst in water. ACS Catal 6:5424–5431CrossRef Wang C, Wang D, Yu S, Cornilleau T, Ruiz J, Salmon L, Astruc D (2016) Design and applications of an efficient amphiphilic “click” CuI catalyst in water. ACS Catal 6:5424–5431CrossRef
35.
go back to reference Özçubukçu S, Ozkal E, Jimeno C, Pericas MA (2009) A highly active catalyst for huisgen 1, 3-dipolar cycloadditions based on the tris(triazolyl) methanol-Cu(I) structure. Org Lett 11:4680–4683CrossRef Özçubukçu S, Ozkal E, Jimeno C, Pericas MA (2009) A highly active catalyst for huisgen 1, 3-dipolar cycloadditions based on the tris(triazolyl) methanol-Cu(I) structure. Org Lett 11:4680–4683CrossRef
36.
go back to reference Radich JG, Kamat PV (2013) Making graphene holey. gold-nanoparticle-mediated hydroxyl radical attack on reduced graphene oxide. ACS Nano 7:5546–5557CrossRef Radich JG, Kamat PV (2013) Making graphene holey. gold-nanoparticle-mediated hydroxyl radical attack on reduced graphene oxide. ACS Nano 7:5546–5557CrossRef
37.
go back to reference Deraedt C, Wang D, Salmon L, Etienne L, Labrugère C, Ruiz J, Astruc D (2015) Robust, efficient, and recyclable catalysts from the impregnation of preformed dendrimers containing palladium nanoparticles on a magnetic support. ChemCatChem 7:303–308CrossRef Deraedt C, Wang D, Salmon L, Etienne L, Labrugère C, Ruiz J, Astruc D (2015) Robust, efficient, and recyclable catalysts from the impregnation of preformed dendrimers containing palladium nanoparticles on a magnetic support. ChemCatChem 7:303–308CrossRef
38.
go back to reference Kim SM, Qadir K, Seo B, Jeong HY, Joo SH, Terasaki O, Park JY (2013) Nature of Rh oxide on Rh nanoparticles and its effect on the catalytic activity of CO oxidation. Catal Lett 143:1153–1161CrossRef Kim SM, Qadir K, Seo B, Jeong HY, Joo SH, Terasaki O, Park JY (2013) Nature of Rh oxide on Rh nanoparticles and its effect on the catalytic activity of CO oxidation. Catal Lett 143:1153–1161CrossRef
39.
go back to reference Kim S, Qadir K, Jin S, Reddy AS, Seo B, Mun BS, Joo SH, Park JY (2012) Trend of catalytic activity of CO oxidation on Rh and Ru nanoparticles: role of surface oxide. Catal Today 185:131–137CrossRef Kim S, Qadir K, Jin S, Reddy AS, Seo B, Mun BS, Joo SH, Park JY (2012) Trend of catalytic activity of CO oxidation on Rh and Ru nanoparticles: role of surface oxide. Catal Today 185:131–137CrossRef
40.
go back to reference Prinz J, Gaspari R, Stöckl QS, Gille P, Armbrüster M, Brune H, Gröning O, Pignedoli CA, Passerone D, Widmer R (2014) Ensemble effect evidenced by CO adsorption on the 3-fold PdGa surfaces. J Phys Chem C 118:12260–12265CrossRef Prinz J, Gaspari R, Stöckl QS, Gille P, Armbrüster M, Brune H, Gröning O, Pignedoli CA, Passerone D, Widmer R (2014) Ensemble effect evidenced by CO adsorption on the 3-fold PdGa surfaces. J Phys Chem C 118:12260–12265CrossRef
41.
go back to reference Sau TK, Pal A, Pal T (2001) Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J Phys Chem B 105:9266–9272CrossRef Sau TK, Pal A, Pal T (2001) Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J Phys Chem B 105:9266–9272CrossRef
42.
go back to reference Pal AA, Pal T (2015) Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts. Chem Commun 51:9410–9431CrossRef Pal AA, Pal T (2015) Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts. Chem Commun 51:9410–9431CrossRef
43.
go back to reference Hervés P, Pérez-Lorenzo M, Liz-Marzán LM, Dzubiella J, Lu Y, Ballauff M (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41:5577–5587CrossRef Hervés P, Pérez-Lorenzo M, Liz-Marzán LM, Dzubiella J, Lu Y, Ballauff M (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41:5577–5587CrossRef
44.
go back to reference Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles. Coord Chem Rev 287:114–136CrossRef Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles. Coord Chem Rev 287:114–136CrossRef
45.
go back to reference Kuroda K, Ishida T, Haruta M (2009) Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. J Mol Catal A: Chem 298:7–11CrossRef Kuroda K, Ishida T, Haruta M (2009) Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. J Mol Catal A: Chem 298:7–11CrossRef
46.
go back to reference Wunder S, Polzer F, Lu Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820CrossRef Wunder S, Polzer F, Lu Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820CrossRef
47.
go back to reference Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893CrossRef Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893CrossRef
48.
go back to reference Wang SN, Zhang MC, Zhang WQ (2011) Yolk − shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal 1:207–211CrossRef Wang SN, Zhang MC, Zhang WQ (2011) Yolk − shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal 1:207–211CrossRef
49.
go back to reference Wunder S, Lu Y, Albrecht M, Ballauff M (2011) Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. ACS Catal 1:908–916CrossRef Wunder S, Lu Y, Albrecht M, Ballauff M (2011) Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. ACS Catal 1:908–916CrossRef
50.
go back to reference Li J, Liu CY, Liu Y (2012) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22:8426–8430CrossRef Li J, Liu CY, Liu Y (2012) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22:8426–8430CrossRef
51.
go back to reference Zhang J, Han D, Zhang H, Chaker M, Zhao Y, Ma D (2012) In situ recyclable gold nanoparticles using CO2-switchable polymers for catalytic reduction of 4-nitrophenol. Chem Commun 48:11510–11512CrossRef Zhang J, Han D, Zhang H, Chaker M, Zhao Y, Ma D (2012) In situ recyclable gold nanoparticles using CO2-switchable polymers for catalytic reduction of 4-nitrophenol. Chem Commun 48:11510–11512CrossRef
52.
go back to reference Shivhare A, Ambrose SJ, Zhang H, Purves RW, Scott RWJ (2013) Stable and recyclable Au25 clusters for the reduction of 4-nitrophenol. Chem Commun 49:276–278CrossRef Shivhare A, Ambrose SJ, Zhang H, Purves RW, Scott RWJ (2013) Stable and recyclable Au25 clusters for the reduction of 4-nitrophenol. Chem Commun 49:276–278CrossRef
53.
go back to reference Pachfule P, Kandambeth S, Dıaz D, Banerjee R (2014) Highly stable covalent organic framework–Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chem Commun 50:3169–3171CrossRef Pachfule P, Kandambeth S, Dıaz D, Banerjee R (2014) Highly stable covalent organic framework–Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chem Commun 50:3169–3171CrossRef
54.
go back to reference Gu S, Wunder S, Lu Y, Ballauff M (2014) Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J Phys Chem C 118:18618–18625CrossRef Gu S, Wunder S, Lu Y, Ballauff M (2014) Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J Phys Chem C 118:18618–18625CrossRef
55.
go back to reference Wu T, Zhang L, Gao J, Liu Y, Gao C, Yan J (2013) Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. J Mater Chem A 1:7384–7390CrossRef Wu T, Zhang L, Gao J, Liu Y, Gao C, Yan J (2013) Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. J Mater Chem A 1:7384–7390CrossRef
56.
go back to reference Lv JJ, Wang AJ, Ma X, Xiang RY, Chen JR, Feng JJ (2015) One-pot synthesis of porous Pt–Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J Mater Chem A 3:290–296CrossRef Lv JJ, Wang AJ, Ma X, Xiang RY, Chen JR, Feng JJ (2015) One-pot synthesis of porous Pt–Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J Mater Chem A 3:290–296CrossRef
57.
go back to reference Song P, He LL, Wang AJ, Mei LP, Zhong SX, Chen JR, Feng JJ (2015) Surfactant-free synthesis of reduced graphene oxide supported porous PtAu alloyed nanoflowers with improved catalytic activity. J Mater Chem A 3:5321–5327CrossRef Song P, He LL, Wang AJ, Mei LP, Zhong SX, Chen JR, Feng JJ (2015) Surfactant-free synthesis of reduced graphene oxide supported porous PtAu alloyed nanoflowers with improved catalytic activity. J Mater Chem A 3:5321–5327CrossRef
58.
go back to reference Gupta VK, Atar N, Yola ML, Ustundag Z, Uzun L (2014) A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48:210–217CrossRef Gupta VK, Atar N, Yola ML, Ustundag Z, Uzun L (2014) A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48:210–217CrossRef
59.
go back to reference Shen YY, Sun Y, Zhou LN, Li YJ, Yeung ES (2014) Synthesis of ultrathin PtPdBi nanowire and its enhanced catalytic activity towards p-nitrophenol reduction. J Mater Chem A 2:2977–2984CrossRef Shen YY, Sun Y, Zhou LN, Li YJ, Yeung ES (2014) Synthesis of ultrathin PtPdBi nanowire and its enhanced catalytic activity towards p-nitrophenol reduction. J Mater Chem A 2:2977–2984CrossRef
60.
go back to reference Liu Q, Xu Y, Wang A, Feng J (2015) One-step melamine-assisted synthesis of graphene-supported AuPt@Au nanocrystals for enhanced catalytic reduction of p-nitrophenol. RSC Adv 5:96028–96033CrossRef Liu Q, Xu Y, Wang A, Feng J (2015) One-step melamine-assisted synthesis of graphene-supported AuPt@Au nanocrystals for enhanced catalytic reduction of p-nitrophenol. RSC Adv 5:96028–96033CrossRef
61.
go back to reference Mei LP, Wang R, Song P, Feng JJ, Wang ZG, Chen JR, Wang AJ (2016) One-pot solvothermal synthesis of bimetallic yolk–shell Ni@PtNi nanocrystals supported on reduced graphene oxide and their excellent catalytic properties for p-nitrophenol reduction. New J Chem 40:2315–2320CrossRef Mei LP, Wang R, Song P, Feng JJ, Wang ZG, Chen JR, Wang AJ (2016) One-pot solvothermal synthesis of bimetallic yolk–shell Ni@PtNi nanocrystals supported on reduced graphene oxide and their excellent catalytic properties for p-nitrophenol reduction. New J Chem 40:2315–2320CrossRef
62.
go back to reference Lee Y, Jang S, Cho C-W, Bae J-S, Park S, Park KH (2013) Recyclable rhodium nanoparticles: green hydrothermal synthesis, characterization, and highly catalytic performance in reduction of nitroarenes. J Nanosci Nanotechnol 13:7477–7481CrossRef Lee Y, Jang S, Cho C-W, Bae J-S, Park S, Park KH (2013) Recyclable rhodium nanoparticles: green hydrothermal synthesis, characterization, and highly catalytic performance in reduction of nitroarenes. J Nanosci Nanotechnol 13:7477–7481CrossRef
63.
go back to reference Lin C, Wu G, Li H, Geng Y, Xie G, Yang J, Liu B, Jin J (2017) Nanoscale 9:1834–1839CrossRef Lin C, Wu G, Li H, Geng Y, Xie G, Yang J, Liu B, Jin J (2017) Nanoscale 9:1834–1839CrossRef
64.
go back to reference Liu CH, Chen XQ, Hu YF, Sham TK, Sun QJ, Chang JB, Gao X, Sun XH, Wang SD (2013) One-pot environmentally friendly approach toward highly catalytically active bimetal-nanoparticle-graphene hybrids. ACS Appl Mater Interfaces 5:5072–5079CrossRef Liu CH, Chen XQ, Hu YF, Sham TK, Sun QJ, Chang JB, Gao X, Sun XH, Wang SD (2013) One-pot environmentally friendly approach toward highly catalytically active bimetal-nanoparticle-graphene hybrids. ACS Appl Mater Interfaces 5:5072–5079CrossRef
65.
go back to reference Tang S, Vongehr S, He G, Chen L, Meng X (2012) Highly catalytic spherical carbon nanocomposites allowing tunable activity via controllable Au–Pd doping. J Colloid Interface Sci 375:125–133CrossRef Tang S, Vongehr S, He G, Chen L, Meng X (2012) Highly catalytic spherical carbon nanocomposites allowing tunable activity via controllable Au–Pd doping. J Colloid Interface Sci 375:125–133CrossRef
66.
go back to reference Zhang L, Wu T, Xu X, Xia F, Na H, Liu Y, Qiu H, Wang W, Gao J (2015) Magnetic bimetallic nanoparticles supported reduced graphene oxide nanocomposite: fabrication, characterization and catalytic capability. J Alloy Compd 628:364–371CrossRef Zhang L, Wu T, Xu X, Xia F, Na H, Liu Y, Qiu H, Wang W, Gao J (2015) Magnetic bimetallic nanoparticles supported reduced graphene oxide nanocomposite: fabrication, characterization and catalytic capability. J Alloy Compd 628:364–371CrossRef
67.
go back to reference Wang Y, Wang X, Sun B, Tang S, Meng X (2016) Concentration-dependent morphology control of Pt-coated-Ag nanowires and effects of bimetallic interfaces on catalytic activity. J Mater Sci Technol 32:41–47CrossRef Wang Y, Wang X, Sun B, Tang S, Meng X (2016) Concentration-dependent morphology control of Pt-coated-Ag nanowires and effects of bimetallic interfaces on catalytic activity. J Mater Sci Technol 32:41–47CrossRef
68.
go back to reference Lu W, Ning R, Qin X, Zhang Y, Chang G, Liu S, Luo Y, Sun X (2011) Synthesis of Au nanoparticles decorated graphene oxide nanosheets: noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol. J Hazard Mater 197:320–326CrossRef Lu W, Ning R, Qin X, Zhang Y, Chang G, Liu S, Luo Y, Sun X (2011) Synthesis of Au nanoparticles decorated graphene oxide nanosheets: noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol. J Hazard Mater 197:320–326CrossRef
69.
go back to reference Ciganda R, Li N, Deraedt C, Gatard S, Zhao P, Salmon L, Hernandez R, Ruiz J, Astruc D (2014) Gold nanoparticles as electron reservoir redox catalysts for 4-nitrophenol reduction: a strong stereoelectronic ligand influence. Chem Commun 50:10126–10129CrossRef Ciganda R, Li N, Deraedt C, Gatard S, Zhao P, Salmon L, Hernandez R, Ruiz J, Astruc D (2014) Gold nanoparticles as electron reservoir redox catalysts for 4-nitrophenol reduction: a strong stereoelectronic ligand influence. Chem Commun 50:10126–10129CrossRef
70.
go back to reference Deraedt C, Salmon L, Gatard S, Ciganda R, Hernandez R, Ruiz J, Astruc D (2014) Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chem Commun 50:14194–14196CrossRef Deraedt C, Salmon L, Gatard S, Ciganda R, Hernandez R, Ruiz J, Astruc D (2014) Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chem Commun 50:14194–14196CrossRef
71.
go back to reference Wang D, Astruc D (2017) The recent development of efficient Earth-abundant transition metal nanocatalysts. Chem Soc Rev 46:816–854CrossRef Wang D, Astruc D (2017) The recent development of efficient Earth-abundant transition metal nanocatalysts. Chem Soc Rev 46:816–854CrossRef
72.
go back to reference Liu X, Astruc D (2017) From galvanic to anti-galvanic synthesis of bimetallic nanoparticles and applications to catalysis, sensing and materials science. Adv Mater. doi:10.1002/adma.201605305 Liu X, Astruc D (2017) From galvanic to anti-galvanic synthesis of bimetallic nanoparticles and applications to catalysis, sensing and materials science. Adv Mater. doi:10.​1002/​adma.​201605305
Metadata
Title
RhAg/rGO nanocatalyst: ligand-controlled synthesis and superior catalytic performances for the reduction of 4-nitrophenol
Authors
Changlong Wang
Roberto Ciganda
Luis Yate
Sergio Moya
Lionel Salmon
Jaime Ruiz
Didier Astruc
Publication date
04-05-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1158-7

Other articles of this Issue 16/2017

Journal of Materials Science 16/2017 Go to the issue

Premium Partners