Skip to main content
Top

2017 | OriginalPaper | Chapter

7. Riboflavin-Conjugated Multivalent Dendrimer Platform for Cancer-Targeted Drug and Gene Delivery

Authors : Pamela T. Wong, Kumar Sinniah, Seok Ki Choi

Published in: Bioactivity of Engineered Nanoparticles

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Riboflavin receptors (RFRs) are overexpressed in several malignant cells, and have been characterized as an emerging tumor surface biomarker. In this article, we discuss the design principles of a RFR-targeted nanoparticle system and illustrate its applications with studies performed in our laboratories. This system is based on a poly(amidoamine) (PAMAM) dendritic polymer which is modified on the surface by conjugation with riboflavin (RF) as the targeting ligand. First, we discuss the application of this system for targeted drug delivery by its conjugation with methotrexate as an antitumor payload. In cell-based experiments performed in vitro, this drug conjugate displayed RF-dependent, potent inhibition of cell growth in RFR(+) KB carcinoma cells. Second, the use of the RF-conjugated dendrimer for gene delivery applications through the formation of polyplexes with plasmid DNA is described. The ability of this targeted system to significantly enhance gene transfection in epithelial cells points to its potential as a promising new class of nonviral vectors. Third, the tunability of the functional properties of the dendrimer through modular integration is illustrated with an optically active gold nanoparticle (AuNP). The resultant dendrimer-coated AuNPs have a unique capability for tumor cell imaging via surface plasmon resonance scattering. Finally, we discuss the biophysical basis of the multivalent mechanism involved in the tight and specific binding of a RF-conjugated multivalent dendrimer to RFRs on the cell surface. The design principles and proof of concept studies presented here are strongly supportive of the promising potential of RF-conjugated nanoparticles for delivery and imaging applications in tumors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760CrossRef Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760CrossRef
2.
go back to reference Wong PT, Choi SK (2015) Mechanisms of drug release in nanotherapeutic delivery systems. Chem Rev (Washington, DC, US) 115(9):3388–3432CrossRef Wong PT, Choi SK (2015) Mechanisms of drug release in nanotherapeutic delivery systems. Chem Rev (Washington, DC, US) 115(9):3388–3432CrossRef
3.
go back to reference Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010CrossRef Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010CrossRef
4.
go back to reference Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41(1):189–207CrossRef Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41(1):189–207CrossRef
5.
go back to reference Zhu J, Shi X (2013) Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B 1(34):4199–4211CrossRef Zhu J, Shi X (2013) Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B 1(34):4199–4211CrossRef
6.
go back to reference Esmaeili F, Ghahremani MH, Ostad SN, Atyabi F, Seyedabadi M, Malekshahi MR, Amini M, Dinarvand R (2008) Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA–PEG–folate conjugate. J Drug Targ 16(5):415–423CrossRef Esmaeili F, Ghahremani MH, Ostad SN, Atyabi F, Seyedabadi M, Malekshahi MR, Amini M, Dinarvand R (2008) Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA–PEG–folate conjugate. J Drug Targ 16(5):415–423CrossRef
7.
go back to reference Kelemen LE (2006) The role of folate receptor α in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 119(2):243–250CrossRef Kelemen LE (2006) The role of folate receptor α in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 119(2):243–250CrossRef
8.
go back to reference Yang W, Cheng Y, Xu T, Wang X, Wen L-P (2008) Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem 44:862–868CrossRef Yang W, Cheng Y, Xu T, Wang X, Wen L-P (2008) Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem 44:862–868CrossRef
9.
go back to reference Yellepeddi VK, Kumar A, Palakurthi S (2009) Biotinylated poly(amido)amine (PAMAM) dendrimers as carriers for drug delivery to ovarian cancer cells in vitro. Anticancer Res 29(8):2933–2943 Yellepeddi VK, Kumar A, Palakurthi S (2009) Biotinylated poly(amido)amine (PAMAM) dendrimers as carriers for drug delivery to ovarian cancer cells in vitro. Anticancer Res 29(8):2933–2943
10.
go back to reference Kok RJ, Schraa AJ, Bos EJ, Moorlag HE, Asgeirsdottir SA, Everts M, Meijer DKF, Molema G (2002) Preparation and functional evaluation of RGD-modified proteins as αvβ3 integrin directed therapeutics. Bioconj Chem 13(1):128–135CrossRef Kok RJ, Schraa AJ, Bos EJ, Moorlag HE, Asgeirsdottir SA, Everts M, Meijer DKF, Molema G (2002) Preparation and functional evaluation of RGD-modified proteins as αvβ3 integrin directed therapeutics. Bioconj Chem 13(1):128–135CrossRef
11.
go back to reference Pinto JT, Suffoletto BP, Berzin TM, Qiao CH, Lin S, Tong WP, May F, Mukherjee B, Heston WD (1996) Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin Cancer Res 2(9):1445–1451 Pinto JT, Suffoletto BP, Berzin TM, Qiao CH, Lin S, Tong WP, May F, Mukherjee B, Heston WD (1996) Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin Cancer Res 2(9):1445–1451
12.
go back to reference Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3(1):81–85 Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3(1):81–85
13.
go back to reference Ross JS, Fletcher JA (1998) The HER2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Oncologist 3:237–252 Ross JS, Fletcher JA (1998) The HER2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Oncologist 3:237–252
14.
go back to reference Arteaga CL (2002) Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 7(suppl 4):31–39CrossRef Arteaga CL (2002) Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 7(suppl 4):31–39CrossRef
15.
go back to reference Haugsten EM, Wiedlocha A, Olsnes S, Wesche J (2010) Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res 8(11):1439–1452CrossRef Haugsten EM, Wiedlocha A, Olsnes S, Wesche J (2010) Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res 8(11):1439–1452CrossRef
16.
go back to reference Pollak M (2012) The insulin receptor/insulin-like growth factor receptor family as a therapeutic target in oncology. Clin Cancer Res 18(1):40–50CrossRef Pollak M (2012) The insulin receptor/insulin-like growth factor receptor family as a therapeutic target in oncology. Clin Cancer Res 18(1):40–50CrossRef
17.
go back to reference Herbison CE, Thorstensen K, Chua ACG, Graham RM, Leedman P, Olynyk JK, Trinder D (2009) The role of transferrin receptor 1 and 2 in transferrin-bound iron uptake in human hepatoma cells. Am J Physiol Cell Physiol 297(6):C1567–C1575CrossRef Herbison CE, Thorstensen K, Chua ACG, Graham RM, Leedman P, Olynyk JK, Trinder D (2009) The role of transferrin receptor 1 and 2 in transferrin-bound iron uptake in human hepatoma cells. Am J Physiol Cell Physiol 297(6):C1567–C1575CrossRef
18.
go back to reference Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59(8):748–758CrossRef Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59(8):748–758CrossRef
19.
go back to reference Karande AA, Sridhar L, Gopinath KS, Adiga PR (2001) Riboflavin carrier protein: a serum and tissue marker for breast carcinoma. Int J Cancer 95:277–281CrossRef Karande AA, Sridhar L, Gopinath KS, Adiga PR (2001) Riboflavin carrier protein: a serum and tissue marker for breast carcinoma. Int J Cancer 95:277–281CrossRef
20.
go back to reference Johnson T, Ouhtit A, Gaur R, Fernando A, Schwarzenberger P, Su J, Ismail MF, El-Sayyad HI, Karande A, Elmageed ZA, Rao P, Raj M (2009) Biochemical characterization of riboflavin carrier protein (RCP) in prostate cancer. Front Biosci Landmark Ed 14:3634–3640CrossRef Johnson T, Ouhtit A, Gaur R, Fernando A, Schwarzenberger P, Su J, Ismail MF, El-Sayyad HI, Karande A, Elmageed ZA, Rao P, Raj M (2009) Biochemical characterization of riboflavin carrier protein (RCP) in prostate cancer. Front Biosci Landmark Ed 14:3634–3640CrossRef
21.
go back to reference Holladay SR, Yang Z-F, Kennedy MD, Leamon CP, Lee RJ, Jayamani M, Mason T, Low PS (1999) Riboflavin-mediated delivery of a macromolecule into cultured human cells. Biochim Biophys Acta Gen Subj 1426(1):195–204CrossRef Holladay SR, Yang Z-F, Kennedy MD, Leamon CP, Lee RJ, Jayamani M, Mason T, Low PS (1999) Riboflavin-mediated delivery of a macromolecule into cultured human cells. Biochim Biophys Acta Gen Subj 1426(1):195–204CrossRef
22.
go back to reference Phelps MA, Foraker AB, Gao W, Dalton JT, Swaan PW (2004) A novel rhodamine-riboflavin conjugate probe exhibits distinct fluorescence resonance energy transfer that enables riboflavin trafficking and subcellular localization studies. Mol Pharm 1(4):257–266CrossRef Phelps MA, Foraker AB, Gao W, Dalton JT, Swaan PW (2004) A novel rhodamine-riboflavin conjugate probe exhibits distinct fluorescence resonance energy transfer that enables riboflavin trafficking and subcellular localization studies. Mol Pharm 1(4):257–266CrossRef
23.
go back to reference Huang S-N, Swaan PW (2000) Involvement of a receptor-mediated component in cellular translocation of riboflavin. J Pharmacol Exp Ther 294(1):117–125 Huang S-N, Swaan PW (2000) Involvement of a receptor-mediated component in cellular translocation of riboflavin. J Pharmacol Exp Ther 294(1):117–125
24.
go back to reference Leistra AN, Han JH, Tang S, Orr BG, Banaszak Holl MM, Choi SK, Sinniah K (2015) Force spectroscopy of multivalent binding of riboflavin-conjugated dendrimers to riboflavin binding protein. J Phys Chem B 119(18):5785–5792CrossRef Leistra AN, Han JH, Tang S, Orr BG, Banaszak Holl MM, Choi SK, Sinniah K (2015) Force spectroscopy of multivalent binding of riboflavin-conjugated dendrimers to riboflavin binding protein. J Phys Chem B 119(18):5785–5792CrossRef
25.
go back to reference Plantinga A, Witte A, Li M-H, Harmon A, Choi SK, Banaszak Holl MM, Orr BG, Baker JR Jr, Sinniah K (2011) Bioanalytical screening of riboflavin antagonists for targeted drug delivery: a thermodynamic and kinetic study. ACS Med Chem Lett 2(5):363–367CrossRef Plantinga A, Witte A, Li M-H, Harmon A, Choi SK, Banaszak Holl MM, Orr BG, Baker JR Jr, Sinniah K (2011) Bioanalytical screening of riboflavin antagonists for targeted drug delivery: a thermodynamic and kinetic study. ACS Med Chem Lett 2(5):363–367CrossRef
26.
go back to reference Thomas TP, Choi SK, Li M-H, Kotlyar A, Baker JR Jr (2010) Design of riboflavin-presenting PAMAM dendrimers as a new nanoplatform for cancer-targeted delivery. Bioorg Med Chem Lett 20:5191–5194CrossRef Thomas TP, Choi SK, Li M-H, Kotlyar A, Baker JR Jr (2010) Design of riboflavin-presenting PAMAM dendrimers as a new nanoplatform for cancer-targeted delivery. Bioorg Med Chem Lett 20:5191–5194CrossRef
27.
go back to reference Witte AB, Leistra AN, Wong PT, Bharathi S, Refior K, Smith P, Kaso O, Sinniah K, Choi SK (2014) Atomic force microscopy probing of receptor-nanoparticle interactions for riboflavin receptor targeted gold-dendrimer nanocomposites. J Phys Chem B 118(11):2872–2882CrossRef Witte AB, Leistra AN, Wong PT, Bharathi S, Refior K, Smith P, Kaso O, Sinniah K, Choi SK (2014) Atomic force microscopy probing of receptor-nanoparticle interactions for riboflavin receptor targeted gold-dendrimer nanocomposites. J Phys Chem B 118(11):2872–2882CrossRef
28.
go back to reference Witte AB, Timmer CM, Gam JJ, Choi SK, Banaszak Holl MM, Orr BG, Baker JR, Sinniah K (2012) Biophysical characterization of a riboflavin-conjugated dendrimer platform for targeted drug delivery. Biomacromol 13:507–516CrossRef Witte AB, Timmer CM, Gam JJ, Choi SK, Banaszak Holl MM, Orr BG, Baker JR, Sinniah K (2012) Biophysical characterization of a riboflavin-conjugated dendrimer platform for targeted drug delivery. Biomacromol 13:507–516CrossRef
29.
go back to reference Beztsinna N, Solé M, Taib N, Bestel I (2016) Bioengineered riboflavin in nanotechnology. Biomaterials 80:121–133CrossRef Beztsinna N, Solé M, Taib N, Bestel I (2016) Bioengineered riboflavin in nanotechnology. Biomaterials 80:121–133CrossRef
30.
go back to reference Marlin F, Simon P, Bonneau S, Alberti P, Cordier C, Boix C, Perrouault L, Fossey A, Saison-Behmoaras T, Fontecave M, Giovannangeli C (2012) Flavin conjugates for delivery of peptide nucleic acids. ChemBioChem 13(17):2593–2598CrossRef Marlin F, Simon P, Bonneau S, Alberti P, Cordier C, Boix C, Perrouault L, Fossey A, Saison-Behmoaras T, Fontecave M, Giovannangeli C (2012) Flavin conjugates for delivery of peptide nucleic acids. ChemBioChem 13(17):2593–2598CrossRef
31.
go back to reference Bareford LM, Avaritt BR, Ghandehari H, Nan A, Swaan PW (2013) Riboflavin-targeted polymer conjugates for breast tumor delivery. Pharm Res 30(7):1799–1812CrossRef Bareford LM, Avaritt BR, Ghandehari H, Nan A, Swaan PW (2013) Riboflavin-targeted polymer conjugates for breast tumor delivery. Pharm Res 30(7):1799–1812CrossRef
32.
go back to reference Jayapaul J, Arns S, Bunker M, Weiler M, Rutherford S, Comba P, Kiessling F (2016) In vivo evaluation of riboflavin receptor targeted fluorescent USPIO in mice with prostate cancer xenografts. Nano Res 9(5):1319–1333CrossRef Jayapaul J, Arns S, Bunker M, Weiler M, Rutherford S, Comba P, Kiessling F (2016) In vivo evaluation of riboflavin receptor targeted fluorescent USPIO in mice with prostate cancer xenografts. Nano Res 9(5):1319–1333CrossRef
33.
go back to reference Lu Y, Low PS (2002) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54(5):675–693CrossRef Lu Y, Low PS (2002) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54(5):675–693CrossRef
34.
go back to reference Low PS, Henne WA, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41(1):120–129CrossRef Low PS, Henne WA, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41(1):120–129CrossRef
35.
go back to reference Wang H-L, Wang S-S, Song W-H, Pan Y, Yu H-P, Si T-G, Liu Y, Cui X-N, Guo Z (2015) Expression of prostate-specific membrane antigen in lung cancer cells and tumor neovasculature endothelial cells and its clinical significance. PLoS ONE 10(5):e0125924CrossRef Wang H-L, Wang S-S, Song W-H, Pan Y, Yu H-P, Si T-G, Liu Y, Cui X-N, Guo Z (2015) Expression of prostate-specific membrane antigen in lung cancer cells and tumor neovasculature endothelial cells and its clinical significance. PLoS ONE 10(5):e0125924CrossRef
36.
go back to reference Shukla R, Thomas TP, Peters JL, Desai AM, Kukowska-Latallo J, Patri AK, Kotlyar A, Baker JR (2006) HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconj Chem 17(5):1109–1115CrossRef Shukla R, Thomas TP, Peters JL, Desai AM, Kukowska-Latallo J, Patri AK, Kotlyar A, Baker JR (2006) HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconj Chem 17(5):1109–1115CrossRef
37.
go back to reference Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, Park JW (2003) Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res 63(12):3154–3161 Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, Park JW (2003) Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res 63(12):3154–3161
38.
go back to reference Foraker AB, Khantwal CM, Swaan PW (2003) Current perspectives on the cellular uptake and trafficking of riboflavin. Adv Drug Deliv Rev 55(11):1467–1483CrossRef Foraker AB, Khantwal CM, Swaan PW (2003) Current perspectives on the cellular uptake and trafficking of riboflavin. Adv Drug Deliv Rev 55(11):1467–1483CrossRef
39.
go back to reference Wu AML, Dedina L, Dalvi P, Yang M, Leon-Cheon J, Earl B, Harper PA, Ito S (2016) Riboflavin uptake transporter Slc52a2 (RFVT2) is upregulated in the mouse mammary gland during lactation. Am J Physiol Regul Integr Comp Physiol 310(7):R578–R585CrossRef Wu AML, Dedina L, Dalvi P, Yang M, Leon-Cheon J, Earl B, Harper PA, Ito S (2016) Riboflavin uptake transporter Slc52a2 (RFVT2) is upregulated in the mouse mammary gland during lactation. Am J Physiol Regul Integr Comp Physiol 310(7):R578–R585CrossRef
40.
go back to reference Yonezawa A, Inui K-I (2013) Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol Aspects Med 34(2–3):693–701CrossRef Yonezawa A, Inui K-I (2013) Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol Aspects Med 34(2–3):693–701CrossRef
41.
go back to reference White HB, Merrill AH (1988) Riboflavin-binding proteins. Annu Rev Nutr 8(1):279–299CrossRef White HB, Merrill AH (1988) Riboflavin-binding proteins. Annu Rev Nutr 8(1):279–299CrossRef
42.
go back to reference Wong PT, Tang K, Coulter A, Tang S, Baker JR, Choi SK (2014) Multivalent dendrimer vectors with DNA intercalation motifs for gene delivery. Biomacromol 15(11):4134–4145CrossRef Wong PT, Tang K, Coulter A, Tang S, Baker JR, Choi SK (2014) Multivalent dendrimer vectors with DNA intercalation motifs for gene delivery. Biomacromol 15(11):4134–4145CrossRef
43.
go back to reference Miranda-Lorenzo I, Dorado J, Lonardo E, Alcala S, Serrano AG, Clausell-Tormos J, Cioffi M, Megias D, Zagorac S, Balic A, Hidalgo M, Erkan M, Kleeff J, Scarpa A, Sainz B Jr, Heeschen C (2014) Intracellular autofluorescence: a biomarker for epithelial cancer stem cells. Nat Methods 11(11):1161–1169CrossRef Miranda-Lorenzo I, Dorado J, Lonardo E, Alcala S, Serrano AG, Clausell-Tormos J, Cioffi M, Megias D, Zagorac S, Balic A, Hidalgo M, Erkan M, Kleeff J, Scarpa A, Sainz B Jr, Heeschen C (2014) Intracellular autofluorescence: a biomarker for epithelial cancer stem cells. Nat Methods 11(11):1161–1169CrossRef
44.
go back to reference Zheng DB, Lim HM, Pène JJ, White HB (1988) Chicken riboflavin-binding protein. cDNA sequence and homology with milk folate-binding protein. J Biol Chem 263(23):11126–11129 Zheng DB, Lim HM, Pène JJ, White HB (1988) Chicken riboflavin-binding protein. cDNA sequence and homology with milk folate-binding protein. J Biol Chem 263(23):11126–11129
45.
go back to reference Monaco HL (1997) Crystal structure of chicken riboflavin-binding protein. EMBO J 16(7):1475–1483CrossRef Monaco HL (1997) Crystal structure of chicken riboflavin-binding protein. EMBO J 16(7):1475–1483CrossRef
46.
go back to reference Huang S-N, Phelps MA, Swaan PW (2003) Involvement of endocytic organelles in the subcellular trafficking and localization of riboflavin. J Pharmacol Exp Ther 306(2):681–687CrossRef Huang S-N, Phelps MA, Swaan PW (2003) Involvement of endocytic organelles in the subcellular trafficking and localization of riboflavin. J Pharmacol Exp Ther 306(2):681–687CrossRef
47.
go back to reference Mack M, Grill S (2006) Riboflavin analogs and inhibitors of riboflavin biosynthesis. Appl Microbiol Biotechnol 71(3):265–275CrossRef Mack M, Grill S (2006) Riboflavin analogs and inhibitors of riboflavin biosynthesis. Appl Microbiol Biotechnol 71(3):265–275CrossRef
48.
go back to reference Chu CK, Bardos TJ (1977) Synthesis and inhibition analysis of 2(4)-imino-4(2)-amino-2,4-dideoxyriboflavin, a dual antagonist of riboflavin and folinic acid. J Med Chem 20(2):312–314CrossRef Chu CK, Bardos TJ (1977) Synthesis and inhibition analysis of 2(4)-imino-4(2)-amino-2,4-dideoxyriboflavin, a dual antagonist of riboflavin and folinic acid. J Med Chem 20(2):312–314CrossRef
49.
go back to reference Musser EA, Heinle RW (1958) The effect of a riboflavin antagonist upon leukocytes of normal and shay myeloid chloroleukemic rats. Blood 13(5):464–474 Musser EA, Heinle RW (1958) The effect of a riboflavin antagonist upon leukocytes of normal and shay myeloid chloroleukemic rats. Blood 13(5):464–474
50.
go back to reference Choi S-K (2004) Synthetic multivalent molecules: concepts and biomedical applications. Wiley, New JerseyCrossRef Choi S-K (2004) Synthetic multivalent molecules: concepts and biomedical applications. Wiley, New JerseyCrossRef
51.
go back to reference Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2754–2794CrossRef Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2754–2794CrossRef
52.
go back to reference Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp E-W, Haag R (2012) Multivalency as a chemical organization and action principle. Angew Chem Int Ed 51(42):10472–10498CrossRef Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp E-W, Haag R (2012) Multivalency as a chemical organization and action principle. Angew Chem Int Ed 51(42):10472–10498CrossRef
53.
go back to reference Caelen I, Kalman A, Wahlstrom L (2003) Biosensor-based determination of riboflavin in milk samples. Anal Chem 76(1):137–143CrossRef Caelen I, Kalman A, Wahlstrom L (2003) Biosensor-based determination of riboflavin in milk samples. Anal Chem 76(1):137–143CrossRef
54.
go back to reference Wu FYH, MacKenzie RE, McCormick DB (1970) Kinetics and mechanism of oxidation-reduction reactions between pyridine nucleotides and flavins. Biochemistry 9(11):2219–2224CrossRef Wu FYH, MacKenzie RE, McCormick DB (1970) Kinetics and mechanism of oxidation-reduction reactions between pyridine nucleotides and flavins. Biochemistry 9(11):2219–2224CrossRef
55.
go back to reference Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29(2):138–175CrossRef Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29(2):138–175CrossRef
56.
go back to reference Wong P, Tang S, Mukherjee J, Tang K, Gam K, Isham D, Murat C, Sun R, Baker JR, Choi SK (2016) Light-controlled active release of photocaged ciprofloxacin for lipopolysaccharide-targeted drug delivery using dendrimer conjugates. Chem Commun (Cambridge UK) 52:10357–10360CrossRef Wong P, Tang S, Mukherjee J, Tang K, Gam K, Isham D, Murat C, Sun R, Baker JR, Choi SK (2016) Light-controlled active release of photocaged ciprofloxacin for lipopolysaccharide-targeted drug delivery using dendrimer conjugates. Chem Commun (Cambridge UK) 52:10357–10360CrossRef
57.
go back to reference Wong PT, Chen D, Tang S, Yanik S, Payne M, Mukherjee J, Coulter A, Tang K, Tao K, Sun K, Baker JR Jr, Choi SK (2015) Modular integration of upconversion nanocrystal-dendrimer composites for folate receptor-specific near infrared imaging and light triggered drug release. Small 11(45):6078–6090CrossRef Wong PT, Chen D, Tang S, Yanik S, Payne M, Mukherjee J, Coulter A, Tang K, Tao K, Sun K, Baker JR Jr, Choi SK (2015) Modular integration of upconversion nanocrystal-dendrimer composites for folate receptor-specific near infrared imaging and light triggered drug release. Small 11(45):6078–6090CrossRef
58.
go back to reference Cloninger MJ (2002) Biological applications of dendrimers. Curr Opin Chem Biol 6(6):742–748CrossRef Cloninger MJ (2002) Biological applications of dendrimers. Curr Opin Chem Biol 6(6):742–748CrossRef
59.
go back to reference Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6(8):427–436CrossRef Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6(8):427–436CrossRef
60.
go back to reference Majoros I, Baker J Jr (eds) (2008) Dendrimer-based nanomedicine. Pan Stanford, Hackensack Majoros I, Baker J Jr (eds) (2008) Dendrimer-based nanomedicine. Pan Stanford, Hackensack
61.
go back to reference Medina SH, El-Sayed MEH (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev (Washington, DC, US) 109(7):3141–3157CrossRef Medina SH, El-Sayed MEH (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev (Washington, DC, US) 109(7):3141–3157CrossRef
62.
go back to reference Rosowsky A, Forsch RA, Wright JE (2004) Synthesis and in vitro antifolate activity of rotationally restricted aminopterin and methotrexate analogues. J Med Chem 47(27):6958–6963CrossRef Rosowsky A, Forsch RA, Wright JE (2004) Synthesis and in vitro antifolate activity of rotationally restricted aminopterin and methotrexate analogues. J Med Chem 47(27):6958–6963CrossRef
63.
go back to reference Kiessling LL, Gestwicki JE, Strong LE (2000) Synthetic multivalent ligands in the exploration of cell-surface interactions. Curr Opin Chem Biol 4(6):696–703CrossRef Kiessling LL, Gestwicki JE, Strong LE (2000) Synthetic multivalent ligands in the exploration of cell-surface interactions. Curr Opin Chem Biol 4(6):696–703CrossRef
64.
go back to reference Horowitz ED, Hud NV (2006) Ethidium and proflavine binding to a 2′,5′-Linked RNA duplex. J Am Chem Soc 128(48):15380–15381CrossRef Horowitz ED, Hud NV (2006) Ethidium and proflavine binding to a 2′,5′-Linked RNA duplex. J Am Chem Soc 128(48):15380–15381CrossRef
65.
go back to reference Sankaran NB, Nishizawa S, Seino T, Yoshimoto K, Teramae N (2006) Abasic-site-containing oligodeoxynucleotides as aptamers for riboflavin. Angew Chem Int Ed 45(10):1563–1568CrossRef Sankaran NB, Nishizawa S, Seino T, Yoshimoto K, Teramae N (2006) Abasic-site-containing oligodeoxynucleotides as aptamers for riboflavin. Angew Chem Int Ed 45(10):1563–1568CrossRef
66.
go back to reference Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18(1):33–37CrossRef Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18(1):33–37CrossRef
67.
go back to reference Herd H, Daum N, Jones AT, Huwer H, Ghandehari H, Lehr C-M (2013) Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano 7(3):1961–1973CrossRef Herd H, Daum N, Jones AT, Huwer H, Ghandehari H, Lehr C-M (2013) Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano 7(3):1961–1973CrossRef
68.
go back to reference Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294CrossRef Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294CrossRef
69.
go back to reference Daniel M-C, Astruc D (2004) Gold nanoparticles; assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev (Washington, DC, US) 104(1):293–346CrossRef Daniel M-C, Astruc D (2004) Gold nanoparticles; assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev (Washington, DC, US) 104(1):293–346CrossRef
70.
go back to reference El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834CrossRef El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834CrossRef
71.
go back to reference El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett (NY, NY, US) 239(1):129–135CrossRef El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett (NY, NY, US) 239(1):129–135CrossRef
72.
go back to reference Qian W, Huang X, Kang B, El-Sayed MA (2010) Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes. J Biomed Opt 15(4):46025–46029CrossRef Qian W, Huang X, Kang B, El-Sayed MA (2010) Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes. J Biomed Opt 15(4):46025–46029CrossRef
73.
go back to reference Klein S, Petersen S, Taylor U, Barcikowski S, Rath D (2010) Quantitative visualization of colloidal and intracellular gold nanoparticles by confocal microscopy. J Biomed Opt 15(3):36015CrossRef Klein S, Petersen S, Taylor U, Barcikowski S, Rath D (2010) Quantitative visualization of colloidal and intracellular gold nanoparticles by confocal microscopy. J Biomed Opt 15(3):36015CrossRef
74.
go back to reference Lee YC, Lee RT (1995) Carbohydrate-protein interactions: basis of glycobiology. Acc Chem Res 28(8):321–327CrossRef Lee YC, Lee RT (1995) Carbohydrate-protein interactions: basis of glycobiology. Acc Chem Res 28(8):321–327CrossRef
75.
go back to reference Choi S-K, Mammen M, Whitesides GM (1997) Generation and in situ evaluation of libraries of poly(acrylic acid) presenting sialosides as side chains as polyvalent inhibitors of influenza-mediated hemagglutination. J Am Chem Soc 119(18):4103–4111CrossRef Choi S-K, Mammen M, Whitesides GM (1997) Generation and in situ evaluation of libraries of poly(acrylic acid) presenting sialosides as side chains as polyvalent inhibitors of influenza-mediated hemagglutination. J Am Chem Soc 119(18):4103–4111CrossRef
76.
go back to reference Jayaraman N (2009) Multivalent ligand presentation as a central concept to study intricate carbohydrate-protein interactions. Chem Soc Rev 38(12):3463–3483CrossRef Jayaraman N (2009) Multivalent ligand presentation as a central concept to study intricate carbohydrate-protein interactions. Chem Soc Rev 38(12):3463–3483CrossRef
77.
go back to reference Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR Jr, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol (Oxford UK) 14(1):107–115 Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR Jr, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol (Oxford UK) 14(1):107–115
78.
go back to reference Li X, Zhou H, Yang L, Du G, Pai-Panandiker AS, Huang X, Yan B (2011) Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles. Biomaterials 32(10):2540–2545CrossRef Li X, Zhou H, Yang L, Du G, Pai-Panandiker AS, Huang X, Yan B (2011) Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles. Biomaterials 32(10):2540–2545CrossRef
79.
go back to reference Silpe JE, Sumit M, Thomas TP, Huang B, Kotlyar A, van Dongen MA, Banaszak Holl MM, Orr BG, Choi SK (2013) Avidity modulation of folate-targeted multivalent dendrimers for evaluating biophysical models of cancer targeting nanoparticles. ACS Chem Biol 8(9):2063–2071CrossRef Silpe JE, Sumit M, Thomas TP, Huang B, Kotlyar A, van Dongen MA, Banaszak Holl MM, Orr BG, Choi SK (2013) Avidity modulation of folate-targeted multivalent dendrimers for evaluating biophysical models of cancer targeting nanoparticles. ACS Chem Biol 8(9):2063–2071CrossRef
80.
go back to reference Li M-H, Choi SK, Thomas TP, Desai A, Lee K-H, Kotlyar A, Banaszak Holl MM, Baker JR Jr (2012) Dendrimer-based multivalent methotrexates as dual acting nanoconjugates for cancer cell targeting. Eur J Med Chem 47:560–572CrossRef Li M-H, Choi SK, Thomas TP, Desai A, Lee K-H, Kotlyar A, Banaszak Holl MM, Baker JR Jr (2012) Dendrimer-based multivalent methotrexates as dual acting nanoconjugates for cancer cell targeting. Eur J Med Chem 47:560–572CrossRef
81.
go back to reference Thomas TP, Huang B, Choi SK, Silpe JE, Kotlyar A, Desai AM, Gam J, Joice M Jr (2012) Polyvalent PAMAM-methotrexate dendrimer as a folate receptor-targeted therapeutic. Mol Pharm 9(9):2669–2676CrossRef Thomas TP, Huang B, Choi SK, Silpe JE, Kotlyar A, Desai AM, Gam J, Joice M Jr (2012) Polyvalent PAMAM-methotrexate dendrimer as a folate receptor-targeted therapeutic. Mol Pharm 9(9):2669–2676CrossRef
82.
go back to reference Thomas TP, Joice M, Sumit M, Silpe JE, Kotlyar A, Bharathi S, Kukowska-Latallo J, Baker JR, Choi SK (2013) Design and in vitro validation of multivalent dendrimer methotrexates as a folate-targeting anticancer therapeutic. Curr Pharm Des 19(37):6594–6605CrossRef Thomas TP, Joice M, Sumit M, Silpe JE, Kotlyar A, Bharathi S, Kukowska-Latallo J, Baker JR, Choi SK (2013) Design and in vitro validation of multivalent dendrimer methotrexates as a folate-targeting anticancer therapeutic. Curr Pharm Des 19(37):6594–6605CrossRef
83.
go back to reference Wong P, Choi SK (2015) Mechanisms and implications of dual-acting methotrexate in folate-targeted nanotherapeutic delivery. Int J Mol Sci 16(1):1772–1790CrossRef Wong P, Choi SK (2015) Mechanisms and implications of dual-acting methotrexate in folate-targeted nanotherapeutic delivery. Int J Mol Sci 16(1):1772–1790CrossRef
84.
go back to reference Choi SK, Myc A, Silpe JE, Sumit M, Wong PT, McCarthy K, Desai AM, Thomas TP, Kotlyar A, Banaszak Holl MM, Orr BG, Baker JR (2013) Dendrimer-based multivalent vancomycin nanoplatform for targeting the drug-resistant bacterial surface. ACS Nano 7(1):214–228CrossRef Choi SK, Myc A, Silpe JE, Sumit M, Wong PT, McCarthy K, Desai AM, Thomas TP, Kotlyar A, Banaszak Holl MM, Orr BG, Baker JR (2013) Dendrimer-based multivalent vancomycin nanoplatform for targeting the drug-resistant bacterial surface. ACS Nano 7(1):214–228CrossRef
85.
go back to reference Krishnamurthy VM, Quinton LJ, Estroff LA, Metallo SJ, Isaacs JM, Mizgerd JP, Whitesides GM (2006) Promotion of opsonization by antibodies and phagocytosis of gram-positive bacteria by a bifunctional polyacrylamide. Biomaterials 27(19):3663–3674 Krishnamurthy VM, Quinton LJ, Estroff LA, Metallo SJ, Isaacs JM, Mizgerd JP, Whitesides GM (2006) Promotion of opsonization by antibodies and phagocytosis of gram-positive bacteria by a bifunctional polyacrylamide. Biomaterials 27(19):3663–3674
86.
go back to reference Qi G, Li L, Yu F, Wang H (2013) Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive bacteria over macrophage-like cells. ACS Appl Mater Interfaces 5(21):10874–10881CrossRef Qi G, Li L, Yu F, Wang H (2013) Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive bacteria over macrophage-like cells. ACS Appl Mater Interfaces 5(21):10874–10881CrossRef
87.
go back to reference Kell AJ, Stewart G, Ryan S, Peytavi R, Boissinot M, Huletsky A, Bergeron MG, Simard B (2008) Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2(9):1777–1788CrossRef Kell AJ, Stewart G, Ryan S, Peytavi R, Boissinot M, Huletsky A, Bergeron MG, Simard B (2008) Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2(9):1777–1788CrossRef
88.
go back to reference Li M-H, Choi SK, Leroueil PR, Baker JR (2014) Evaluating binding avidities of populations of heterogeneous multivalent ligand-functionalized nanoparticles. ACS Nano 8(6):5600–5609CrossRef Li M-H, Choi SK, Leroueil PR, Baker JR (2014) Evaluating binding avidities of populations of heterogeneous multivalent ligand-functionalized nanoparticles. ACS Nano 8(6):5600–5609CrossRef
89.
go back to reference Choi S-K, Mammen M, Whitesides GM (1996) Monomeric inhibitors of influenza neuraminidase enhance the hemagglutination inhibition activities of polyacrylamides presenting multiple C-sialoside groups. Chem Biol (Oxford UK) 3:97–104 Choi S-K, Mammen M, Whitesides GM (1996) Monomeric inhibitors of influenza neuraminidase enhance the hemagglutination inhibition activities of polyacrylamides presenting multiple C-sialoside groups. Chem Biol (Oxford UK) 3:97–104
90.
go back to reference Bhatia S, Dimde M, Haag R (2014) Multivalent glycoconjugates as vaccines and potential drug candidates. MedChemComm 5(7):862–878CrossRef Bhatia S, Dimde M, Haag R (2014) Multivalent glycoconjugates as vaccines and potential drug candidates. MedChemComm 5(7):862–878CrossRef
91.
go back to reference Zhou H, Jiao P, Yang L, Li X, Yan B (2010) Enhancing cell recognition by scrutinizing cell surfaces with a nanoparticle array. J Am Chem Soc 133(4):680–682CrossRef Zhou H, Jiao P, Yang L, Li X, Yan B (2010) Enhancing cell recognition by scrutinizing cell surfaces with a nanoparticle array. J Am Chem Soc 133(4):680–682CrossRef
92.
go back to reference Mintzer MA, Dane EL, O’Toole GA, Grinstaff MW (2011) Exploiting dendrimer multivalency to combat emerging and re-emerging infectious diseases. Mol Pharm 9(3):342–354CrossRef Mintzer MA, Dane EL, O’Toole GA, Grinstaff MW (2011) Exploiting dendrimer multivalency to combat emerging and re-emerging infectious diseases. Mol Pharm 9(3):342–354CrossRef
93.
go back to reference Bromfield SM, Posocco P, Fermeglia M, Tolosa J, Herreros-López A, Pricl S, Rodríguez-López J, Smith DK (2014) Shape-persistent and adaptive multivalency: rigid transgeden (TGD) and flexible PAMAM dendrimers for heparin binding. Chem Eur J 20(31):9666–9674CrossRef Bromfield SM, Posocco P, Fermeglia M, Tolosa J, Herreros-López A, Pricl S, Rodríguez-López J, Smith DK (2014) Shape-persistent and adaptive multivalency: rigid transgeden (TGD) and flexible PAMAM dendrimers for heparin binding. Chem Eur J 20(31):9666–9674CrossRef
94.
go back to reference Bhatia S, Camacho LC, Haag R (2016) Pathogen inhibition by multivalent ligand architectures. J Am Chem Soc 138(28):8654–8666CrossRef Bhatia S, Camacho LC, Haag R (2016) Pathogen inhibition by multivalent ligand architectures. J Am Chem Soc 138(28):8654–8666CrossRef
95.
go back to reference Hlavacek WS, Posner RG, Perelson AS (1999) Steric effects on multivalent ligand-receptor binding: exclusion of ligand sites by bound cell surface receptors. Biophys J 76(6):3031–3043CrossRef Hlavacek WS, Posner RG, Perelson AS (1999) Steric effects on multivalent ligand-receptor binding: exclusion of ligand sites by bound cell surface receptors. Biophys J 76(6):3031–3043CrossRef
96.
go back to reference Howard M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V (2014) Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS Nano 8(5):4100–4132CrossRef Howard M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V (2014) Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS Nano 8(5):4100–4132CrossRef
97.
go back to reference Choi SK, Leroueil P, Li M-H, Desai A, Zong H, Van Der Spek AFL, Baker JR Jr (2011) Specificity and negative cooperativity in dendrimer-oxime drug complexation. Macromolecules 44(11):4026–4029CrossRef Choi SK, Leroueil P, Li M-H, Desai A, Zong H, Van Der Spek AFL, Baker JR Jr (2011) Specificity and negative cooperativity in dendrimer-oxime drug complexation. Macromolecules 44(11):4026–4029CrossRef
98.
go back to reference Gomez-Casado A, Dam HH, Yilmaz MD, Florea D, Jonkheijm P, Huskens J (2011) Probing multivalent interactions in a synthetic host-guest complex by dynamic force spectroscopy. J Am Chem Soc 133(28):10849–10857CrossRef Gomez-Casado A, Dam HH, Yilmaz MD, Florea D, Jonkheijm P, Huskens J (2011) Probing multivalent interactions in a synthetic host-guest complex by dynamic force spectroscopy. J Am Chem Soc 133(28):10849–10857CrossRef
99.
go back to reference Roy R (1996) Syntheses and some applications of chemically defined multivalent glycoconjugates. Curr Opin Struct Biol 6(5):692–702CrossRef Roy R (1996) Syntheses and some applications of chemically defined multivalent glycoconjugates. Curr Opin Struct Biol 6(5):692–702CrossRef
100.
go back to reference Mullen DG, Fang M, Desai A, Baker JR Jr, Orr BG, Banaszak Holl MM (2010) A quantitative assessment of nanoparticle-ligand distributions: implications for targeted drug and imaging delivery in dendrimer conjugates. ACS Nano 4(2):657–670CrossRef Mullen DG, Fang M, Desai A, Baker JR Jr, Orr BG, Banaszak Holl MM (2010) A quantitative assessment of nanoparticle-ligand distributions: implications for targeted drug and imaging delivery in dendrimer conjugates. ACS Nano 4(2):657–670CrossRef
101.
go back to reference Teulon J-M, Delcuze Y, Odorico M, S-wW Chen, Parot P, Pellequer J-L (2011) Single and multiple bonds in (strept)avidin-biotin interactions. J Mol Recognit 24(3):490–502CrossRef Teulon J-M, Delcuze Y, Odorico M, S-wW Chen, Parot P, Pellequer J-L (2011) Single and multiple bonds in (strept)avidin-biotin interactions. J Mol Recognit 24(3):490–502CrossRef
Metadata
Title
Riboflavin-Conjugated Multivalent Dendrimer Platform for Cancer-Targeted Drug and Gene Delivery
Authors
Pamela T. Wong
Kumar Sinniah
Seok Ki Choi
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5864-6_7

Premium Partners