Skip to main content
Top

2023 | OriginalPaper | Chapter

Rich Structural Chemistry of Metal Phosphates/Phosphonates for Emerging Applications: V, Ti-containing Materials

Authors : Wei Ni, Ling-Ying Shi

Published in: Metal Phosphates and Phosphonates

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Transition-metal phosphates/phosphonates have demonstrated remarkable performances for their unique physicochemical properties. Compared with transition-metal oxides, phosphate/phosphonate groups in transition-metal phosphates/phosphonates show flexible coordination with diverse orientations, endowing them with an ideal platform for many promising applications. In this chapter, we focus on the rich structural chemistry and design strategies of efficient, high-valent V/Ti-containing transition-metal phosphate/phosphonate materials for emerging applications, with special emphasis on the tuning of transition-metal-center coordination environment, optimization of electronic structures, increase of catalytically active site densities, and design of heterostructures, to address the urgent issues confronted by transition-metal phosphates/phosphonates such as low intrinsic catalytic efficiency and low electronic conductivity. The major challenges, opportunities, and prospective solutions are also discussed for further development of V/Ti-containing transition-metal phosphates/phosphonates-based materials with ultimate practical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shimizu, G.K.H., Vaidhyanathan, R., Taylor, J.M.: Phosphonate and sulfonate metal organic frameworks. Chem. Soc. Rev. 38, 1430–1449 (2009)PubMedCrossRef Shimizu, G.K.H., Vaidhyanathan, R., Taylor, J.M.: Phosphonate and sulfonate metal organic frameworks. Chem. Soc. Rev. 38, 1430–1449 (2009)PubMedCrossRef
2.
go back to reference Bhanja, P., Na, J., Jing, T., Lin, J., Wakihara, T., Bhaumik, A., Yamauchi, Y.: Nanoarchitectured metal phosphates and phosphonates: a new material horizon toward emerging applications. Chem. Mater. 31, 5343–5362 (2019)CrossRef Bhanja, P., Na, J., Jing, T., Lin, J., Wakihara, T., Bhaumik, A., Yamauchi, Y.: Nanoarchitectured metal phosphates and phosphonates: a new material horizon toward emerging applications. Chem. Mater. 31, 5343–5362 (2019)CrossRef
3.
go back to reference Chakraborty, D., Bej, S., Sahoo, S., Chongdar, S., Ghosh, A., Banerjee, P., Bhaumik, A.: Novel nanoporous Ti-phosphonate metal–organic framework for selective sensing of 2,4,6-trinitrophenol and a promising electrode in an energy storage device. ACS Sustain. Chem. Eng. 9, 14224–14237 (2021)CrossRef Chakraborty, D., Bej, S., Sahoo, S., Chongdar, S., Ghosh, A., Banerjee, P., Bhaumik, A.: Novel nanoporous Ti-phosphonate metal–organic framework for selective sensing of 2,4,6-trinitrophenol and a promising electrode in an energy storage device. ACS Sustain. Chem. Eng. 9, 14224–14237 (2021)CrossRef
4.
go back to reference Mei, P., Kim, J., Kumar, N.A., Pramanik, M., Kobayashi, N., Sugahara, Y., Yamauchi, Y.: Phosphorus-based mesoporous materials for energy storage and conversion. Joule 2, 2289–2306 (2018)CrossRef Mei, P., Kim, J., Kumar, N.A., Pramanik, M., Kobayashi, N., Sugahara, Y., Yamauchi, Y.: Phosphorus-based mesoporous materials for energy storage and conversion. Joule 2, 2289–2306 (2018)CrossRef
5.
go back to reference Hayami, R., Gunji, T.: A review of phosphorus(V)-substituted titanium-oxo clusters. J. Sol-Gel Sci. Technol. 100, 205–223 (2021)CrossRef Hayami, R., Gunji, T.: A review of phosphorus(V)-substituted titanium-oxo clusters. J. Sol-Gel Sci. Technol. 100, 205–223 (2021)CrossRef
6.
go back to reference Zhu, Y.-P., Ma, T.-Y., Liu, Y.-L., Ren, T.-Z., Yuan, Z.-Y.: Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorg. Chem. Front. 1, 360–383 (2014)CrossRef Zhu, Y.-P., Ma, T.-Y., Liu, Y.-L., Ren, T.-Z., Yuan, Z.-Y.: Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorg. Chem. Front. 1, 360–383 (2014)CrossRef
7.
go back to reference Zhu, Y.-P., Yuan, Z.-Y., Alshareef, H.N.: New opportunities for functional materials from metal phosphonates. ACS Mater. Lett. 2, 582–594 (2020)CrossRef Zhu, Y.-P., Yuan, Z.-Y., Alshareef, H.N.: New opportunities for functional materials from metal phosphonates. ACS Mater. Lett. 2, 582–594 (2020)CrossRef
8.
go back to reference Clearfield, A., Demadis, K. (eds.): Metal Phosphonate Chemistry: From Synthesis to Applications. Royal Society of Chemistry (2012) Clearfield, A., Demadis, K. (eds.): Metal Phosphonate Chemistry: From Synthesis to Applications. Royal Society of Chemistry (2012)
9.
go back to reference Clearfield, A.: Chapter 1—The early history and growth of metal phosphonate chemistry. In: Clearfield, A., Demadis, K. (eds.) Metal Phosphonate Chemistry: From Synthesis to Applications, pp. 1–44. The Royal Society of Chemistry (2012) Clearfield, A.: Chapter 1—The early history and growth of metal phosphonate chemistry. In: Clearfield, A., Demadis, K. (eds.) Metal Phosphonate Chemistry: From Synthesis to Applications, pp. 1–44. The Royal Society of Chemistry (2012)
10.
go back to reference Jaimez, E., Hix, G.B., Slade, R.C.T.: A phosphate–phosphonate of titanium(IV) prepared from phosphonomethyliminodiacetic acid: characterisation, n-alkylamine intercalation and proton conductivity. Solid State Ionics 97, 195–201 (1997)CrossRef Jaimez, E., Hix, G.B., Slade, R.C.T.: A phosphate–phosphonate of titanium(IV) prepared from phosphonomethyliminodiacetic acid: characterisation, n-alkylamine intercalation and proton conductivity. Solid State Ionics 97, 195–201 (1997)CrossRef
11.
go back to reference Ma, T.-Y., Yuan, Z.-Y.: Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications. Chemsuschem 4, 1407–1419 (2011)PubMedCrossRef Ma, T.-Y., Yuan, Z.-Y.: Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications. Chemsuschem 4, 1407–1419 (2011)PubMedCrossRef
12.
go back to reference Kimura, T.: An opportunity for utilizing earth-abundant metals through the mesostructural design of metal phosphate-based materials. J. Mater. Chem. A 8, 25528–25547 (2020)CrossRef Kimura, T.: An opportunity for utilizing earth-abundant metals through the mesostructural design of metal phosphate-based materials. J. Mater. Chem. A 8, 25528–25547 (2020)CrossRef
13.
go back to reference Shearan, S.J.I., Stock, N., Emmerling, F., Demel, J., Wright, P.A., Demadis, K.D., Vassaki, M., Costantino, F., Vivani, R., Sallard, S., Ruiz Salcedo, I., Cabeza, A., Taddei, M.: New directions in metal phosphonate and phosphinate chemistry. Crystals 9, 270 (2019) Shearan, S.J.I., Stock, N., Emmerling, F., Demel, J., Wright, P.A., Demadis, K.D., Vassaki, M., Costantino, F., Vivani, R., Sallard, S., Ruiz Salcedo, I., Cabeza, A., Taddei, M.: New directions in metal phosphonate and phosphinate chemistry. Crystals 9, 270 (2019)
14.
go back to reference Vasylyev, M., Neumann, R.: Preparation, characterizaton, and catalytic aerobic oxidation by a vanadium phosphonate mesoporous material constructed from a dendritic tetraphosphonate. Chem. Mater. 18, 2781–2783 (2006)CrossRef Vasylyev, M., Neumann, R.: Preparation, characterizaton, and catalytic aerobic oxidation by a vanadium phosphonate mesoporous material constructed from a dendritic tetraphosphonate. Chem. Mater. 18, 2781–2783 (2006)CrossRef
15.
go back to reference Vasylyev, M.V., Wachtel, E.J., Popovitz-Biro, R., Neumann, R.: Titanium phosphonate porous materials constructed from dendritic tetraphosphonates. Chem. Eur. J. 12, 3507–3514 (2006)PubMedCrossRef Vasylyev, M.V., Wachtel, E.J., Popovitz-Biro, R., Neumann, R.: Titanium phosphonate porous materials constructed from dendritic tetraphosphonates. Chem. Eur. J. 12, 3507–3514 (2006)PubMedCrossRef
16.
go back to reference Chen, L., Hu, Z.-P., Ren, J.-T., Wang, Z., Yuan, Z.-Y.: Efficient oxidative desulfurization over highly dispersed molybdenum oxides supported on mesoporous titanium phosphonates. Microporous Mesoporous Mater. 315, 110921 (2021)CrossRef Chen, L., Hu, Z.-P., Ren, J.-T., Wang, Z., Yuan, Z.-Y.: Efficient oxidative desulfurization over highly dispersed molybdenum oxides supported on mesoporous titanium phosphonates. Microporous Mesoporous Mater. 315, 110921 (2021)CrossRef
17.
go back to reference Mutin, P.H., Guerrero, G., Alauzun, J.G.: Sol-gel processing of phosphonate-based organic–inorganic hybrid materials. J. Ceram. Soc. Jpn. 123, 709–713 (2015)CrossRef Mutin, P.H., Guerrero, G., Alauzun, J.G.: Sol-gel processing of phosphonate-based organic–inorganic hybrid materials. J. Ceram. Soc. Jpn. 123, 709–713 (2015)CrossRef
18.
go back to reference Hannus, I., Tóth, T., Méhn, D., Kiricsi, I.: UV–vis diffuse reflectance spectroscopic study of transition-metal (V, Ti) containing catalysts. J. Mol. Struct. 563–564, 279–282 (2001)CrossRef Hannus, I., Tóth, T., Méhn, D., Kiricsi, I.: UV–vis diffuse reflectance spectroscopic study of transition-metal (V, Ti) containing catalysts. J. Mol. Struct. 563–564, 279–282 (2001)CrossRef
19.
go back to reference Mitran, G., Neațu, F., Neațu, Ș, Trandafir, M.M., Florea, M.: VAlPOs as efficient catalysts for glycerol conversion to methanol. Catalysts 10, 728 (2020)CrossRef Mitran, G., Neațu, F., Neațu, Ș, Trandafir, M.M., Florea, M.: VAlPOs as efficient catalysts for glycerol conversion to methanol. Catalysts 10, 728 (2020)CrossRef
20.
go back to reference Cheng, H.Y., Yang, E., Lai, C.J., Chao, K.J., Wei, A.C., Lee, J.F.: Density functional theory calculation and X-ray absorption spectroscopy studies of structure of vanadium-containing aluminophosphate VAPO-5. J. Phys. Chem. B 104, 4195–4203 (2000)CrossRef Cheng, H.Y., Yang, E., Lai, C.J., Chao, K.J., Wei, A.C., Lee, J.F.: Density functional theory calculation and X-ray absorption spectroscopy studies of structure of vanadium-containing aluminophosphate VAPO-5. J. Phys. Chem. B 104, 4195–4203 (2000)CrossRef
21.
go back to reference Chao, K.J., Wu, C.N., Chang, H., Lee, L.J., Hu, S.-F.: Incorporation of vanadium in mesoporous MCM-41 and microporous AFI zeolites. J. Phys. Chem. B 101, 6341–6349 (1997)CrossRef Chao, K.J., Wu, C.N., Chang, H., Lee, L.J., Hu, S.-F.: Incorporation of vanadium in mesoporous MCM-41 and microporous AFI zeolites. J. Phys. Chem. B 101, 6341–6349 (1997)CrossRef
22.
go back to reference Vijayasarathi, N., Daniel, R., Lutz, M., Martin, H., Andreas, P.: Location of vanadium(IV) in VAPO-5 as studied by hyperfine sublevel correlation spectroscopy. Chem. Lett. 34, 1614–1615 (2005)CrossRef Vijayasarathi, N., Daniel, R., Lutz, M., Martin, H., Andreas, P.: Location of vanadium(IV) in VAPO-5 as studied by hyperfine sublevel correlation spectroscopy. Chem. Lett. 34, 1614–1615 (2005)CrossRef
23.
go back to reference Ma, T.-Y., Yuan, Z.-Y.: Functionalized periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. Chem. Commun. 46, 2325–2327 (2010)CrossRef Ma, T.-Y., Yuan, Z.-Y.: Functionalized periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. Chem. Commun. 46, 2325–2327 (2010)CrossRef
24.
go back to reference Wang, Z., Li, C., Domen, K.: Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 48, 2109–2125 (2019)PubMedCrossRef Wang, Z., Li, C., Domen, K.: Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 48, 2109–2125 (2019)PubMedCrossRef
25.
go back to reference Zhu, Y.-P., Yin, J., Abou-Hamad, E., Liu, X., Chen, W., Yao, T., Mohammed, O.F., Alshareef, H.N.: Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv. Mater. 32, 1906368 (2020)CrossRef Zhu, Y.-P., Yin, J., Abou-Hamad, E., Liu, X., Chen, W., Yao, T., Mohammed, O.F., Alshareef, H.N.: Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv. Mater. 32, 1906368 (2020)CrossRef
26.
go back to reference Ni, W., Khan, A.: Chapter 10—Modified metal-organic frameworks as photocatalysts. In: Khan, A., Verpoort, F., Asiri, A.M., Hoque, M.E., Bilgrami, A.L., Azam, M., Naidu, K.C.B. (eds.) Metal-Organic Frameworks for Chemical Reactions, pp. 231–270. Elsevier (2021) Ni, W., Khan, A.: Chapter 10—Modified metal-organic frameworks as photocatalysts. In: Khan, A., Verpoort, F., Asiri, A.M., Hoque, M.E., Bilgrami, A.L., Azam, M., Naidu, K.C.B. (eds.) Metal-Organic Frameworks for Chemical Reactions, pp. 231–270. Elsevier (2021)
27.
go back to reference Li, H., Sun, Y., Yuan, Z.-Y., Zhu, Y.-P., Ma, T.-Y.: Titanium phosphonate based metal–organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57, 3222–3227 (2018)CrossRef Li, H., Sun, Y., Yuan, Z.-Y., Zhu, Y.-P., Ma, T.-Y.: Titanium phosphonate based metal–organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 57, 3222–3227 (2018)CrossRef
28.
go back to reference Ma, T.Y., Qiao, S.Z.: Acid–base bifunctional periodic mesoporous metal phosphonates for synergistically and heterogeneously catalyzing CO2 conversion. ACS Catal. 4, 3847–3855 (2014)CrossRef Ma, T.Y., Qiao, S.Z.: Acid–base bifunctional periodic mesoporous metal phosphonates for synergistically and heterogeneously catalyzing CO2 conversion. ACS Catal. 4, 3847–3855 (2014)CrossRef
29.
go back to reference Müller, J.F.K., Kulicke, K.J., Neuburger, M., Spichty, M.: Carbanions substituted by transition metals: synthesis, structure, and configurational restrictions of a lithium titanium phosphonate. Angew. Chem. Int. Ed. 40, 2890–2893 (2001)CrossRef Müller, J.F.K., Kulicke, K.J., Neuburger, M., Spichty, M.: Carbanions substituted by transition metals: synthesis, structure, and configurational restrictions of a lithium titanium phosphonate. Angew. Chem. Int. Ed. 40, 2890–2893 (2001)CrossRef
30.
go back to reference Yu, J.C., Zhang, L., Zheng, Z., Zhao, J.: Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem. Mater. 15, 2280–2286 (2003)CrossRef Yu, J.C., Zhang, L., Zheng, Z., Zhao, J.: Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem. Mater. 15, 2280–2286 (2003)CrossRef
31.
go back to reference Yu, J., Xu, R.: Rich structure chemistry in the aluminophosphate family. Acc. Chem. Res. 36, 481–490 (2003)PubMedCrossRef Yu, J., Xu, R.: Rich structure chemistry in the aluminophosphate family. Acc. Chem. Res. 36, 481–490 (2003)PubMedCrossRef
32.
go back to reference Yu, J., Li, M., Liu, Z., Feng, Z., Xin, Q., Li, C.: Comparative study of the vanadium species in VAPO-5 and VAPSO-5 molecular sieves. J. Phys. Chem. B 106, 8937–8943 (2002)CrossRef Yu, J., Li, M., Liu, Z., Feng, Z., Xin, Q., Li, C.: Comparative study of the vanadium species in VAPO-5 and VAPSO-5 molecular sieves. J. Phys. Chem. B 106, 8937–8943 (2002)CrossRef
33.
go back to reference Ma, T.-Y., Lin, X.-Z., Zhang, X.-J., Yuan, Z.-Y.: High surface area titanium phosphonate materials with hierarchical porosity for multi-phase adsorption. New J. Chem. 34, 1209–1216 (2010)CrossRef Ma, T.-Y., Lin, X.-Z., Zhang, X.-J., Yuan, Z.-Y.: High surface area titanium phosphonate materials with hierarchical porosity for multi-phase adsorption. New J. Chem. 34, 1209–1216 (2010)CrossRef
34.
go back to reference Ma, T.-Y., Lin, X.-Z., Zhang, X.-J., Yuan, Z.-Y.: Hierarchical mesostructured titanium phosphonates with unusual uniform lines of macropores. Nanoscale 3, 1690–1696 (2011)PubMedCrossRef Ma, T.-Y., Lin, X.-Z., Zhang, X.-J., Yuan, Z.-Y.: Hierarchical mesostructured titanium phosphonates with unusual uniform lines of macropores. Nanoscale 3, 1690–1696 (2011)PubMedCrossRef
35.
go back to reference Bhaumik, A., Inagaki, S.: Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc. 123, 691–696 (2001)PubMedCrossRef Bhaumik, A., Inagaki, S.: Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc. 123, 691–696 (2001)PubMedCrossRef
36.
go back to reference Ma, T.-Y., Lin, X.-Z., Yuan, Z.-Y.: Periodic mesoporous titanium phosphonate hybrid materials. J. Mater. Chem. 20, 7406–7415 (2010)CrossRef Ma, T.-Y., Lin, X.-Z., Yuan, Z.-Y.: Periodic mesoporous titanium phosphonate hybrid materials. J. Mater. Chem. 20, 7406–7415 (2010)CrossRef
37.
go back to reference Ma, T.-Y., Lin, X.-Z., Yuan, Z.-Y.: Cubic mesoporous titanium phosphonates with multifunctionality. Chem. Eur. J. 16, 8487–8494 (2010)PubMedCrossRef Ma, T.-Y., Lin, X.-Z., Yuan, Z.-Y.: Cubic mesoporous titanium phosphonates with multifunctionality. Chem. Eur. J. 16, 8487–8494 (2010)PubMedCrossRef
38.
go back to reference Zhang, W., Koivula, R., Wiikinkoski, E., Xu, J., Hietala, S., Lehto, J., Harjula, R.: Efficient and selective recovery of trace scandium by inorganic titanium phosphate ion-exchangers from leachates of waste bauxite residue. ACS Sustain. Chem. Eng. 5, 3103–3114 (2017)CrossRef Zhang, W., Koivula, R., Wiikinkoski, E., Xu, J., Hietala, S., Lehto, J., Harjula, R.: Efficient and selective recovery of trace scandium by inorganic titanium phosphate ion-exchangers from leachates of waste bauxite residue. ACS Sustain. Chem. Eng. 5, 3103–3114 (2017)CrossRef
39.
go back to reference Ma, T.-Y., Li, H., Tang, A.-N., Yuan, Z.-Y.: Ordered, mesoporous metal phosphonate materials with microporous crystalline walls for selective separation techniques. Small 7, 1827–1837 (2011)PubMedCrossRef Ma, T.-Y., Li, H., Tang, A.-N., Yuan, Z.-Y.: Ordered, mesoporous metal phosphonate materials with microporous crystalline walls for selective separation techniques. Small 7, 1827–1837 (2011)PubMedCrossRef
40.
go back to reference Angelomé, P.C., Soler-Illia, G.J.d.A.A.: Organically modified transition-metal oxide mesoporous thin films and xerogels. Chem. Mater. 17, 322–331 (2005) Angelomé, P.C., Soler-Illia, G.J.d.A.A.: Organically modified transition-metal oxide mesoporous thin films and xerogels. Chem. Mater. 17, 322–331 (2005)
41.
go back to reference Canepa, P., Gonella, G., Pinto, G., Grachev, V., Canepa, M., Cavalleri, O.: Anchoring of aminophosphonates on titanium oxide for biomolecular coupling. J. Phys. Chem. C 123, 16843–16850 (2019)CrossRef Canepa, P., Gonella, G., Pinto, G., Grachev, V., Canepa, M., Cavalleri, O.: Anchoring of aminophosphonates on titanium oxide for biomolecular coupling. J. Phys. Chem. C 123, 16843–16850 (2019)CrossRef
42.
go back to reference Amghouz, Z., García, J.R., Adawy, A.: A review on the synthesis and current and prospective applications of zirconium and titanium phosphates. Eng. 3, 161–174 (2022)CrossRef Amghouz, Z., García, J.R., Adawy, A.: A review on the synthesis and current and prospective applications of zirconium and titanium phosphates. Eng. 3, 161–174 (2022)CrossRef
43.
go back to reference Li, H., Ma, T.-Y., Kong, D.-M., Yuan, Z.-Y.: Mesoporous phosphonate–TiO2 nanoparticles for simultaneous bioresponsive sensing and controlled drug release. Analyst 138, 1084–1090 (2013)PubMedCrossRef Li, H., Ma, T.-Y., Kong, D.-M., Yuan, Z.-Y.: Mesoporous phosphonate–TiO2 nanoparticles for simultaneous bioresponsive sensing and controlled drug release. Analyst 138, 1084–1090 (2013)PubMedCrossRef
44.
go back to reference Lv, X.-W., Weng, C.-C., Zhu, Y.-P., Yuan, Z.-Y.: Nanoporous metal phosphonate hybrid materials as a novel platform for emerging applications: a critical review. Small 17, 2005304 (2021)CrossRef Lv, X.-W., Weng, C.-C., Zhu, Y.-P., Yuan, Z.-Y.: Nanoporous metal phosphonate hybrid materials as a novel platform for emerging applications: a critical review. Small 17, 2005304 (2021)CrossRef
45.
go back to reference Mei, P., Kaneti, Y.V., Pramanik, M., Takei, T., Dag, Ö., Sugahara, Y., Yamauchi, Y.: Two-dimensional mesoporous vanadium phosphate nanosheets through liquid crystal templating method toward supercapacitor application. Nano Energy 52, 336–344 (2018)CrossRef Mei, P., Kaneti, Y.V., Pramanik, M., Takei, T., Dag, Ö., Sugahara, Y., Yamauchi, Y.: Two-dimensional mesoporous vanadium phosphate nanosheets through liquid crystal templating method toward supercapacitor application. Nano Energy 52, 336–344 (2018)CrossRef
46.
go back to reference Liu, Y., Liu, Q., Zhou, X., Liu, X., Li, M., Liu, Z., Ying, A.: Self-supported VO(PO3)2 electrode for 2.8 V symmetric aqueous supercapacitors. Chem. Eng. J. 445, 136726 (2022) Liu, Y., Liu, Q., Zhou, X., Liu, X., Li, M., Liu, Z., Ying, A.: Self-supported VO(PO3)2 electrode for 2.8 V symmetric aqueous supercapacitors. Chem. Eng. J. 445, 136726 (2022)
47.
go back to reference Hu, L., Wu, Z., Lu, C., Ye, F., Liu, Q., Sun, Z.: Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ. Sci. 14, 4095–4106 (2021)CrossRef Hu, L., Wu, Z., Lu, C., Ye, F., Liu, Q., Sun, Z.: Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ. Sci. 14, 4095–4106 (2021)CrossRef
48.
go back to reference Cheng, Q., Zhao, X., Yang, G., Mao, L., Liao, F., Chen, L., He, P., Pan, D., Chen, S.: Recent advances of metal phosphates-based electrodes for high-performance metal ion batteries. Energy Storage Mater. 41, 842–882 (2021)CrossRef Cheng, Q., Zhao, X., Yang, G., Mao, L., Liao, F., Chen, L., He, P., Pan, D., Chen, S.: Recent advances of metal phosphates-based electrodes for high-performance metal ion batteries. Energy Storage Mater. 41, 842–882 (2021)CrossRef
49.
go back to reference Whittingham, M.S., Song, Y., Lutta, S., Zavalij, P.Y., Chernova, N.A.: Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J. Mater. Chem. 15, 3362–3379 (2005)CrossRef Whittingham, M.S., Song, Y., Lutta, S., Zavalij, P.Y., Chernova, N.A.: Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J. Mater. Chem. 15, 3362–3379 (2005)CrossRef
50.
go back to reference Mei, P., Pramanik, M., Lee, J., Ide, Y., Alothman, Z.A., Kim, J.H., Yamauchi, Y.: Highly ordered mesostructured vanadium phosphonate toward electrode materials for lithium-ion batteries. Chem. Eur. J. 23, 4344–4352 (2017)PubMedCrossRef Mei, P., Pramanik, M., Lee, J., Ide, Y., Alothman, Z.A., Kim, J.H., Yamauchi, Y.: Highly ordered mesostructured vanadium phosphonate toward electrode materials for lithium-ion batteries. Chem. Eur. J. 23, 4344–4352 (2017)PubMedCrossRef
51.
go back to reference Boivin, E., Chotard, J.-N., Masquelier, C., Croguennec, L.: Towards reversible high-voltage multi-electron reactions in alkali-ion batteries using vanadium phosphate positive electrode materials. Molecules 26, 1428 (2021)PubMedPubMedCentralCrossRef Boivin, E., Chotard, J.-N., Masquelier, C., Croguennec, L.: Towards reversible high-voltage multi-electron reactions in alkali-ion batteries using vanadium phosphate positive electrode materials. Molecules 26, 1428 (2021)PubMedPubMedCentralCrossRef
52.
go back to reference Chen, G., Huang, Q., Wu, T., Lu, L.: Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—a review. Adv. Funct. Mater. 30, 2001289 (2020)CrossRef Chen, G., Huang, Q., Wu, T., Lu, L.: Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—a review. Adv. Funct. Mater. 30, 2001289 (2020)CrossRef
53.
go back to reference Zhu, X., Li, Z., Jia, X., Dong, W., Wang, G., Wei, F., Lu, Y.: Approaching theoretical capacities in thick lithium vanadium phosphate electrodes at high charge/discharge rates. ACS Sustain. Chem. Eng. 6, 15608–15617 (2018)CrossRef Zhu, X., Li, Z., Jia, X., Dong, W., Wang, G., Wei, F., Lu, Y.: Approaching theoretical capacities in thick lithium vanadium phosphate electrodes at high charge/discharge rates. ACS Sustain. Chem. Eng. 6, 15608–15617 (2018)CrossRef
54.
go back to reference Wu, M., Ni, W., Hu, J., Ma, J.: NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 11, 44 (2019)CrossRef Wu, M., Ni, W., Hu, J., Ma, J.: NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett. 11, 44 (2019)CrossRef
55.
go back to reference Hung, T.-F., Lan, W.-H., Yeh, Y.-W., Chang, W.-S., Yang, C.-C., Lin, J.-C.: Hydrothermal synthesis of sodium titanium phosphate nanoparticles as efficient anode materials for aqueous sodium-ion batteries. ACS Sustain. Chem. Eng. 4, 7074–7079 (2016)CrossRef Hung, T.-F., Lan, W.-H., Yeh, Y.-W., Chang, W.-S., Yang, C.-C., Lin, J.-C.: Hydrothermal synthesis of sodium titanium phosphate nanoparticles as efficient anode materials for aqueous sodium-ion batteries. ACS Sustain. Chem. Eng. 4, 7074–7079 (2016)CrossRef
Metadata
Title
Rich Structural Chemistry of Metal Phosphates/Phosphonates for Emerging Applications: V, Ti-containing Materials
Authors
Wei Ni
Ling-Ying Shi
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-27062-8_3