Skip to main content
Top

2017 | OriginalPaper | Chapter

11. Rise Velocity of a Taylor Bubble in a Round Tube

Author : Yuri B. Zudin

Published in: Theory of Periodic Conjugate Heat Transfer

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present chapter is devoted the known classical problem of the two-phase flows dealing with the rise of the Taylor bubble in a pipe. In Introduction, we mentioned a series of examples of the physical processes demonstrating periodic hydrodynamic structures. One of them is the two-phase flow pattern usually called “slug flow.” This flow is characterized by the periodic structures in the form of the large gas bubbles (Taylor bubbles) rising in a vertical round pipe under the influence of the gravitational force [1, 2].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
One should point out that the parameter h should not be confused, of course, with the heat transfer coefficient.
 
Literature
1.
go back to reference Funada T, Joseph DD, Maehara T, Yamashita S (2004) Ellipsoidal model of the rise of a Taylor bubble in a round tube. Int J Multiphase Flow 31:473–491CrossRefMATH Funada T, Joseph DD, Maehara T, Yamashita S (2004) Ellipsoidal model of the rise of a Taylor bubble in a round tube. Int J Multiphase Flow 31:473–491CrossRefMATH
2.
go back to reference Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press
4.
go back to reference Davies RM, Taylor GI (1950) The mechanics of large bubbles rising through liquids in tubes. Proc Royal Soc London A 200:375–390CrossRef Davies RM, Taylor GI (1950) The mechanics of large bubbles rising through liquids in tubes. Proc Royal Soc London A 200:375–390CrossRef
5.
go back to reference Abramowitz M, Stegun IA (1964) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Natl Bur Stan, WashingtonMATH Abramowitz M, Stegun IA (1964) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Natl Bur Stan, WashingtonMATH
6.
go back to reference Birkhoff G, Zarantonello E (1957) Jets, Wakes and cavities. Academic Press, New YorkMATH Birkhoff G, Zarantonello E (1957) Jets, Wakes and cavities. Academic Press, New YorkMATH
7.
go back to reference Labuntsov DA, Zudin YB (1976) About emerging of a Taylor bubble in a round pipe. Works of Moscow Power Engineering Institute. Issue 310: 107—115 (in Russian) Labuntsov DA, Zudin YB (1976) About emerging of a Taylor bubble in a round pipe. Works of Moscow Power Engineering Institute. Issue 310: 107—115 (in Russian)
8.
go back to reference Stein EM, Shakarchi R (2003) Fourier analysis: an introduction. Princeton University Press, PrincetonMATH Stein EM, Shakarchi R (2003) Fourier analysis: an introduction. Princeton University Press, PrincetonMATH
9.
go back to reference Bellomo N, Lods B, Revelli R, Ridolfi L (2007) Generalized collocation methods—Solution to nonlinear problems. Birkhäuser, BostonMATH Bellomo N, Lods B, Revelli R, Ridolfi L (2007) Generalized collocation methods—Solution to nonlinear problems. Birkhäuser, BostonMATH
10.
12.
go back to reference Daripa PA (2000) Computational study of rising plane taylor bubbles. J Comput Phys 157(1):120–142CrossRefMATH Daripa PA (2000) Computational study of rising plane taylor bubbles. J Comput Phys 157(1):120–142CrossRefMATH
13.
go back to reference Driscoll TA, Trefethen LN (2002) Schwarz-christoffel mapping. Cambridge University Press Driscoll TA, Trefethen LN (2002) Schwarz-christoffel mapping. Cambridge University Press
14.
go back to reference Muskhelishvili NI (1968) Singular integral equations. Nauka Publishers, Moscow (in Russian) Muskhelishvili NI (1968) Singular integral equations. Nauka Publishers, Moscow (in Russian)
15.
go back to reference Zudin YB (1992) Analog of the Rayleigh equation for the problem of bubble dynamics in a tube. J Eng Phys Thermophys 63:672–675CrossRef Zudin YB (1992) Analog of the Rayleigh equation for the problem of bubble dynamics in a tube. J Eng Phys Thermophys 63:672–675CrossRef
16.
go back to reference Zudin YB (2013) The velocity of gas bubble rise in a tube. Thermophys Aeromech 20(1):29–38CrossRef Zudin YB (2013) The velocity of gas bubble rise in a tube. Thermophys Aeromech 20(1):29–38CrossRef
17.
go back to reference Zudin YB (2013) Analytical solution of the problem of the rise of a Taylor bubble. Phys Fluids 5(5):Paper 053302-053302-16 Zudin YB (2013) Analytical solution of the problem of the rise of a Taylor bubble. Phys Fluids 5(5):Paper 053302-053302-16
Metadata
Title
Rise Velocity of a Taylor Bubble in a Round Tube
Author
Yuri B. Zudin
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53445-8_11

Premium Partners