Skip to main content
Top

2022 | OriginalPaper | Chapter

2. Risk Modeling and Analysis

Authors : Tim Kieras, Junaid Farooq, Quanyan Zhu

Published in: IoT Supply Chain Security Risk Analysis and Mitigation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Securing the supply chain of information and communications technology (ICT) has recently emerged as a critical concern for national security and integrity. With the proliferation of Internet of Things (IoT) devices and their increasing role in controlling real world infrastructure, there is a need to analyze risks in networked systems beyond established security analyses. Existing methods in literature typically leverage attack and fault trees to analyze malicious activity and its impact. In this chapter, we develop a security risk assessment framework borrowing from system reliability theory to incorporate the supply chain. We also analyze the impact of grouping within suppliers that may pose hidden risks to the systems from malicious supply chain actors. The results show that the proposed analysis is able to reveal hidden threats posed to the IoT ecosystem from potential supplier collusion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Hierarchical decomposition refers to a process that takes a component in a system and considers it as a system in itself, returning subsystems and additional components.
 
2
In other words, given two dependencies a, b ∈ D, there may be some node x such that x ∈ Da and x ∈ Db. In such a case it would be invalid to compute (D) simply from the suppliers of a and b, denoted by sa and sb respectively, because sa and sb are not independent.
 
3
The precise legal relationships that may constitute a supplier group are left unspecified here, but may include ownership, partnership, or membership in joint ventures or cartels whether legally recognized or not.
 
Literature
1.
go back to reference C.K. Wu, K.F. Tsang, Y. Liu, H. Zhu, Y. Wei, H. Wang, T.T. Yu, Supply chain of things: A connected solution to enhance supply chain productivity. IEEE Communications Magazine 57(8), 78–83 (2019)CrossRef C.K. Wu, K.F. Tsang, Y. Liu, H. Zhu, Y. Wei, H. Wang, T.T. Yu, Supply chain of things: A connected solution to enhance supply chain productivity. IEEE Communications Magazine 57(8), 78–83 (2019)CrossRef
2.
go back to reference C. Folk, D.C. Hurley, W.K. Kaplow, J.F.X. Payne, The security implications of the Internet of things, AFCEA International Cyber Committee, Gaithersburg, MD, Tech. Rep. (2015) C. Folk, D.C. Hurley, W.K. Kaplow, J.F.X. Payne, The security implications of the Internet of things, AFCEA International Cyber Committee, Gaithersburg, MD, Tech. Rep. (2015)
3.
go back to reference A. Levite, ICT supply chain integrity: Principles for governmental and corporate policies (2019) A. Levite, ICT supply chain integrity: Principles for governmental and corporate policies (2019)
4.
go back to reference C.S. Tang, Perspectives in supply chain risk management. Int. J. Prod. Econ. 103(2), 451–488 (2006)CrossRef C.S. Tang, Perspectives in supply chain risk management. Int. J. Prod. Econ. 103(2), 451–488 (2006)CrossRef
5.
go back to reference T. Omitola, G. Wills, Towards mapping the security challenges of the Internet of things (IoT) supply chain. Procedia Comput. Sci. 126, 441–450 (2018)CrossRef T. Omitola, G. Wills, Towards mapping the security challenges of the Internet of things (IoT) supply chain. Procedia Comput. Sci. 126, 441–450 (2018)CrossRef
6.
go back to reference R.E. Hiromoto, M. Haney, A. Vakanski, A secure architecture for IoT with supply chain risk management, in 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS 2017), vol. 1 (2017), pp. 431–435 R.E. Hiromoto, M. Haney, A. Vakanski, A secure architecture for IoT with supply chain risk management, in 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS 2017), vol. 1 (2017), pp. 431–435
7.
go back to reference C. Nissen, J. Gronager, R. Metzger, H. Rishikof, Deliver uncompromised: A strategy for supply chain security and resilience in response to the changing character of war, Mitre Corporation, Tech. Rep. (2018) C. Nissen, J. Gronager, R. Metzger, H. Rishikof, Deliver uncompromised: A strategy for supply chain security and resilience in response to the changing character of war, Mitre Corporation, Tech. Rep. (2018)
8.
go back to reference J. Boyens, C. Paulsen, R. Moorthy, N. Bartol, Supply chain risk management practices for federal information systems and organizations, National Institute of Standards and Technology, Gaithersburg, MD, Tech. Rep. (2015) J. Boyens, C. Paulsen, R. Moorthy, N. Bartol, Supply chain risk management practices for federal information systems and organizations, National Institute of Standards and Technology, Gaithersburg, MD, Tech. Rep. (2015)
9.
go back to reference K. Boeckl, M. Fagan, W. Fisher, N. Lefkovitz, K.N. Megas, E. Nadeau, B. Piccarreta, D.G. O’Rourke, K. Scarfone, Considerations for managing Internet of things (IoT) cybersecurity and privacy risks, National Institute of Standards and Technology, Gaithersburg, MD, Tech. Rep. (2019) K. Boeckl, M. Fagan, W. Fisher, N. Lefkovitz, K.N. Megas, E. Nadeau, B. Piccarreta, D.G. O’Rourke, K. Scarfone, Considerations for managing Internet of things (IoT) cybersecurity and privacy risks, National Institute of Standards and Technology, Gaithersburg, MD, Tech. Rep. (2019)
11.
go back to reference B. Kordy, L. Piètre-Cambacédès, P. Schweitzer, DAG-based attack and defense modeling: Don’t miss the forest for the attack trees. Comput. Sci. Rev. 13, 1–38 (2014)CrossRef B. Kordy, L. Piètre-Cambacédès, P. Schweitzer, DAG-based attack and defense modeling: Don’t miss the forest for the attack trees. Comput. Sci. Rev. 13, 1–38 (2014)CrossRef
12.
go back to reference W. Xiong, R. Lagerström, Threat modeling–a systematic literature review. Comput. Secur. 84, 53 (2019)CrossRef W. Xiong, R. Lagerström, Threat modeling–a systematic literature review. Comput. Secur. 84, 53 (2019)CrossRef
13.
go back to reference R. Zimmerman, Q. Zhu, F. de Leon, Z. Guo, Conceptual modeling framework to integrate resilient and interdependent infrastructure in extreme weather. J. Infrastructure Syst. 23(4), 04017034 (2017) R. Zimmerman, Q. Zhu, F. de Leon, Z. Guo, Conceptual modeling framework to integrate resilient and interdependent infrastructure in extreme weather. J. Infrastructure Syst. 23(4), 04017034 (2017)
14.
go back to reference R. Zimmerman, Q. Zhu, C. Dimitri, Promoting resilience for food, energy, and water interdependencies. J. Environ. Stud. Sci. 6(1), 50–61 (2016)CrossRef R. Zimmerman, Q. Zhu, C. Dimitri, Promoting resilience for food, energy, and water interdependencies. J. Environ. Stud. Sci. 6(1), 50–61 (2016)CrossRef
15.
go back to reference R. Zimmerman, Q. Zhu, C. Dimitri, A network framework for dynamic models of urban food, energy and water systems (fews). Environ. Prog. Sustain. Energy 37(1), 122–131 (2018)CrossRef R. Zimmerman, Q. Zhu, C. Dimitri, A network framework for dynamic models of urban food, energy and water systems (fews). Environ. Prog. Sustain. Energy 37(1), 122–131 (2018)CrossRef
16.
go back to reference L. Huang, J. Chen, Q. Zhu, A large-scale Markov game approach to dynamic protection of interdependent infrastructure networks, in International Conference on Decision and Game Theory for Security (Springer, 2017), pp. 357–376 L. Huang, J. Chen, Q. Zhu, A large-scale Markov game approach to dynamic protection of interdependent infrastructure networks, in International Conference on Decision and Game Theory for Security (Springer, 2017), pp. 357–376
17.
go back to reference L. Huang, J. Chen, Q. Zhu, Distributed and optimal resilient planning of large-scale interdependent critical infrastructures, in 2018 Winter Simulation Conference (WSC) (IEEE, 2018), pp. 1096–1107 L. Huang, J. Chen, Q. Zhu, Distributed and optimal resilient planning of large-scale interdependent critical infrastructures, in 2018 Winter Simulation Conference (WSC) (IEEE, 2018), pp. 1096–1107
18.
go back to reference L. Huang, J. Chen, Q. Zhu, A factored MDP approach to optimal mechanism design for resilient large-scale interdependent critical infrastructures, in 2017 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES) (IEEE, 2017), pp. 1–6 L. Huang, J. Chen, Q. Zhu, A factored MDP approach to optimal mechanism design for resilient large-scale interdependent critical infrastructures, in 2017 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES) (IEEE, 2017), pp. 1–6
19.
go back to reference B. Schneier, Attack trees: A formal, methodical way of describing the security of systems, based on varying attacks. Dr. Dobb’s J. 12, 21 (1999) B. Schneier, Attack trees: A formal, methodical way of describing the security of systems, based on varying attacks. Dr. Dobb’s J. 12, 21 (1999)
20.
go back to reference E.G. Amoroso, Fundamentals of Computer Security Technology (PTR Prentice Hall, Englewood Cliffs, 1994) E.G. Amoroso, Fundamentals of Computer Security Technology (PTR Prentice Hall, Englewood Cliffs, 1994)
21.
go back to reference A. Roy, D.S. Kim, and K.S. Trivedi, Attack countermeasure trees (ACT): towards unifying the constructs of attack and defense trees. Secur. Commun. Netw. 5(8), 929–943 (2012)CrossRef A. Roy, D.S. Kim, and K.S. Trivedi, Attack countermeasure trees (ACT): towards unifying the constructs of attack and defense trees. Secur. Commun. Netw. 5(8), 929–943 (2012)CrossRef
22.
go back to reference J. Homer, S. Zhang, X. Ou, D. Schmidt, Y. Du, S.R. Rajagopalan, A. Singhal, Aggregating vulnerability metrics in enterprise networks using attack graphs. J. Comput. Secur. 21(4), 561–597 (2013)CrossRef J. Homer, S. Zhang, X. Ou, D. Schmidt, Y. Du, S.R. Rajagopalan, A. Singhal, Aggregating vulnerability metrics in enterprise networks using attack graphs. J. Comput. Secur. 21(4), 561–597 (2013)CrossRef
23.
go back to reference L. Wang, T. Islam, T. Long, A. Singhal, S. Jajodia, An attack graph-based probabilistic security metric, in IFIP Annual Conference on Data and Applications Security and Privacy (Springer, 2008), pp. 283–296 L. Wang, T. Islam, T. Long, A. Singhal, S. Jajodia, An attack graph-based probabilistic security metric, in IFIP Annual Conference on Data and Applications Security and Privacy (Springer, 2008), pp. 283–296
24.
go back to reference M. Gribaudo, M. Iacono, S. Marrone, Exploiting bayesian networks for the analysis of combined attack trees. Electron. Notes Theoret. Comput. Sci. 310, 91–111 (2015)CrossRef M. Gribaudo, M. Iacono, S. Marrone, Exploiting bayesian networks for the analysis of combined attack trees. Electron. Notes Theoret. Comput. Sci. 310, 91–111 (2015)CrossRef
25.
go back to reference N. Poolsappasit, R. Dewri, I. Ray, Dynamic security risk management using Bayesian attack graphs. IEEE Trans. Dependable Secure Comput. 9(1), 61–74 (2011)CrossRef N. Poolsappasit, R. Dewri, I. Ray, Dynamic security risk management using Bayesian attack graphs. IEEE Trans. Dependable Secure Comput. 9(1), 61–74 (2011)CrossRef
26.
go back to reference O. Sheyner, J. Haines, S. Jha, R. Lippmann, J.M. Wing, Automated generation and analysis of attack graphs, in Proceedings IEEE Symposium on Security and Privacy (2002), pp. 273–284 O. Sheyner, J. Haines, S. Jha, R. Lippmann, J.M. Wing, Automated generation and analysis of attack graphs, in Proceedings IEEE Symposium on Security and Privacy (2002), pp. 273–284
27.
go back to reference X. Ou, W.F. Boyer, M.A. McQueen, A scalable approach to attack graph generation, in Proceedings of the 13th ACM Conference on Computer and Communications Security (2006), pp. 336–345 X. Ou, W.F. Boyer, M.A. McQueen, A scalable approach to attack graph generation, in Proceedings of the 13th ACM Conference on Computer and Communications Security (2006), pp. 336–345
28.
go back to reference Z. Qian, J. Fu, Q. Zhu, A receding-horizon MDP approach for performance evaluation of moving target defense in networks, in 2020 IEEE Conference on Control Technology and Applications (CCTA) (IEEE, 2020), pp. 1–7 Z. Qian, J. Fu, Q. Zhu, A receding-horizon MDP approach for performance evaluation of moving target defense in networks, in 2020 IEEE Conference on Control Technology and Applications (CCTA) (IEEE, 2020), pp. 1–7
29.
go back to reference L. Huang, Q. Zhu, Farsighted risk mitigation of lateral movement using dynamic cognitive honeypots, in International Conference on Decision and Game Theory for Security (Springer, 2020), pp. 125–146 L. Huang, Q. Zhu, Farsighted risk mitigation of lateral movement using dynamic cognitive honeypots, in International Conference on Decision and Game Theory for Security (Springer, 2020), pp. 125–146
30.
go back to reference S. Mauw, M. Oostdijk, Foundations of attack trees, in International Conference on Information Security and Cryptology (Springer, 2005), pp. 186–198 S. Mauw, M. Oostdijk, Foundations of attack trees, in International Conference on Information Security and Cryptology (Springer, 2005), pp. 186–198
31.
go back to reference S. Jha, O. Sheyner, J. Wing, Two formal analyses of attack graphs, in Proceedings 15th IEEE Computer Security Foundations Workshop. CSFW-15 (2002), pp. 49–63 S. Jha, O. Sheyner, J. Wing, Two formal analyses of attack graphs, in Proceedings 15th IEEE Computer Security Foundations Workshop. CSFW-15 (2002), pp. 49–63
32.
go back to reference M. Rausand, A. Høyland, System Reliability Theory: Models, Statistical Methods, and Applications, vol. 396 (Wiley, 2003) M. Rausand, A. Høyland, System Reliability Theory: Models, Statistical Methods, and Applications, vol. 396 (Wiley, 2003)
33.
go back to reference S. Contini, V. Matuzas, Analysis of large fault trees based on functional decomposition. Reliab. Eng. Syst. Saf. 96(3), 383–390 (2011)CrossRef S. Contini, V. Matuzas, Analysis of large fault trees based on functional decomposition. Reliab. Eng. Syst. Saf. 96(3), 383–390 (2011)CrossRef
34.
go back to reference F. Baiardi, C. Telmon, D. Sgandurra, Hierarchical, model-based risk management of critical infrastructures. Reliab. Eng. Syst. Saf. 94(9), 1403–1415 (2009)CrossRef F. Baiardi, C. Telmon, D. Sgandurra, Hierarchical, model-based risk management of critical infrastructures. Reliab. Eng. Syst. Saf. 94(9), 1403–1415 (2009)CrossRef
35.
go back to reference D.W. Coit, E. Zio, The evolution of system reliability optimization, Reliab. Eng. Syst. Saf. 192, 106259 (2018)CrossRef D.W. Coit, E. Zio, The evolution of system reliability optimization, Reliab. Eng. Syst. Saf. 192, 106259 (2018)CrossRef
36.
go back to reference M. Todinov, Methods for analysis of complex reliability networks, in Risk-Based Reliability Analysis and Generic Principles for Risk Reduction (Elsevier, 2007), pp. 31–58 M. Todinov, Methods for analysis of complex reliability networks, in Risk-Based Reliability Analysis and Generic Principles for Risk Reduction (Elsevier, 2007), pp. 31–58
37.
go back to reference N. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety (MIT Press, 2011) N. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety (MIT Press, 2011)
39.
go back to reference NIST SP 800–30: Guide for conducting risk assessments, National Institute of Standards and Technology, Gaithersburg, MD, Tech. Rep. (2012) NIST SP 800–30: Guide for conducting risk assessments, National Institute of Standards and Technology, Gaithersburg, MD, Tech. Rep. (2012)
40.
go back to reference J. Fussell, E. Henry, N. Marshall, MOCUS: A computer program to obtain minimal sets from fault trees, Aerojet Nuclear Co., Idaho Falls, Idaho (USA), Tech. Rep. (1974) J. Fussell, E. Henry, N. Marshall, MOCUS: A computer program to obtain minimal sets from fault trees, Aerojet Nuclear Co., Idaho Falls, Idaho (USA), Tech. Rep. (1974)
41.
go back to reference W.S. Lee, D.L. Grosh, F.A. Tillman, C.H. Lie, Fault tree analysis, methods, and applications: A review. IEEE Trans. Reliab. 34(3), 194–203 (1985)CrossRef W.S. Lee, D.L. Grosh, F.A. Tillman, C.H. Lie, Fault tree analysis, methods, and applications: A review. IEEE Trans. Reliab. 34(3), 194–203 (1985)CrossRef
42.
go back to reference A. Rauzy, Toward an efficient implementation of the MOCUS algorithm. IEEE Trans. Reliab. 52(2), 175–180 (2003)CrossRef A. Rauzy, Toward an efficient implementation of the MOCUS algorithm. IEEE Trans. Reliab. 52(2), 175–180 (2003)CrossRef
Metadata
Title
Risk Modeling and Analysis
Authors
Tim Kieras
Junaid Farooq
Quanyan Zhu
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-031-08480-5_2

Premium Partner