Skip to main content
Top
Published in: Wireless Personal Communications 4/2023

04-10-2023

Robotics in Medical Domain: The Future of Surgery, Healthcare and Imaging

Authors: Anisha Halder Roy, Sanchita Ghosh, Bharat Gupta

Published in: Wireless Personal Communications | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Robotics is a popular branch of Machine Learning that has grown the interest of researchers for many years. Machine learning is used for developing various robotic systems which find their applications in different sectors specially in medical domain. This paper shows how robotics have evolved over the years and how robots are helping doctors as a medical assistant in their everyday work like surgeries, medical imaging, healthcare, manufacturing Prosthetics and patients aids, rehabilitation etc. Even major surgeries like Eye Surgery, Heart Surgery, Soft Surgery Operations, Abdominal Surgeries, and Orthopaedics etc. can be done by medical robots to make life easier for both doctors and patients. The main reasons of increasing robotic helps in healthcare sector are (a) robots are tireless, (b) they don’t take stress, (c) their hand never shakes, (d) can do repetitive work effortlessly, (e) can perform precise surgeries. Here, we have reviewed few of robotics application in medical field and discussed all the merits, demerits and future aspects in this regards.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
6.
go back to reference Miura, K., Kadone, H., Koda, M., Abe, T., Endo, H., Murakami, H., Doita, M., Kumagai, H., Nagashima, K., Fujii, K., Noguchi, H., Funayama, T., Kawamoto, H., Sankai, Y., & Yamazaki, M. (2018). The hybrid assisted limb (HAL) for Care Support, a motion assisting robot providing exoskeletal lumbar support, can potentially reduce lumbar load in repetitive snow-shoveling movements. Journal of Clinical Neuroscience, 49, 83–86. https://doi.org/10.1016/j.jocn.2017.11.020CrossRef Miura, K., Kadone, H., Koda, M., Abe, T., Endo, H., Murakami, H., Doita, M., Kumagai, H., Nagashima, K., Fujii, K., Noguchi, H., Funayama, T., Kawamoto, H., Sankai, Y., & Yamazaki, M. (2018). The hybrid assisted limb (HAL) for Care Support, a motion assisting robot providing exoskeletal lumbar support, can potentially reduce lumbar load in repetitive snow-shoveling movements. Journal of Clinical Neuroscience, 49, 83–86. https://​doi.​org/​10.​1016/​j.​jocn.​2017.​11.​020CrossRef
11.
go back to reference Coleman-Wood, K., Lathan, C., & Kaufman, K. (2009). Development of an interactive upper extremity gestural robotic feedback system: From bench to reality. In Conference proceedings: ... Annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society. Conference (pp. 5973–5976). https://doi.org/10.1109/IEMBS.2009.5333523. Coleman-Wood, K., Lathan, C., & Kaufman, K. (2009). Development of an interactive upper extremity gestural robotic feedback system: From bench to reality. In Conference proceedings: ... Annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society. Conference (pp. 5973–5976). https://​doi.​org/​10.​1109/​IEMBS.​2009.​5333523.
14.
go back to reference Guru, K. A., Esfahani, E. T., Raza, S. J., Bhat, R., Wang, K., Hammond, Y., Wilding, G., Peabody, J. O., & Chowriappa, A. J. (2015). Cognitive skills assessment during robotic-assisted surgery: Separating the wheat from the chaff. BJU International, 115(1), 166–174. https://doi.org/10.1111/bju.12657CrossRef Guru, K. A., Esfahani, E. T., Raza, S. J., Bhat, R., Wang, K., Hammond, Y., Wilding, G., Peabody, J. O., & Chowriappa, A. J. (2015). Cognitive skills assessment during robotic-assisted surgery: Separating the wheat from the chaff. BJU International, 115(1), 166–174. https://​doi.​org/​10.​1111/​bju.​12657CrossRef
16.
go back to reference Habuza, T., Navaz, A. N., Hashim, F., Alnajjar, F., Zaki, N., Serhani, M. A., & Statsenko, Y. (2021). AI applications in robotics, diagnostic image analysis and precision medicine: Current limitations, future trends, guidelines on CAD systems for medicine. Informatics in Medicine Unlocked. https://doi.org/10.1016/j.imu.2021.100596CrossRef Habuza, T., Navaz, A. N., Hashim, F., Alnajjar, F., Zaki, N., Serhani, M. A., & Statsenko, Y. (2021). AI applications in robotics, diagnostic image analysis and precision medicine: Current limitations, future trends, guidelines on CAD systems for medicine. Informatics in Medicine Unlocked. https://​doi.​org/​10.​1016/​j.​imu.​2021.​100596CrossRef
18.
go back to reference Raabe, D., Alemzadeh, K., Harrison, A. J. L., & Ireland, A. J. (2009). The chewing robot: A new biologically-inspired way to evaluate dental restorative materials. In 2009 Annual international conference of the IEEE engineering in medicine and biology society (pp. 6050–6053). https://doi.org/10.1109/IEMBS.2009.5332590 Raabe, D., Alemzadeh, K., Harrison, A. J. L., & Ireland, A. J. (2009). The chewing robot: A new biologically-inspired way to evaluate dental restorative materials. In 2009 Annual international conference of the IEEE engineering in medicine and biology society (pp. 6050–6053). https://​doi.​org/​10.​1109/​IEMBS.​2009.​5332590
19.
go back to reference Carvalho, A., Brito, P., Santos, J., Caramelo, F. J., Veiga, G., Vasconcelos, B., et al. (2011). Evaluation of two dental impression materials using a robot arm. Bulletin du GIRSO, 50, 36–37. Carvalho, A., Brito, P., Santos, J., Caramelo, F. J., Veiga, G., Vasconcelos, B., et al. (2011). Evaluation of two dental impression materials using a robot arm. Bulletin du GIRSO, 50, 36–37.
21.
go back to reference Zhang, Y. D., Jiang, J. G., Liang, T., & Hu, W. P. (2011). Kinematics modeling and experimentation of the multi-manipulator tooth-arrangement robot for full denture manufacturing. Journal of Medical Systems, 35, 1421–1429.CrossRef Zhang, Y. D., Jiang, J. G., Liang, T., & Hu, W. P. (2011). Kinematics modeling and experimentation of the multi-manipulator tooth-arrangement robot for full denture manufacturing. Journal of Medical Systems, 35, 1421–1429.CrossRef
23.
go back to reference Hamidah, A., Adiono, T., Syafalni, I., Andriana, M., Kurnia, M., Ratunanda, S. (2019). Review on machine learning applications in assisted treadmill for stroke rehabilitation. In 2019 International symposium on electronics and smart devices (ISESD) (pp. 1–5). https://doi.org/10.1109/ISESD.2019.8909416 Hamidah, A., Adiono, T., Syafalni, I., Andriana, M., Kurnia, M., Ratunanda, S. (2019). Review on machine learning applications in assisted treadmill for stroke rehabilitation. In 2019 International symposium on electronics and smart devices (ISESD) (pp. 1–5). https://​doi.​org/​10.​1109/​ISESD.​2019.​8909416
24.
go back to reference Jamin, P., Duret, C., Hutin, E., Bayle, N., Koeppel, T., Gracies, J.-M., & Pila, O. (2022). Using robot-based variables during upper limb robot-assisted training in subacute stroke patients to quantify treatment dose. Sensors, 22(8), 2989. https://doi.org/10.3390/s22082989CrossRef Jamin, P., Duret, C., Hutin, E., Bayle, N., Koeppel, T., Gracies, J.-M., & Pila, O. (2022). Using robot-based variables during upper limb robot-assisted training in subacute stroke patients to quantify treatment dose. Sensors, 22(8), 2989. https://​doi.​org/​10.​3390/​s22082989CrossRef
26.
go back to reference Liu, Z., Liu, Q., Xu, W., Wang, L., & Zhou, Z. (2020). Robot learning towards smart robotic manufacturing: A review. Robotics and Computer-Integrated Manufacturing, 77, 102360.CrossRef Liu, Z., Liu, Q., Xu, W., Wang, L., & Zhou, Z. (2020). Robot learning towards smart robotic manufacturing: A review. Robotics and Computer-Integrated Manufacturing, 77, 102360.CrossRef
27.
go back to reference Shoushtari, A. L., Dario, P., & Mazzoleni, S. (2016). A review on the evolvement trend of robotic interaction control. Industrial Robot: An International Journal, 43(5), 535.CrossRef Shoushtari, A. L., Dario, P., & Mazzoleni, S. (2016). A review on the evolvement trend of robotic interaction control. Industrial Robot: An International Journal, 43(5), 535.CrossRef
29.
go back to reference Kong, K., & Tomizuka, M. (2009). Control of exoskeletons inspired by fictitious gain in human model. IEEE/ASME Transactions on Mechatronics, 14(6), 689–698.CrossRef Kong, K., & Tomizuka, M. (2009). Control of exoskeletons inspired by fictitious gain in human model. IEEE/ASME Transactions on Mechatronics, 14(6), 689–698.CrossRef
30.
go back to reference Atashzar, S. F., Shahbazi, M., Tavakoli, M., & Patel, R. V. (2017). A grasp-based passivity signature for haptics-enabled human–robot interaction: Application to design of a new safety mechanism for robotic rehabilitation. The International Journal of Robotics Research, 36(5–7), 778.CrossRef Atashzar, S. F., Shahbazi, M., Tavakoli, M., & Patel, R. V. (2017). A grasp-based passivity signature for haptics-enabled human–robot interaction: Application to design of a new safety mechanism for robotic rehabilitation. The International Journal of Robotics Research, 36(5–7), 778.CrossRef
48.
go back to reference Spin-Neto, R., Mudrak, J., Matzen, L. H., Christensen, J., Gotfredsen, E., & Wenzel, A. (2013) Cone beam CT image artefacts related to head motion simulated by a robot skull: Visual characteristics and impact on image quality. Spin-Neto, R., Mudrak, J., Matzen, L. H., Christensen, J., Gotfredsen, E., & Wenzel, A. (2013) Cone beam CT image artefacts related to head motion simulated by a robot skull: Visual characteristics and impact on image quality.
49.
go back to reference Burdea, G. C., Dunn, S. M., Elmendorf, C. H., & Mallik, M. (1991). Real-time sensing of tooth position for dental digital subtraction radiography. IEEE Transactions on Biomedical Engineering, 38, 366–378.CrossRef Burdea, G. C., Dunn, S. M., Elmendorf, C. H., & Mallik, M. (1991). Real-time sensing of tooth position for dental digital subtraction radiography. IEEE Transactions on Biomedical Engineering, 38, 366–378.CrossRef
50.
go back to reference Ebert, L. C., Ptacek, W., Naether, S., Fürst, M., Ross, S., Buck, U., Weber, S., & Thali, M. (2010). Virtobot—A multi-functional robotic system for 3D surface scanning and automatic post mortem biopsy. The International Journal of Medical Robotics Computer Assisted Surgery: MRCAS, 6, 18–27.CrossRef Ebert, L. C., Ptacek, W., Naether, S., Fürst, M., Ross, S., Buck, U., Weber, S., & Thali, M. (2010). Virtobot—A multi-functional robotic system for 3D surface scanning and automatic post mortem biopsy. The International Journal of Medical Robotics Computer Assisted Surgery: MRCAS, 6, 18–27.CrossRef
52.
go back to reference Frutiger, D. R., Vollmers, K., Kratochvil, B. E., & Nelson, B. J. (2010). Small, fast, and under control: wireless resonant magnetic micro-agents. Int. J. Rob. Res., 29, 613.CrossRef Frutiger, D. R., Vollmers, K., Kratochvil, B. E., & Nelson, B. J. (2010). Small, fast, and under control: wireless resonant magnetic micro-agents. Int. J. Rob. Res., 29, 613.CrossRef
53.
54.
go back to reference Kummer, M. P., Abbott, J. J., Kratochvil, B. E., Borer, R., Sengul, A., & Nelson, B. J. (2010). OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Transactions on Robotics, 26, 1006.CrossRef Kummer, M. P., Abbott, J. J., Kratochvil, B. E., Borer, R., Sengul, A., & Nelson, B. J. (2010). OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Transactions on Robotics, 26, 1006.CrossRef
55.
go back to reference Son, D., Dogan, M. D., & Sitti, M. (2017) In IEEE International Conference on Robotics and Automation (p. 1132). IEEE Son, D., Dogan, M. D., & Sitti, M. (2017) In IEEE International Conference on Robotics and Automation (p. 1132). IEEE
56.
go back to reference Niravkumar, P., Jiawen, Y., Gang, L., Reza, M., Lukasz, P., Helen, D.-S., Joyce, J., Andrew, D., Andreas, M., Karun, S., Iulian, I., & Kevin, C. (2021). Body-mounted robotic system for MRI-guided shoulder arthrography: Cadaver and clinical workflow studies. Frontiers in Robotics and AI. https://doi.org/10.3389/frobt.2021.667121CrossRef Niravkumar, P., Jiawen, Y., Gang, L., Reza, M., Lukasz, P., Helen, D.-S., Joyce, J., Andrew, D., Andreas, M., Karun, S., Iulian, I., & Kevin, C. (2021). Body-mounted robotic system for MRI-guided shoulder arthrography: Cadaver and clinical workflow studies. Frontiers in Robotics and AI. https://​doi.​org/​10.​3389/​frobt.​2021.​667121CrossRef
60.
61.
go back to reference Georgescu, M., Sacccomandi, A., Baudron, B., & Arbeille, P. L. (2016). Remote sonography in routine clinical practice between two isolated medical centers and the university hospital using a robotic arm: A 1-year study. Telemedicine Journal and E-Health, 22, 276–281. https://doi.org/10.1089/tmj.2015.0100CrossRef Georgescu, M., Sacccomandi, A., Baudron, B., & Arbeille, P. L. (2016). Remote sonography in routine clinical practice between two isolated medical centers and the university hospital using a robotic arm: A 1-year study. Telemedicine Journal and E-Health, 22, 276–281. https://​doi.​org/​10.​1089/​tmj.​2015.​0100CrossRef
66.
go back to reference Merouche, S., Allard, L., Montagnon, E., Soulez, G., Bigras, P., & Cloutier, G. (2016). A robotic ultrasound scanner for automatic vessel tracking and three-dimensional reconstruction of b-mode images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63, 35–46. https://doi.org/10.1109/TUFFC.2015.2499084CrossRef Merouche, S., Allard, L., Montagnon, E., Soulez, G., Bigras, P., & Cloutier, G. (2016). A robotic ultrasound scanner for automatic vessel tracking and three-dimensional reconstruction of b-mode images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63, 35–46. https://​doi.​org/​10.​1109/​TUFFC.​2015.​2499084CrossRef
71.
73.
go back to reference Hang, Su., & De Momi, E. (2023). Towards human activity recognition enhanced robot assisted surgery. Robot Design, 123, 143.CrossRef Hang, Su., & De Momi, E. (2023). Towards human activity recognition enhanced robot assisted surgery. Robot Design, 123, 143.CrossRef
74.
go back to reference Hashimoto, D. A., Rosman, G., Witkowski, E. R., Stafford, C., Navarette- Welton, A. J., Rattner, D. W., Lillemoe, K. D., Rus, D. L., & Meireles, O. R. (2019). Computer vision analysis of intraoperative video: Automated recognition of operative steps in laparoscopic sleeve gastrectomy. Annals of Surg, 270, 414–421. https://doi.org/10.1097/SLA.0000000000003460CrossRef Hashimoto, D. A., Rosman, G., Witkowski, E. R., Stafford, C., Navarette- Welton, A. J., Rattner, D. W., Lillemoe, K. D., Rus, D. L., & Meireles, O. R. (2019). Computer vision analysis of intraoperative video: Automated recognition of operative steps in laparoscopic sleeve gastrectomy. Annals of Surg, 270, 414–421. https://​doi.​org/​10.​1097/​SLA.​0000000000003460​CrossRef
80.
go back to reference Kim, B., & Deshpande, A. D. (2017). An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation. The International Journal of Robotics Research, 36, 414–435.CrossRef Kim, B., & Deshpande, A. D. (2017). An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation. The International Journal of Robotics Research, 36, 414–435.CrossRef
85.
go back to reference Laut, J., Porfiri, M., & Raghavan, P. (2016). The present and future of robotic technology in rehabilitation. Current Physical Medicine and Rehabilitation Reports, 4(4), 312.CrossRef Laut, J., Porfiri, M., & Raghavan, P. (2016). The present and future of robotic technology in rehabilitation. Current Physical Medicine and Rehabilitation Reports, 4(4), 312.CrossRef
88.
go back to reference Ogata, T., Abe, H., Samura, K., Hamada, O., Nonaka, M., Iwaasa, M., Higashi, T., Fukuda, H., Shiota, E., Tsuboi, Y., & Inoue, T. (2015). Hybrid assistive limb (HAL) rehabilitation in patients with acute hemorrhagic stroke. Neurologia Medico-Chirurgica (Tokyo)., 55(12), 901–906. https://doi.org/10.2176/nmc.oa.2015-0209CrossRef Ogata, T., Abe, H., Samura, K., Hamada, O., Nonaka, M., Iwaasa, M., Higashi, T., Fukuda, H., Shiota, E., Tsuboi, Y., & Inoue, T. (2015). Hybrid assistive limb (HAL) rehabilitation in patients with acute hemorrhagic stroke. Neurologia Medico-Chirurgica (Tokyo)., 55(12), 901–906. https://​doi.​org/​10.​2176/​nmc.​oa.​2015-0209CrossRef
92.
go back to reference Habuza, T., Navaz, A. N., Hashim, F., Alnajjar, F., Zaki, N., Serhani, M. A., & Statsenko, Y. (2021). AI applications in robotics, diagnostic image analysis and precision medicine: Current limitations, future trends, guidelines on CAD systems for medicine. Informatics in Medicine Unlocked, 24, 100596.CrossRef Habuza, T., Navaz, A. N., Hashim, F., Alnajjar, F., Zaki, N., Serhani, M. A., & Statsenko, Y. (2021). AI applications in robotics, diagnostic image analysis and precision medicine: Current limitations, future trends, guidelines on CAD systems for medicine. Informatics in Medicine Unlocked, 24, 100596.CrossRef
95.
go back to reference Burdea, G. C., Dunn, S. M., & Levy, G. (1999). Evaluation of robot-based registration for subtraction radiography. Medical Image Analysis, 3, 265–274.CrossRef Burdea, G. C., Dunn, S. M., & Levy, G. (1999). Evaluation of robot-based registration for subtraction radiography. Medical Image Analysis, 3, 265–274.CrossRef
Metadata
Title
Robotics in Medical Domain: The Future of Surgery, Healthcare and Imaging
Authors
Anisha Halder Roy
Sanchita Ghosh
Bharat Gupta
Publication date
04-10-2023
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2023
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10747-z

Other articles of this Issue 4/2023

Wireless Personal Communications 4/2023 Go to the issue