Skip to main content
Top
Published in: Population Ecology 1/2015

01-01-2015 | Original article

Robustness of Taylor’s law under spatial hierarchical groupings of forest tree samples

Authors: Meng Xu, William S. F. Schuster, Joel E. Cohen

Published in: Population Ecology | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Testing how well Taylor’s law (TL) describes spatial variation of the population density of a species requires grouping sampling areas (patches of habitat) into blocks so that a mean and a variance of the population density can be calculated over the patches in each block. The relationship between specific groupings and TL remains largely unknown. Here, using tree counts from a deciduous forest, we studied the effect of four biological methods of grouping sampling areas into blocks on the form and parameters of TL. Regardless of the method of grouping, the species-specific basal area densities obeyed TL, and the estimated slopes were not significantly different from one grouping method to another. Surprisingly, TL remained valid when four kinds of randomizations were performed to the biological groupings and tree census. These randomizations randomly assigned sampling areas to blocks, and/or randomized the species composition within or across sampling areas. We found that the form of TL was robust to different grouping methods and species randomizations, but its parameter values depended significantly on species compositions at sampling areas.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Arruda-Neto JDT, Bittencourt-Oliveira MC, Castro AC, Rodrigues TE, Harari J, Mesa J, Genofre GC (2012) Global warming and the power-laws of ecology. Atmos Clim Sci 2:8–13 Arruda-Neto JDT, Bittencourt-Oliveira MC, Castro AC, Rodrigues TE, Harari J, Mesa J, Genofre GC (2012) Global warming and the power-laws of ecology. Atmos Clim Sci 2:8–13
go back to reference Avery ET, Burkhart EH (2002) Forest measurements, 5th edn. McGraw-Hill, NY Avery ET, Burkhart EH (2002) Forest measurements, 5th edn. McGraw-Hill, NY
go back to reference Bitterlich W (1984) The relascope idea: relative measurements in forestry. Commonwealth Agricultural Bureaux, Wallingford Bitterlich W (1984) The relascope idea: relative measurements in forestry. Commonwealth Agricultural Bureaux, Wallingford
go back to reference Cohen JE (2013) Stochastic population dynamics in a Markovian environment implies Taylor’s power law of fluctuation scaling. Theor Popul Biol 93:30–37CrossRef Cohen JE (2013) Stochastic population dynamics in a Markovian environment implies Taylor’s power law of fluctuation scaling. Theor Popul Biol 93:30–37CrossRef
go back to reference Cohen JE, Xu M, Schuster WSF (2012) Allometric scaling of population variance with mean body size is predicted from Taylor’s law and density-mass allometry. Proc Natl Acad Sci USA 109:15829–15834CrossRefPubMedCentralPubMed Cohen JE, Xu M, Schuster WSF (2012) Allometric scaling of population variance with mean body size is predicted from Taylor’s law and density-mass allometry. Proc Natl Acad Sci USA 109:15829–15834CrossRefPubMedCentralPubMed
go back to reference Cohen JE, Xu M, Schuster WSF (2013a) Stochastic multiplicative population growth predicts and interprets Taylor’s power law of fluctuation scaling. Proc R Soc B-Biol Sci 280:20122955CrossRef Cohen JE, Xu M, Schuster WSF (2013a) Stochastic multiplicative population growth predicts and interprets Taylor’s power law of fluctuation scaling. Proc R Soc B-Biol Sci 280:20122955CrossRef
go back to reference Cohen JE, Xu M, Brunborg H (2013b) Taylor’s law applies to spatial variation in a human population. Genus 69(1):25–60 Cohen JE, Xu M, Brunborg H (2013b) Taylor’s law applies to spatial variation in a human population. Genus 69(1):25–60
go back to reference Green DM (2003) The ecology of extinction: population fluctuation and decline in amphibians. Biol Conserv 111:331–343CrossRef Green DM (2003) The ecology of extinction: population fluctuation and decline in amphibians. Biol Conserv 111:331–343CrossRef
go back to reference Gregoire TG, Valentine HT (2004) Sampling strategies for natural resources and the environment. Chapman and Hall/CRC, London Gregoire TG, Valentine HT (2004) Sampling strategies for natural resources and the environment. Chapman and Hall/CRC, London
go back to reference Hanski I (1980) Spatial patterns and movements in coprophagous beetles. Oikos 34:293–310CrossRef Hanski I (1980) Spatial patterns and movements in coprophagous beetles. Oikos 34:293–310CrossRef
go back to reference Hanski I (1982) On patterns of temporal and spatial variation in animal populations. Ann Zool Fenn 19:21–37 Hanski I (1982) On patterns of temporal and spatial variation in animal populations. Ann Zool Fenn 19:21–37
go back to reference Hanski I (1987) Cross-correlation in population dynamics and the slope of spatial variance-mean regressions. Oikos 50:148–151CrossRef Hanski I (1987) Cross-correlation in population dynamics and the slope of spatial variance-mean regressions. Oikos 50:148–151CrossRef
go back to reference Jiang J, DeAngelis DL, Zhang B, Cohen JE (2014) Population age and initial density in a patchy environment affect the occurrence of abrupt transitions in a birth-and-death model of Taylor’s law. Ecol Model 289:59–65CrossRef Jiang J, DeAngelis DL, Zhang B, Cohen JE (2014) Population age and initial density in a patchy environment affect the occurrence of abrupt transitions in a birth-and-death model of Taylor’s law. Ecol Model 289:59–65CrossRef
go back to reference Jørgensen B (1987) Exponential dispersion models. J Roy Stat Soc B 49:127–162 Jørgensen B (1987) Exponential dispersion models. J Roy Stat Soc B 49:127–162
go back to reference Jørgensen B (1997) The theory of dispersion models. Chapman and Hall/CRC, London Jørgensen B (1997) The theory of dispersion models. Chapman and Hall/CRC, London
go back to reference Jørgensen B, Martínez JR, Vinogradov V (2009) Domains of attraction to Tweedie distributions. Lith Math J 49:399–425CrossRef Jørgensen B, Martínez JR, Vinogradov V (2009) Domains of attraction to Tweedie distributions. Lith Math J 49:399–425CrossRef
go back to reference Kaltz O, Escobar-Páramo P, Hochberg ME, Cohen JE (2012) Bacterial microcosms obey Taylor’s law: effects of abiotic and biotic stress and genetics on mean and variance of population density. Ecol Process 1:5CrossRef Kaltz O, Escobar-Páramo P, Hochberg ME, Cohen JE (2012) Bacterial microcosms obey Taylor’s law: effects of abiotic and biotic stress and genetics on mean and variance of population density. Ecol Process 1:5CrossRef
go back to reference Keeling MJ, Grenfell BT (1999) Stochastic dynamics and a power law for measles variability. Philos Trans R Soc B-Biol Sci 354:769–776CrossRef Keeling MJ, Grenfell BT (1999) Stochastic dynamics and a power law for measles variability. Philos Trans R Soc B-Biol Sci 354:769–776CrossRef
go back to reference Kendal WS (2002) A frequency distribution for the number of hematogenous organ metastases. J Theor Biol 217:203–218CrossRefPubMed Kendal WS (2002) A frequency distribution for the number of hematogenous organ metastases. J Theor Biol 217:203–218CrossRefPubMed
go back to reference Kendal WS (2004b) Taylor’s ecological power law as a consequence of scale invariant exponential dispersion models. Ecol Complex 1:193–209CrossRef Kendal WS (2004b) Taylor’s ecological power law as a consequence of scale invariant exponential dispersion models. Ecol Complex 1:193–209CrossRef
go back to reference Kendal WS, Jørgensen B (2011) Taylor’s power law and fluctuation scaling explained by a central-limit-like convergence. Phys Rev E 83:066115CrossRef Kendal WS, Jørgensen B (2011) Taylor’s power law and fluctuation scaling explained by a central-limit-like convergence. Phys Rev E 83:066115CrossRef
go back to reference Kilpatrick AM, Ives AR (2003) Species interactions can explain Taylor’s power law for ecological time series. Nature 422:65–68CrossRefPubMed Kilpatrick AM, Ives AR (2003) Species interactions can explain Taylor’s power law for ecological time series. Nature 422:65–68CrossRefPubMed
go back to reference Lai J, Yang B, Lin D, Kerkhoff AJ, Ma K (2013) The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression? PLoS One 8(10):e77007CrossRefPubMedCentralPubMed Lai J, Yang B, Lin D, Kerkhoff AJ, Ma K (2013) The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression? PLoS One 8(10):e77007CrossRefPubMedCentralPubMed
go back to reference Legendre S, Schoener TW, Clobert J, Spiller DA (2008) How is extinction risk related to population-size variability over time? A family of models for species with repeated extinction and immigration. Am Nat 172:282–298CrossRefPubMed Legendre S, Schoener TW, Clobert J, Spiller DA (2008) How is extinction risk related to population-size variability over time? A family of models for species with repeated extinction and immigration. Am Nat 172:282–298CrossRefPubMed
go back to reference MathWorks Inc (2012) MATLAB R2012a. Natick, MA MathWorks Inc (2012) MATLAB R2012a. Natick, MA
go back to reference McArdle BH (1988) The structural relationship: regression in biology. Can J Zool 66(11):2329–2339CrossRef McArdle BH (1988) The structural relationship: regression in biology. Can J Zool 66(11):2329–2339CrossRef
go back to reference McArdle BH, Gaston KJ, Lawton JH (1990) Variation in the size of animal populations: patterns, problems and artefacts. J Anim Ecol 59(2):439–454CrossRef McArdle BH, Gaston KJ, Lawton JH (1990) Variation in the size of animal populations: patterns, problems and artefacts. J Anim Ecol 59(2):439–454CrossRef
go back to reference McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR (2002) The route to extinction: population dynamics of a threatened butterfly. Oecologia 132:538–548CrossRef McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR (2002) The route to extinction: population dynamics of a threatened butterfly. Oecologia 132:538–548CrossRef
go back to reference Packard GC, Birchard GF (2008) Traditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates. J Exp Biol 211:3581–3587CrossRefPubMed Packard GC, Birchard GF (2008) Traditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates. J Exp Biol 211:3581–3587CrossRefPubMed
go back to reference Packard GC, Birchard GF, Boardman TJ (2011) Fitting statistical models in bivariate allometry. Biol Rev 86:549–563CrossRefPubMed Packard GC, Birchard GF, Boardman TJ (2011) Fitting statistical models in bivariate allometry. Biol Rev 86:549–563CrossRefPubMed
go back to reference Perry JN (1981) Taylor’s power law for dependence of variance on mean in animal populations. J Roy Stat Soc C-Appl 30:254–263 Perry JN (1981) Taylor’s power law for dependence of variance on mean in animal populations. J Roy Stat Soc C-Appl 30:254–263
go back to reference Ramsayer J, Fellous S, Cohen JE, Hochberg ME (2011) Taylor’s Law holds in experimental bacterial populations but competition does not influence the slope. Biol Lett 8:316–319CrossRefPubMedCentralPubMed Ramsayer J, Fellous S, Cohen JE, Hochberg ME (2011) Taylor’s Law holds in experimental bacterial populations but competition does not influence the slope. Biol Lett 8:316–319CrossRefPubMedCentralPubMed
go back to reference Reschke C (1990) Ecological communities of New York State. New York Natural Heritage Program. New York State Department of Environmental Conservation, Latham, NY Reschke C (1990) Ecological communities of New York State. New York Natural Heritage Program. New York State Department of Environmental Conservation, Latham, NY
go back to reference Sawyer AJ (1989) Inconstancy of Taylor’s b: simulated sampling with different quadrat sizes and spatial distributions. Res Popul Ecol 31:11–24CrossRef Sawyer AJ (1989) Inconstancy of Taylor’s b: simulated sampling with different quadrat sizes and spatial distributions. Res Popul Ecol 31:11–24CrossRef
go back to reference Schoener TW, Spiller DA (1992) Is extinction rate related to temporal variability in population size? An empirical answer for orb spiders. Am Nat 139:1176–1207CrossRef Schoener TW, Spiller DA (1992) Is extinction rate related to temporal variability in population size? An empirical answer for orb spiders. Am Nat 139:1176–1207CrossRef
go back to reference Schuster WSF, Griffin KL, Roth H, Turnbull MH, Whitehead D, Tissue DT (2008) Changes in composition, structure and aboveground biomass over seventy-six years (1930–2006) in the Black Rock Forest, Hudson Highlands, southeastern New York State. Tree Physiol 28:537–549CrossRefPubMed Schuster WSF, Griffin KL, Roth H, Turnbull MH, Whitehead D, Tissue DT (2008) Changes in composition, structure and aboveground biomass over seventy-six years (1930–2006) in the Black Rock Forest, Hudson Highlands, southeastern New York State. Tree Physiol 28:537–549CrossRefPubMed
go back to reference Smith RJ (2009) Use and misuse of the reduced major axis for line-fitting. Am J Phys Anthropol 140(3):476–486CrossRefPubMed Smith RJ (2009) Use and misuse of the reduced major axis for line-fitting. Am J Phys Anthropol 140(3):476–486CrossRefPubMed
go back to reference Taylor LR (1984) Assessing and interpreting the spatial distributions of insect populations. Annu Rev Entomol 29:321–357CrossRef Taylor LR (1984) Assessing and interpreting the spatial distributions of insect populations. Annu Rev Entomol 29:321–357CrossRef
go back to reference Taylor LR, Woiwod IP, Perry JN (1978) The density-dependence of spatial behavior and the parity of randomness. J Anim Ecol 47:383–406CrossRef Taylor LR, Woiwod IP, Perry JN (1978) The density-dependence of spatial behavior and the parity of randomness. J Anim Ecol 47:383–406CrossRef
go back to reference Taylor LR, Perry JN, Woiwod IP, Taylor RAJ (1988) Specificity of the spatial power-law exponent in ecology and agriculture. Nature 332:721–722CrossRef Taylor LR, Perry JN, Woiwod IP, Taylor RAJ (1988) Specificity of the spatial power-law exponent in ecology and agriculture. Nature 332:721–722CrossRef
go back to reference Vucetich JA, Waite TA, Qvarnemark L, Ibargüen S (2000) Population variability and extinction risk. Conserv Biol 14:1704–1714CrossRef Vucetich JA, Waite TA, Qvarnemark L, Ibargüen S (2000) Population variability and extinction risk. Conserv Biol 14:1704–1714CrossRef
go back to reference Xiao X, White EP, Hooten MB, Durham SL (2011) On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 92:1887–1894CrossRefPubMed Xiao X, White EP, Hooten MB, Durham SL (2011) On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 92:1887–1894CrossRefPubMed
go back to reference Xu C-Y, Turnbull MH, Tissue DT, Lewis JD, Carson R, Schuster WSF, Whitehead D, Walcroft AS, Li J, Griffin KL (2012) Age-related decline of stand biomass accumulation is primarily due to mortality and not to reduction in NPP associated with individual tree physiology, tree growth or stand structure in a Quercus-dominated forest. J Ecol 100:428–440CrossRef Xu C-Y, Turnbull MH, Tissue DT, Lewis JD, Carson R, Schuster WSF, Whitehead D, Walcroft AS, Li J, Griffin KL (2012) Age-related decline of stand biomass accumulation is primarily due to mortality and not to reduction in NPP associated with individual tree physiology, tree growth or stand structure in a Quercus-dominated forest. J Ecol 100:428–440CrossRef
go back to reference Yamamura K (1990) Sampling scale dependence of Taylor’s power law. Oikos 59:121–125CrossRef Yamamura K (1990) Sampling scale dependence of Taylor’s power law. Oikos 59:121–125CrossRef
go back to reference Zar JH (2009) Biostatistical analysis, 5th edn. Pearson, London Zar JH (2009) Biostatistical analysis, 5th edn. Pearson, London
Metadata
Title
Robustness of Taylor’s law under spatial hierarchical groupings of forest tree samples
Authors
Meng Xu
William S. F. Schuster
Joel E. Cohen
Publication date
01-01-2015
Publisher
Springer Japan
Published in
Population Ecology / Issue 1/2015
Print ISSN: 1438-3896
Electronic ISSN: 1438-390X
DOI
https://doi.org/10.1007/s10144-014-0463-0

Other articles of this Issue 1/2015

Population Ecology 1/2015 Go to the issue