Skip to main content
Top
Published in: Environmental Earth Sciences 6/2021

01-03-2021 | Original Article

Rock slope stability charts based on limit equilibrium method incorporating Generalized Hoek–Brown strength criterion for static and seismic conditions

Authors: Vinay Kumar, Avijit Burman, Navneet Himanshu, Behrouz Gordan

Published in: Environmental Earth Sciences | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Stability charts present a graphical approach for the estimation of factor of safety (FOS) of a finite slope with uniform soil properties which are routinely used by geotechnical engineers. They provide a way for quick and efficient determination of stability of slopes sidestepping the need for carrying out actual analysis. In the present work, authors have developed stability charts of rock mass to determine global minimum FOS for rock slope stability problems. The rock mass is modelled by incorporating generalized Hoek–Brown strength criterion proposed by Hoek et al. (Hoek–Brown criterion—2002 edition, 2002). Limit equilibrium technique based Morgenstern and Price (Géotechnique 15:79–93, 1965) method is used to determine the value of factor of safety of the rock slope against failure. An evolutionary optimization method i.e. Particle swarm optimization (PSO) is used to search for the minimum FOS values and the associated critical failure surface out of all possible slip surfaces. A MATLAB code has been developed for this purpose. The charts have been developed for the entire range of Geological Strength Index (GSI) values ranging from 0 to 100 for intact rock mass characterized by the disturbance factor D = 0 for both static and seismic loading conditions. The seismic slope analysis is performed by an equivalent static method using a horizontal seismic coefficient (kh) with values ranging from 0.10 to 0.30. Stability charts contain stability numbers which are inversely proportional to FOS value of the slope. In the present work, stability numbers are plotted for different inclination angles (\(\beta\)) equal to 15°, 30°,45°, 60° and 75, respectively, for both static and seismic conditions considering the variations of other material parameters such as \(m_{i}\) and \({\text{GSI}}\). Stability numbers are observed to increase with an increase in angle of inclination (\(\beta\)) of the slope and correspondingly FOS values follow a decreasing trend. However, stability numbers follow a decreasing pattern with increasing values of material parameters \(m_{i}\) and \({\text{GSI}}\) designating improved rock quality with corresponding increase in FOS values of the rock slope.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Balmer G (1952) A general analytical solution for Mohr’s envelope. Am Soc Test Mat 52:1269–1271 Balmer G (1952) A general analytical solution for Mohr’s envelope. Am Soc Test Mat 52:1269–1271
go back to reference Cheng YM, Li L, Chi SC, Wei WB (2007a) Particle swarm optimization algorithm for the location of the critical non-circular failure surface in twodimensional slope stability analysis. Comput Geotech 34(2):92–103 Cheng YM, Li L, Chi SC, Wei WB (2007a) Particle swarm optimization algorithm for the location of the critical non-circular failure surface in twodimensional slope stability analysis. Comput Geotech 34(2):92–103
go back to reference Cheng YM, Li L, Chi SC, Wei WB (2007b) Performance studies on six heuristic global optimization methods in the location of critical slip surface. Comput Geotech 34(6):462–484 Cheng YM, Li L, Chi SC, Wei WB (2007b) Performance studies on six heuristic global optimization methods in the location of critical slip surface. Comput Geotech 34(6):462–484
go back to reference Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of 6th symposium on micro machine and human science. Nagoya, Japan, pp 39–43 Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of 6th symposium on micro machine and human science. Nagoya, Japan, pp 39–43
go back to reference Eberhart RC, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Berlin, pp 611–616 Eberhart RC, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Berlin, pp 611–616
go back to reference Eberhart R, Simpson P, Dobbins R (1996) Computational intelligence PC tools. Academic Press, New York Eberhart R, Simpson P, Dobbins R (1996) Computational intelligence PC tools. Academic Press, New York
go back to reference Eid HT (2014) Stability charts for uniform slopes in soils with nonlinear failure envelopes. Eng Geol 168:38–45 Eid HT (2014) Stability charts for uniform slopes in soils with nonlinear failure envelopes. Eng Geol 168:38–45
go back to reference Fellenius W (1936) Calculation of stability of earth dams. Proc Second Congr Large Dams 4:445–463 Fellenius W (1936) Calculation of stability of earth dams. Proc Second Congr Large Dams 4:445–463
go back to reference Gao Y, Zhang F, Lei GH, Li D, Wu Y, Zhang N (2013) Stability charts for 3D failures of homogeneous slopes. J Geotech Geoenviron Eng 139(9):1528–1538 Gao Y, Zhang F, Lei GH, Li D, Wu Y, Zhang N (2013) Stability charts for 3D failures of homogeneous slopes. J Geotech Geoenviron Eng 139(9):1528–1538
go back to reference Goodman R (1989) Introduction to rock mechanics, 2nd edn. Wiley, New York Goodman R (1989) Introduction to rock mechanics, 2nd edn. Wiley, New York
go back to reference Goodman R, Kieffer D (2000) Behavior of rock in slope. J Geotech Geoenviron Eng 126:675–684CrossRef Goodman R, Kieffer D (2000) Behavior of rock in slope. J Geotech Geoenviron Eng 126:675–684CrossRef
go back to reference Hoek E, Bray J (1981) Rock slope engineering, 3rd edn. Institute of Mining and Metallurgy, LondonCrossRef Hoek E, Bray J (1981) Rock slope engineering, 3rd edn. Institute of Mining and Metallurgy, LondonCrossRef
go back to reference Hoek E, Brown E (1980) Empirical strength criterion for rock masses. J Geotech Eng Div Am Soc Civ Eng 106(GT9):1013–1035 Hoek E, Brown E (1980) Empirical strength criterion for rock masses. J Geotech Eng Div Am Soc Civ Eng 106(GT9):1013–1035
go back to reference Hoek E, Carranza-Torres C, Corkum B (2002) Hoek–Brown criterion—2002 edition. In: NARMS-TAC Conference, Toronto Hoek E, Carranza-Torres C, Corkum B (2002) Hoek–Brown criterion—2002 edition. In: NARMS-TAC Conference, Toronto
go back to reference Huang J, Lyamin AV, Griffiths DV, Krabbenhoft K, Sloan SW (2013) Quantitative risk assessment of landslide by limit analyses and random fields. Comput Geotech 53:60–67CrossRef Huang J, Lyamin AV, Griffiths DV, Krabbenhoft K, Sloan SW (2013) Quantitative risk assessment of landslide by limit analyses and random fields. Comput Geotech 53:60–67CrossRef
go back to reference Jaeger J (1971) Friction of rocks and stability of rock slopes. Geotechnique 21:97–134CrossRef Jaeger J (1971) Friction of rocks and stability of rock slopes. Geotechnique 21:97–134CrossRef
go back to reference Janbu N (1954) Applications of composite slip surfaces for stability analyses. Proc Eur Conf Stab Earth Slopes Stock 3:39–43 Janbu N (1954) Applications of composite slip surfaces for stability analyses. Proc Eur Conf Stab Earth Slopes Stock 3:39–43
go back to reference Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Perth, Australia, pp 1942–1948 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Perth, Australia, pp 1942–1948
go back to reference Lowe L, Karafiath L (1960) Stability of earth dams upon drawdown. In: Proceedings of the first PanAmerican conference on soil mechanics and fundation engineering Lowe L, Karafiath L (1960) Stability of earth dams upon drawdown. In: Proceedings of the first PanAmerican conference on soil mechanics and fundation engineering
go back to reference Lyamin A, Sloan S (2002) Lower bound limit analysis using non-linear programming. Int J Numer Methods Eng 55:573–611CrossRef Lyamin A, Sloan S (2002) Lower bound limit analysis using non-linear programming. Int J Numer Methods Eng 55:573–611CrossRef
go back to reference Malkawi AIH, Hassan WF, Sarma SK (2001) Global search method for locating general slip surface Using Monte Carlo techniques. J Geotech Geoenviron Eng 127(8):688–698 Malkawi AIH, Hassan WF, Sarma SK (2001) Global search method for locating general slip surface Using Monte Carlo techniques. J Geotech Geoenviron Eng 127(8):688–698
go back to reference McCombie P, Wilkinson P (2002) The use of the simple genetic algorithm in finding the critical factor of safety in slope stability analysis. Comput Geotech 29(8):699–714 McCombie P, Wilkinson P (2002) The use of the simple genetic algorithm in finding the critical factor of safety in slope stability analysis. Comput Geotech 29(8):699–714
go back to reference Michalowski RL (2002) Stability charts for uniform slopes. J Geotech Geoenviron Eng 128(4):351–355 Michalowski RL (2002) Stability charts for uniform slopes. J Geotech Geoenviron Eng 128(4):351–355
go back to reference Michalowski RL (2010) Limit analysis and stability charts for 3D slope failures. J Geotech Geoenviron Eng 136(4):583–593 Michalowski RL (2010) Limit analysis and stability charts for 3D slope failures. J Geotech Geoenviron Eng 136(4):583–593
go back to reference Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). London 1447, pp 591–600 Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). London 1447, pp 591–600
go back to reference Shi Y, Eberhart RC (2008) Population diversity of particle swarms. In: 2008 IEEE congress on evolutionary computation, CEC 2008. pp 1063–1067 Shi Y, Eberhart RC (2008) Population diversity of particle swarms. In: 2008 IEEE congress on evolutionary computation, CEC 2008. pp 1063–1067
go back to reference Siad L (2003) Seismic stability analysis of fractured rock slopes by yield design theory. Soil Dyn Earthq Eng 23:203–212CrossRef Siad L (2003) Seismic stability analysis of fractured rock slopes by yield design theory. Soil Dyn Earthq Eng 23:203–212CrossRef
go back to reference Sun C, Chai J, Xu Z, Qin Y (2017) 3D stability charts for convex and concave slopes in plan view with homogeneous soil based on the strength-reduction method. Intl J Geomech 17(5):06016034 Sun C, Chai J, Xu Z, Qin Y (2017) 3D stability charts for convex and concave slopes in plan view with homogeneous soil based on the strength-reduction method. Intl J Geomech 17(5):06016034
go back to reference Taylor D (1937) Stability of earth slopes. J Bost Soc Civ Eng 24:197–246 Taylor D (1937) Stability of earth slopes. J Bost Soc Civ Eng 24:197–246
go back to reference Yang XL (2007) Seismic displacement of rock slopes with nonlinear Hoek-Brown failure criterion. Int J Rock Mech Mining Sci 44:948–953 Yang XL (2007) Seismic displacement of rock slopes with nonlinear Hoek-Brown failure criterion. Int J Rock Mech Mining Sci 44:948–953
go back to reference Yang X-L, Li L, Yin J-H (2004) Seismic and static stability analysis for rock slopes by a kinematical approach. Géotechnique 54(8):543–549 Yang X-L, Li L, Yin J-H (2004) Seismic and static stability analysis for rock slopes by a kinematical approach. Géotechnique 54(8):543–549
go back to reference Yang XL, Zou JF (2006) Stability factors for rock slopes subjected to pore water pressure based on the Hoek-Brown failure criterion. Int J Rock Mech Mining Sci 43:1146–1152 Yang XL, Zou JF (2006) Stability factors for rock slopes subjected to pore water pressure based on the Hoek-Brown failure criterion. Int J Rock Mech Mining Sci 43:1146–1152
go back to reference Wyllie D, Mah C (2004) Rock slope engineering, 4th edn. Spon Press, London Wyllie D, Mah C (2004) Rock slope engineering, 4th edn. Spon Press, London
go back to reference Zanbak C (1983) Design charts for rock slopes susceptible to toppling. J Geotech Eng Div ASCE 190:1039–1062CrossRef Zanbak C (1983) Design charts for rock slopes susceptible to toppling. J Geotech Eng Div ASCE 190:1039–1062CrossRef
Metadata
Title
Rock slope stability charts based on limit equilibrium method incorporating Generalized Hoek–Brown strength criterion for static and seismic conditions
Authors
Vinay Kumar
Avijit Burman
Navneet Himanshu
Behrouz Gordan
Publication date
01-03-2021
Publisher
Springer Berlin Heidelberg
Published in
Environmental Earth Sciences / Issue 6/2021
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-021-09498-6

Other articles of this Issue 6/2021

Environmental Earth Sciences 6/2021 Go to the issue