Skip to main content
Top

2018 | OriginalPaper | Chapter

Rogue Waves in the Ocean, the Role of Modulational Instability, and Abrupt Changes of Environmental Conditions that Can Provoke Non Equilibrium Wave Dynamics

Author : Karsten Trulsen

Published in: The Ocean in Motion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modulational instability is an efficient mechanism for the generation of rogue waves in the limit of narrow-banded and long-crested wave fields. While such wave fields are easily achieved in laboratories, there appears to be lacking evidence that known occurrences of rogue waves in the ocean (e.g. Draupner “New Year” wave, Andrea wave) or ship accidents that could have been provoked by rogue waves (e.g. the Prestige accident) actually happened in sea states favorable for the modulational instability to have played an important role. The absence of modulational instability does not mean that nonlinear interactions are unimportant. Here we point out recent results that suggest large deviations from Gaussian statistics can happen due to nonlinearity in the absence of modulational instability, the key ingredient seems to be that the wave field is brought into a state of non-equilibrium.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alber, I. E. (1978). The effects of randomness on the stability of two-dimensional surface wavetrains. Proceedings of the Royal Society of London A, 363, 525–546.CrossRef Alber, I. E. (1978). The effects of randomness on the stability of two-dimensional surface wavetrains. Proceedings of the Royal Society of London A, 363, 525–546.CrossRef
2.
go back to reference Alber, I. E, Saffman, P. (1978). Stability of random nonlinear deep water waves with finite bandwidth spectra. Technical Report, 31326–6035–RU–TRW Defense and Space System Group Alber, I. E, Saffman, P. (1978). Stability of random nonlinear deep water waves with finite bandwidth spectra. Technical Report, 31326–6035–RU–TRW Defense and Space System Group
3.
go back to reference Benjamin, T. B. (1967). Instability of periodic wavetrains in nonlinear dispersive systems. Proceedings of the Royal Society of London A, 299, 59–75.CrossRef Benjamin, T. B. (1967). Instability of periodic wavetrains in nonlinear dispersive systems. Proceedings of the Royal Society of London A, 299, 59–75.CrossRef
4.
go back to reference Benjamin, T. B., & Feir, J. E. (1967). The disintegration of wave trains on deep water. Journal of Fluid Mechanics, 27, 417–430.CrossRef Benjamin, T. B., & Feir, J. E. (1967). The disintegration of wave trains on deep water. Journal of Fluid Mechanics, 27, 417–430.CrossRef
5.
go back to reference Benney, D. J., & Roskes, G. J. (1969). Wave instabilities. Studies in Applied Mathematics, 48, 377–385.CrossRef Benney, D. J., & Roskes, G. J. (1969). Wave instabilities. Studies in Applied Mathematics, 48, 377–385.CrossRef
6.
go back to reference Bitner-Gregersen, E. M, Gramstad, O. (2016). Rogue waves—Impact on ships and offshore structures. Technical Report, 05–2015, DNV-GL Bitner-Gregersen, E. M, Gramstad, O. (2016). Rogue waves—Impact on ships and offshore structures. Technical Report, 05–2015, DNV-GL
7.
go back to reference Bitner-Gregersen, E. M., Fernandez, L., Lefèvre, J. M., Monbaliu, J., & Toffoli, A. (2014). The North Sea Andrea storm and numerical simulations. Natural Hazards and Earth System Science, 14, 1407–1415.CrossRef Bitner-Gregersen, E. M., Fernandez, L., Lefèvre, J. M., Monbaliu, J., & Toffoli, A. (2014). The North Sea Andrea storm and numerical simulations. Natural Hazards and Earth System Science, 14, 1407–1415.CrossRef
8.
go back to reference Cavaleri, L., Barbariol, F., Benetazzo, A., Bertotti, L., Bidlot, J. R., Janssen, P., et al. (2016). The Draupner wave: A fresh look and the emerging view. Journal of Geophysical Research: Oceans, 121, 6061–6075. Cavaleri, L., Barbariol, F., Benetazzo, A., Bertotti, L., Bidlot, J. R., Janssen, P., et al. (2016). The Draupner wave: A fresh look and the emerging view. Journal of Geophysical Research: Oceans, 121, 6061–6075.
9.
go back to reference Chabchoub, A., Hoffmann, N. P., & Akhmediev, N. (2011). Rogue wave observation in a water wave tank. Physical Review Letters, 106, 204,502.CrossRef Chabchoub, A., Hoffmann, N. P., & Akhmediev, N. (2011). Rogue wave observation in a water wave tank. Physical Review Letters, 106, 204,502.CrossRef
10.
go back to reference Chabchoub, A., Akhmediev, N., & Hoffmann, N. P. (2012). Experimental study of spatiotemporally localized surface gravity water waves. Physical Review Letters, 86, 016,311. Chabchoub, A., Akhmediev, N., & Hoffmann, N. P. (2012). Experimental study of spatiotemporally localized surface gravity water waves. Physical Review Letters, 86, 016,311.
11.
go back to reference Chabchoub, A., Kibler, B., Dudley, J. M., & Akhmediev, N. (2014). Hydrodynamics of periodic breathers. Philosophical Transactions of the Royal Society of London A, 372, 20140,005.CrossRef Chabchoub, A., Kibler, B., Dudley, J. M., & Akhmediev, N. (2014). Hydrodynamics of periodic breathers. Philosophical Transactions of the Royal Society of London A, 372, 20140,005.CrossRef
12.
go back to reference Crawford, D. R., Saffman, P. G., & Yuen, H. C. (1980). Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves. Wave Motion, 2, 1–16.CrossRef Crawford, D. R., Saffman, P. G., & Yuen, H. C. (1980). Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves. Wave Motion, 2, 1–16.CrossRef
13.
go back to reference Davey, A. (1972). The propagation of a weak nonlinear wave. Journal of Fluid Mechanics, 53, 769–781.CrossRef Davey, A. (1972). The propagation of a weak nonlinear wave. Journal of Fluid Mechanics, 53, 769–781.CrossRef
14.
go back to reference Dommermuth, D. (2000). The initialization of nonlinear waves using an adjustment scheme. Wave Motion, 32, 307–317.CrossRef Dommermuth, D. (2000). The initialization of nonlinear waves using an adjustment scheme. Wave Motion, 32, 307–317.CrossRef
15.
go back to reference Donelan, M. A., & Magnusson, A. K. (2017). The making of the Andrea wave and other rogues. Scientific Reports, 7, 44,124.CrossRef Donelan, M. A., & Magnusson, A. K. (2017). The making of the Andrea wave and other rogues. Scientific Reports, 7, 44,124.CrossRef
16.
go back to reference Draper, L. (1964). ‘Freak’ ocean waves. Oceanus, 10, 13–15. Draper, L. (1964). ‘Freak’ ocean waves. Oceanus, 10, 13–15.
17.
go back to reference Dysthe, K., Krogstad, H. E., & Müller, P. (2008). Oceanic rogue waves. Annual Review of Fluid Mechanics, 40, 287–310.CrossRef Dysthe, K., Krogstad, H. E., & Müller, P. (2008). Oceanic rogue waves. Annual Review of Fluid Mechanics, 40, 287–310.CrossRef
18.
go back to reference Dysthe, K. B. (1979). Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proceedings of the Royal Society of London A, 369, 105–114.CrossRef Dysthe, K. B. (1979). Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proceedings of the Royal Society of London A, 369, 105–114.CrossRef
19.
go back to reference Dysthe, K. B., & Trulsen, K. (1999). Note on breather type solutions of the NLS as models for freak-waves. Physica Scripta, T82, 48–52.CrossRef Dysthe, K. B., & Trulsen, K. (1999). Note on breather type solutions of the NLS as models for freak-waves. Physica Scripta, T82, 48–52.CrossRef
20.
go back to reference Fedele, F., Brennan, J., Ponce de León, S., Dudley, J., & Dias, F. (2016). Real world ocean rogue waves explained without the modulational instability. Scientific Reports, 6, 27,715.CrossRef Fedele, F., Brennan, J., Ponce de León, S., Dudley, J., & Dias, F. (2016). Real world ocean rogue waves explained without the modulational instability. Scientific Reports, 6, 27,715.CrossRef
21.
go back to reference Gramstad, O., & Trulsen, K. (2007). Influence of crest and group length on the occurrence of freak waves. Journal of Fluid Mechanics, 582, 463–472.CrossRef Gramstad, O., & Trulsen, K. (2007). Influence of crest and group length on the occurrence of freak waves. Journal of Fluid Mechanics, 582, 463–472.CrossRef
22.
go back to reference Gramstad, O., Zeng, H., Trulsen, K., & Pedersen, G. K. (2013). Freak waves in weakly nonlinear unidirectional wave trains over a sloping bottom in shallow water. Physics of Fluid, 25, 122103.CrossRef Gramstad, O., Zeng, H., Trulsen, K., & Pedersen, G. K. (2013). Freak waves in weakly nonlinear unidirectional wave trains over a sloping bottom in shallow water. Physics of Fluid, 25, 122103.CrossRef
23.
go back to reference Hasimoto, H., & Ono, H. (1972). Nonlinear modulation of gravity waves. Journal of the Physical Society of Japan, 33, 805–811.CrossRef Hasimoto, H., & Ono, H. (1972). Nonlinear modulation of gravity waves. Journal of the Physical Society of Japan, 33, 805–811.CrossRef
24.
go back to reference Haver, S. (2000). Evidences of the existence of freak waves. In: 2000 Rogue Waves (pp. 129–140). Ifremer. Haver, S. (2000). Evidences of the existence of freak waves. In: 2000 Rogue Waves (pp. 129–140). Ifremer.
25.
go back to reference Haver, S. (2004). A possible freak wave event measured at the Draupner jacket Januar 1 1995. Rogue Waves, 2004, 1–8. Haver, S. (2004). A possible freak wave event measured at the Draupner jacket Januar 1 1995. Rogue Waves, 2004, 1–8.
26.
go back to reference Janssen, P. A. E. M. (2003). Nonlinear four-wave interactions and freak waves. Journal of Physical Oceanography, 33, 863–884.CrossRef Janssen, P. A. E. M. (2003). Nonlinear four-wave interactions and freak waves. Journal of Physical Oceanography, 33, 863–884.CrossRef
27.
go back to reference Kharif, C., Pelinovsky, E., Slunyaev, A. (2009). Rogue waves in the ocean. Springer Kharif, C., Pelinovsky, E., Slunyaev, A. (2009). Rogue waves in the ocean. Springer
28.
go back to reference Kuznetsov, E. A. (1977). Solitons in a parametrically unstable plasma. Soviet physics, Doklady, 22, 507–508. Kuznetsov, E. A. (1977). Solitons in a parametrically unstable plasma. Soviet physics, Doklady, 22, 507–508.
29.
go back to reference Longuet-Higgins, M. S. (1963). The effect of non-linearities on statistical distributions in the theory of sea waves. Journal of Fluid Mechanics, 17, 459–480.CrossRef Longuet-Higgins, M. S. (1963). The effect of non-linearities on statistical distributions in the theory of sea waves. Journal of Fluid Mechanics, 17, 459–480.CrossRef
30.
go back to reference Ma, Y. C. (1979). The perturbed plane-wave solutions of the cubic Schrödinger equation. Studies in Applied Mathematics, 60, 43–58.CrossRef Ma, Y. C. (1979). The perturbed plane-wave solutions of the cubic Schrödinger equation. Studies in Applied Mathematics, 60, 43–58.CrossRef
31.
go back to reference Magnusson, A. K., & Donelan, M. A. (2013). The Andrea wave characteristics of a measured North Sea rogue wave. Journal of Offshore Mechanics and Arctic Engineering, 135, 031,108.CrossRef Magnusson, A. K., & Donelan, M. A. (2013). The Andrea wave characteristics of a measured North Sea rogue wave. Journal of Offshore Mechanics and Arctic Engineering, 135, 031,108.CrossRef
32.
go back to reference Mallory, J. K. (1974). Abnormal waves on the south east coast of South Africa. The International Hydrographic Review, 51, 99–129. Mallory, J. K. (1974). Abnormal waves on the south east coast of South Africa. The International Hydrographic Review, 51, 99–129.
33.
go back to reference Masuda, A., Kuo, Y. Y., & Mitsuyasu, H. (1979). On the dispersion relation of random gravity waves. Part 1. Theoretical framework. Journal of Fluid Mechanics, 92, 717–730.CrossRef Masuda, A., Kuo, Y. Y., & Mitsuyasu, H. (1979). On the dispersion relation of random gravity waves. Part 1. Theoretical framework. Journal of Fluid Mechanics, 92, 717–730.CrossRef
34.
go back to reference Molin, B., Remy, F., Kimmoun, O., & Jamois, E. (2005). The role of tertiary wave interactions in wave-body problems. Journal of Fluid Mechanics, 528, 323–354.CrossRef Molin, B., Remy, F., Kimmoun, O., & Jamois, E. (2005). The role of tertiary wave interactions in wave-body problems. Journal of Fluid Mechanics, 528, 323–354.CrossRef
35.
go back to reference Molin, B., Kimmoun, O., Remy, F., & Chatjigeorgiou, I. K. (2014). Third-order effects in wave-body interaction. European Journal of Mechanics-B/Fluids, 47, 132–144.CrossRef Molin, B., Kimmoun, O., Remy, F., & Chatjigeorgiou, I. K. (2014). Third-order effects in wave-body interaction. European Journal of Mechanics-B/Fluids, 47, 132–144.CrossRef
36.
go back to reference Onorato, M., & Suret, P. (2016). Twenty years of progresses in oceanic rogue waves: the role played by weakly nonlinear models. Natural Hazards, 84, 541–548.CrossRef Onorato, M., & Suret, P. (2016). Twenty years of progresses in oceanic rogue waves: the role played by weakly nonlinear models. Natural Hazards, 84, 541–548.CrossRef
37.
go back to reference Onorato, M., Osborne, A. R., Serio, M., & Bertone, S. (2001). Freak waves in random oceanic sea states. Physical Review Letters, 86, 5831–5834.CrossRef Onorato, M., Osborne, A. R., Serio, M., & Bertone, S. (2001). Freak waves in random oceanic sea states. Physical Review Letters, 86, 5831–5834.CrossRef
38.
go back to reference Onorato, M., Osborne, A. R., & Serio, M. (2002a). Extreme wave events in directional, random oceanic sea states. Physics of Fluids, 14, L25–L28.CrossRef Onorato, M., Osborne, A. R., & Serio, M. (2002a). Extreme wave events in directional, random oceanic sea states. Physics of Fluids, 14, L25–L28.CrossRef
39.
go back to reference Onorato, M., Osborne, A. R., Serio, M., Resio, D., Pushkarev, A., Zakharov, V. E., et al. (2002b). Freely decaying weak turbulence for sea surface gravity waves. Physical Review Letters, 89(14), 144,501.CrossRef Onorato, M., Osborne, A. R., Serio, M., Resio, D., Pushkarev, A., Zakharov, V. E., et al. (2002b). Freely decaying weak turbulence for sea surface gravity waves. Physical Review Letters, 89(14), 144,501.CrossRef
40.
go back to reference Onorato, M., Osborne, A. R., Serio, M., Cavaleri, L., Brandini, C., & Stansberg, C. T. (2004). Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments. Physical Review Letters, 70, 1–4. Onorato, M., Osborne, A. R., Serio, M., Cavaleri, L., Brandini, C., & Stansberg, C. T. (2004). Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments. Physical Review Letters, 70, 1–4.
41.
go back to reference Onorato, M., Osborne, A. R., Serio, M., Cavaleri, L., Brandini, C., & Stansberg, C. T. (2006). Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves. European Journal of Mechanics - B/Fluids, 25, 586–601.CrossRef Onorato, M., Osborne, A. R., Serio, M., Cavaleri, L., Brandini, C., & Stansberg, C. T. (2006). Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves. European Journal of Mechanics - B/Fluids, 25, 586–601.CrossRef
42.
go back to reference Onorato, M., Cavaleri, L., Fouques, S., Gramstad, O., Janssen, P. A. E. M., Monbaliu, J., et al. (2009a). a) Statistical properties of mechanically generated surface gravity waves: A laboratory experiment in a three dimensional wave basin. Journal of Fluid Mechanics, 627, 235–257.CrossRef Onorato, M., Cavaleri, L., Fouques, S., Gramstad, O., Janssen, P. A. E. M., Monbaliu, J., et al. (2009a). a) Statistical properties of mechanically generated surface gravity waves: A laboratory experiment in a three dimensional wave basin. Journal of Fluid Mechanics, 627, 235–257.CrossRef
43.
go back to reference Onorato, M., Waseda, T., Toffoli, A., Cavaleri, L., Gramstad, O., Janssen, P. A. E. M., et al. (2009b). (b) Statistical properties of directional ocean waves: The role of the modulational instability in the formation of extreme events. Physical Review Letters, 102, 114,502.CrossRef Onorato, M., Waseda, T., Toffoli, A., Cavaleri, L., Gramstad, O., Janssen, P. A. E. M., et al. (2009b). (b) Statistical properties of directional ocean waves: The role of the modulational instability in the formation of extreme events. Physical Review Letters, 102, 114,502.CrossRef
44.
go back to reference Osborne, A. R., Onorato, M., & Serio, M. (2000). The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains. Physics Letters A, 275, 386–393.CrossRef Osborne, A. R., Onorato, M., & Serio, M. (2000). The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains. Physics Letters A, 275, 386–393.CrossRef
45.
go back to reference Peregrine, D. H. (1983). Water-waves, non-linear Schrödinger-equations and their solutions. Journal of the Australian Mathematical Society B, 25, 16–43.CrossRef Peregrine, D. H. (1983). Water-waves, non-linear Schrödinger-equations and their solutions. Journal of the Australian Mathematical Society B, 25, 16–43.CrossRef
46.
go back to reference Pierson, W. J. (1955). Wind generated gravity waves. Advances in Geophysics, 2, 93–178.CrossRef Pierson, W. J. (1955). Wind generated gravity waves. Advances in Geophysics, 2, 93–178.CrossRef
47.
go back to reference Raustøl, A. (2014). Freake bølger over variabelt dyp. Master’s thesis, University of Oslo Raustøl, A. (2014). Freake bølger over variabelt dyp. Master’s thesis, University of Oslo
48.
go back to reference Sand, S. E., Ottesen Hansen, N. E., Klinting, P., Gudmestad, O. T., & Sterndorff, M. J. (1990). Freak wave kinematics. In O. T. Gudmestad, A. Tørum (Ed.), Water Wave Kinematics (pp. 535–549). Kluwer. Sand, S. E., Ottesen Hansen, N. E., Klinting, P., Gudmestad, O. T., & Sterndorff, M. J. (1990). Freak wave kinematics. In O. T. Gudmestad, A. Tørum (Ed.), Water Wave Kinematics (pp. 535–549). Kluwer.
49.
go back to reference Sergeeva, A., Pelinovsky, E., & Talipova, T. (2011). Nonlinear random wave field in shallow water: variable Korteweg-de Vries framework. Natural Hazards and Earth System Sciences, 11, 323–330.CrossRef Sergeeva, A., Pelinovsky, E., & Talipova, T. (2011). Nonlinear random wave field in shallow water: variable Korteweg-de Vries framework. Natural Hazards and Earth System Sciences, 11, 323–330.CrossRef
50.
go back to reference Stokes, G. G. (1847). On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society, 8, 441–455. Stokes, G. G. (1847). On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society, 8, 441–455.
51.
go back to reference Tamura, H., Waseda, T., & Miyazawa, Y. (2009). Freakish sea state and swell-windsea coupling: Numerical study of the Suwa-Maru incident. Geophysical Research Letters, 36, L01,607.CrossRef Tamura, H., Waseda, T., & Miyazawa, Y. (2009). Freakish sea state and swell-windsea coupling: Numerical study of the Suwa-Maru incident. Geophysical Research Letters, 36, L01,607.CrossRef
52.
go back to reference Tayfun, M. A. (1980). Narrow-band nonlinear sea waves. Journal of Geophysical Research, 85, 1548–1552.CrossRef Tayfun, M. A. (1980). Narrow-band nonlinear sea waves. Journal of Geophysical Research, 85, 1548–1552.CrossRef
53.
go back to reference Tick, L. J. (1959). A non-linear random model of gravity waves I. Journal of Mathematics and Mechanics, 8, 643–651. Tick, L. J. (1959). A non-linear random model of gravity waves I. Journal of Mathematics and Mechanics, 8, 643–651.
54.
go back to reference Toffoli, A., & Bitner-Gregersen, E. M. (2011). Extreme and rogue waves in directional wave fields. Open Ocean Engineering Journal, 4, 24–33.CrossRef Toffoli, A., & Bitner-Gregersen, E. M. (2011). Extreme and rogue waves in directional wave fields. Open Ocean Engineering Journal, 4, 24–33.CrossRef
55.
go back to reference Trulsen, K., & Dysthe, K. B. (1996). A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion, 24, 281–289.CrossRef Trulsen, K., & Dysthe, K. B. (1996). A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion, 24, 281–289.CrossRef
56.
go back to reference Trulsen, K., & Dysthe, K. B. (1997). Freak waves—a three-dimensional wave simulation. In: Proceedings of the 21st Symposium on Naval Hydrodynamics, National Academy Press (pp 550–560). Trulsen, K., & Dysthe, K. B. (1997). Freak waves—a three-dimensional wave simulation. In: Proceedings of the 21st Symposium on Naval Hydrodynamics, National Academy Press (pp 550–560).
57.
go back to reference Trulsen, K., Kliakhandler, I., Dysthe, K. B., & Velarde, M. G. (2000). On weakly nonlinear modulation of waves on deep water. Physics of Fluids, 12, 2432–2437.CrossRef Trulsen, K., Kliakhandler, I., Dysthe, K. B., & Velarde, M. G. (2000). On weakly nonlinear modulation of waves on deep water. Physics of Fluids, 12, 2432–2437.CrossRef
58.
go back to reference Trulsen, K., Zeng, H., & Gramstad, O. (2012). Laboratory evidence of freak waves provoked by non-uniform bathymetry. Physics of Fluids, 24, 097,101.CrossRef Trulsen, K., Zeng, H., & Gramstad, O. (2012). Laboratory evidence of freak waves provoked by non-uniform bathymetry. Physics of Fluids, 24, 097,101.CrossRef
59.
go back to reference Trulsen, K., Nieto Borge, J. C., Gramstad, O., Aouf, L., & Lefèvre, J. M. (2015). Crossing sea state and rogue wave probability during the Prestige accident. Journal of Geophysical Research: Oceans, 120, 7113–7136. Trulsen, K., Nieto Borge, J. C., Gramstad, O., Aouf, L., & Lefèvre, J. M. (2015). Crossing sea state and rogue wave probability during the Prestige accident. Journal of Geophysical Research: Oceans, 120, 7113–7136.
60.
go back to reference Viotti, C., & Dias, F. (2014). Extreme waves induced by strong depth transitions: Fully nonlinear results. Physics of Fluids, 26, 051,705.CrossRef Viotti, C., & Dias, F. (2014). Extreme waves induced by strong depth transitions: Fully nonlinear results. Physics of Fluids, 26, 051,705.CrossRef
61.
go back to reference Viste-Ollestad I, Andersen TL, Oma N, Zachariassen S (2016) Granskingsrapport etter hendelse med fatalt utfall på COSL Innovator 30. desember 2015. Tech. rep., Petroleumstilsynet Viste-Ollestad I, Andersen TL, Oma N, Zachariassen S (2016) Granskingsrapport etter hendelse med fatalt utfall på COSL Innovator 30. desember 2015. Tech. rep., Petroleumstilsynet
62.
go back to reference Waseda, T., Tamura, H., & Kinoshita, T. (2012). Freakish sea index and sea states during ship accidents. Journal of Marine Science and Technology, 17, 305–314.CrossRef Waseda, T., Tamura, H., & Kinoshita, T. (2012). Freakish sea index and sea states during ship accidents. Journal of Marine Science and Technology, 17, 305–314.CrossRef
63.
go back to reference Waseda, T., In, K., Kiyomatsu, K., Tamura, H., Miyazawa, Y., & Iyama, K. (2014). Predicting freakish sea state with an operational third-generation wave model. Natural Hazards and Earth System Science, 14, 945–957.CrossRef Waseda, T., In, K., Kiyomatsu, K., Tamura, H., Miyazawa, Y., & Iyama, K. (2014). Predicting freakish sea state with an operational third-generation wave model. Natural Hazards and Earth System Science, 14, 945–957.CrossRef
64.
go back to reference Zakharov, V. E. (1968). Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanics and Technical Physics, 9, 190–194.CrossRef Zakharov, V. E. (1968). Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanics and Technical Physics, 9, 190–194.CrossRef
65.
go back to reference Zeng, H., & Trulsen, K. (2012). Evolution of skewness and kurtosis of weakly nonlinear unidirectional waves over a sloping bottom. Natural Hazards and Earth System Science, 12, 631–638.CrossRef Zeng, H., & Trulsen, K. (2012). Evolution of skewness and kurtosis of weakly nonlinear unidirectional waves over a sloping bottom. Natural Hazards and Earth System Science, 12, 631–638.CrossRef
Metadata
Title
Rogue Waves in the Ocean, the Role of Modulational Instability, and Abrupt Changes of Environmental Conditions that Can Provoke Non Equilibrium Wave Dynamics
Author
Karsten Trulsen
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-71934-4_17