Skip to main content
Top

2024 | OriginalPaper | Chapter

Role of Carbon Nanomaterials in the Prevention of Plant Disease

Authors : Mayur Mukut Murlidhar Sharma, Divya Kapoor, Pankaj Sharma, Azamal Husen

Published in: Carbon-Based Nanomaterials

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Global agricultural systems are facing a lot of challenges of reduced crop yield, continuous decline in agricultural land, scarcity of irrigation water, and continuously changing climatic conditions. Agriculture, as a monoculture practice, has also to face the continuous occurrence of plant disease and increasing attack of resistant plant pathogenic microbes. The current treatments for killing plant pathogenic microbes are not environmentally friendly and sometimes fail to protect plants. The scientific and farming community is looking at nanotechnology as a potential alternative. Although many nanotechnological tools have been reported as potential weapons to render plant protection, carbon nanoparticles have recently gained attention. Their non-toxic attitude, environmental acceptability, and ability to possess biocidal properties against a wide range of plant pathogenic microbes make them superior to other nanoparticles. They kill the host cell by rupturing the cell membrane and penetrating the fungal hyphae, followed by the precipitation of genetic material. The multifarious approach reduces the chances of resistance in pathogenic microbes. In the current chapter, we have discussed different types of nanomaterials finding their origin in carbon and their plant protective role during various diseases. We have also tried to highlight the potential mechanism governing their biocidal nature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Godeto YG, Ayele A, Ahmed IN, Husen A, Bachheti RK (2023) Medicinal plant-based metabolites in nanoparticles synthesis and their cutting-edge applications: an overview. In: Bachheti RK, Bachheti A (eds) Secondary metabolites from medicinal plants. CRC Press, Boca Raton, USA, pp 1–34 Godeto YG, Ayele A, Ahmed IN, Husen A, Bachheti RK (2023) Medicinal plant-based metabolites in nanoparticles synthesis and their cutting-edge applications: an overview. In: Bachheti RK, Bachheti A (eds) Secondary metabolites from medicinal plants. CRC Press, Boca Raton, USA, pp 1–34
2.
go back to reference Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9(229):1–24 Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9(229):1–24
3.
go back to reference Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12(1):1–16CrossRef Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12(1):1–16CrossRef
4.
go back to reference Husen A, Siddiqi KS (2023) Advances in smart nanomaterials and their applications. Elsevier Inc., Cambridge, MA, USA Husen A, Siddiqi KS (2023) Advances in smart nanomaterials and their applications. Elsevier Inc., Cambridge, MA, USA
7.
go back to reference Husen A (2022) Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Elsevier Inc., Cambridge, MA, USA Husen A (2022) Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Elsevier Inc., Cambridge, MA, USA
9.
go back to reference Kaphle A, Navya PN, Umapathi A, Daima HK (2018) Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environ Chem Lett 16:43–58CrossRef Kaphle A, Navya PN, Umapathi A, Daima HK (2018) Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environ Chem Lett 16:43–58CrossRef
10.
go back to reference Hazarika A, Yadav M, Yadav DK, Yadav HS (2022) An overview of the role of nanoparticles in sustainable agriculture. Biocatal Agric Biotechnol 43:102399CrossRef Hazarika A, Yadav M, Yadav DK, Yadav HS (2022) An overview of the role of nanoparticles in sustainable agriculture. Biocatal Agric Biotechnol 43:102399CrossRef
11.
go back to reference Sharma P, Pandey V, Sharma MM, Patra A, Singh B, Mehta S, Husen A (2021) A review on biosensors and nanosensors application in agroecosystems. Nanoscale Res Lett 16:1–24CrossRef Sharma P, Pandey V, Sharma MM, Patra A, Singh B, Mehta S, Husen A (2021) A review on biosensors and nanosensors application in agroecosystems. Nanoscale Res Lett 16:1–24CrossRef
12.
go back to reference Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRef Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRef
13.
go back to reference Loyal A, Pahuja SK, Rani N, Pooja, Srivastava RK, Sharma P (2023) Titanium oxide nanoparticles: plant response, interaction, phytotoxicity, and defence mechanisms. In: Nanomaterials and nanocomposites exposures to plants: response, interaction, phytotoxicity and defense mechanisms. Springer Nature Singapore, Singapore, pp 263–284 Loyal A, Pahuja SK, Rani N, Pooja, Srivastava RK, Sharma P (2023) Titanium oxide nanoparticles: plant response, interaction, phytotoxicity, and defence mechanisms. In: Nanomaterials and nanocomposites exposures to plants: response, interaction, phytotoxicity and defense mechanisms. Springer Nature Singapore, Singapore, pp 263–284
14.
go back to reference Loyal A, Pahuja SK, Sharma P, Malik A, Srivastava RK, Mehta S (2023) Potential environmental and human health implications of nanomaterials used in sustainable agriculture and soil improvement. In: Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Academic Press, pp 387–412 Loyal A, Pahuja SK, Sharma P, Malik A, Srivastava RK, Mehta S (2023) Potential environmental and human health implications of nanomaterials used in sustainable agriculture and soil improvement. In: Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Academic Press, pp 387–412
15.
go back to reference Kapoor D, Yadav S, Sharma MM, Sharma P (2023) Interaction between metal nanoparticles and PGPR on the plant growth and development. In: Nanomaterials and nanocomposites exposures to plants: response, interaction, phytotoxicity and defense mechanisms. Springer Nature Singapore, Singapore, pp 327–351 Kapoor D, Yadav S, Sharma MM, Sharma P (2023) Interaction between metal nanoparticles and PGPR on the plant growth and development. In: Nanomaterials and nanocomposites exposures to plants: response, interaction, phytotoxicity and defense mechanisms. Springer Nature Singapore, Singapore, pp 327–351
16.
go back to reference Sharma MM, Kapoor D, Rohilla R, Sharma P (2023) Nanomaterials and their toxicity to beneficial soil microbiota and fungi associated plants rhizosphere. In: Nanomaterials and nanocomposites exposures to plants: response, interaction, phytotoxicity and defense mechanisms. Springer Nature Singapore, Singapore, pp 353–380 Sharma MM, Kapoor D, Rohilla R, Sharma P (2023) Nanomaterials and their toxicity to beneficial soil microbiota and fungi associated plants rhizosphere. In: Nanomaterials and nanocomposites exposures to plants: response, interaction, phytotoxicity and defense mechanisms. Springer Nature Singapore, Singapore, pp 353–380
17.
go back to reference Sharma P, Sangwan S, Mehta S (2023) Emerging role of phosphate nanoparticles in agriculture practices. In: Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Academic Press, pp 71–97 Sharma P, Sangwan S, Mehta S (2023) Emerging role of phosphate nanoparticles in agriculture practices. In: Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Academic Press, pp 71–97
18.
go back to reference Singh S, Sangwan S, Sharma P, Devi P, Moond M (2021) Nanotechnology for sustainable agriculture: an emerging perspective. J Nanosci Nanotechnol 21(6):3453–3465PubMedCrossRef Singh S, Sangwan S, Sharma P, Devi P, Moond M (2021) Nanotechnology for sustainable agriculture: an emerging perspective. J Nanosci Nanotechnol 21(6):3453–3465PubMedCrossRef
21.
go back to reference Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815PubMedPubMedCentralCrossRef Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815PubMedPubMedCentralCrossRef
22.
go back to reference Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60(16):3991–3998PubMedCrossRef Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60(16):3991–3998PubMedCrossRef
23.
go back to reference Irshad MA, Nawaz R, ur Rehman MZ, Adrees M, Rizwan M, Ali S, Ahmad S, Tasleem S (2021) Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: a review. Ecotoxicol Environ Saf 212:111978 Irshad MA, Nawaz R, ur Rehman MZ, Adrees M, Rizwan M, Ali S, Ahmad S, Tasleem S (2021) Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: a review. Ecotoxicol Environ Saf 212:111978
24.
go back to reference Amna AB, Azeem MA, Qayyum A, Mustafa G, Ahmad MA, Javed MT, Chaudhary H (2022) Bio-fabricated silver nanoparticles: a sustainable approach for augmentation of plant growth and pathogen control. In: Sustainable agriculture reviews 53: nanoparticles: a new tool to enhance stress tolerance 2022 Jan 28. Springer International Publishing, Cham, pp 345–371 Amna AB, Azeem MA, Qayyum A, Mustafa G, Ahmad MA, Javed MT, Chaudhary H (2022) Bio-fabricated silver nanoparticles: a sustainable approach for augmentation of plant growth and pathogen control. In: Sustainable agriculture reviews 53: nanoparticles: a new tool to enhance stress tolerance 2022 Jan 28. Springer International Publishing, Cham, pp 345–371
25.
go back to reference Kasana RC, Panwar NR, Kaul RK, Kumar P (2016) Copper nanoparticles in agriculture: biological synthesis and antimicrobial activity. Nanosci Food Agric 3(2016):129–143CrossRef Kasana RC, Panwar NR, Kaul RK, Kumar P (2016) Copper nanoparticles in agriculture: biological synthesis and antimicrobial activity. Nanosci Food Agric 3(2016):129–143CrossRef
26.
go back to reference Rana K, Mittal J, Narang J, Mishra A, Pudake RN (2021) Graphene based electrochemical DNA biosensor for detection of false smut of rice (Ustilaginoidea virens). Plant Pathol J 37(3):291PubMedPubMedCentralCrossRef Rana K, Mittal J, Narang J, Mishra A, Pudake RN (2021) Graphene based electrochemical DNA biosensor for detection of false smut of rice (Ustilaginoidea virens). Plant Pathol J 37(3):291PubMedPubMedCentralCrossRef
27.
go back to reference Shojaei TR, Salleh MA, Tabatabaei M, Mobli H, Aghbashlo M, Rashid SA, Tan T (2019) Applications of nanotechnology and carbon nanoparticles in agriculture. In: Synthesis, technology and applications of carbon nanomaterials. Elsevier, pp 247–277 Shojaei TR, Salleh MA, Tabatabaei M, Mobli H, Aghbashlo M, Rashid SA, Tan T (2019) Applications of nanotechnology and carbon nanoparticles in agriculture. In: Synthesis, technology and applications of carbon nanomaterials. Elsevier, pp 247–277
28.
go back to reference Sangwan S, Sharma P, Wati L, Mehta S (2023) Effect of chitosan nanoparticles on growth and physiology of crop plants. In: Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Academic Press, pp 99–123 Sangwan S, Sharma P, Wati L, Mehta S (2023) Effect of chitosan nanoparticles on growth and physiology of crop plants. In: Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Academic Press, pp 99–123
29.
go back to reference Xin X, Nepal J, Wright AL, Yang X, He Z (2022) Carbon nanoparticles improve corn (Zea mays L.) growth and soil quality: comparison of foliar spray and soil drench application. J Clean Prod 363:132630 Xin X, Nepal J, Wright AL, Yang X, He Z (2022) Carbon nanoparticles improve corn (Zea mays L.) growth and soil quality: comparison of foliar spray and soil drench application. J Clean Prod 363:132630
30.
go back to reference Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56:111–133PubMedCrossRef Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56:111–133PubMedCrossRef
31.
go back to reference Belay T, Worku LA, Bachheti RK, Bachheti A, Husen A (2023) Nanomaterials: introduction, synthesis, characterization, and applications. In: Husen A, Siddiqi KS (eds) Advances in smart nanomaterials and their applications. Elsevier, Amsterdam, Netherlands, pp 1–21 Belay T, Worku LA, Bachheti RK, Bachheti A, Husen A (2023) Nanomaterials: introduction, synthesis, characterization, and applications. In: Husen A, Siddiqi KS (eds) Advances in smart nanomaterials and their applications. Elsevier, Amsterdam, Netherlands, pp 1–21
32.
go back to reference Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172PubMedPubMedCentralCrossRef Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172PubMedPubMedCentralCrossRef
33.
go back to reference Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7(4):2891–2897PubMedPubMedCentralCrossRef Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7(4):2891–2897PubMedPubMedCentralCrossRef
34.
go back to reference De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539PubMedCrossRef De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539PubMedCrossRef
36.
go back to reference Anzar N, Hasan R, Tyagi M, Yadav N, Narang J (2020) Carbon nanotube—a review on synthesis, properties and plethora of applications in the field of biomedical science. Sens Int 1:100003CrossRef Anzar N, Hasan R, Tyagi M, Yadav N, Narang J (2020) Carbon nanotube—a review on synthesis, properties and plethora of applications in the field of biomedical science. Sens Int 1:100003CrossRef
37.
go back to reference Safdar M, Kim W, Park S, Gwon Y, Kim YO, Kim J (2022) Engineering plants with carbon nanotubes: a sustainable agriculture approach. J Nanobiotechnol 20(1):1–30CrossRef Safdar M, Kim W, Park S, Gwon Y, Kim YO, Kim J (2022) Engineering plants with carbon nanotubes: a sustainable agriculture approach. J Nanobiotechnol 20(1):1–30CrossRef
38.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang DE, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669PubMedCrossRef Novoselov KS, Geim AK, Morozov SV, Jiang DE, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669PubMedCrossRef
41.
go back to reference Zhao D, Fang Z, Tang Y, Tao J (2020) Graphene oxide as an effective soil water retention agent can confer drought stress tolerance to Paeonia ostii without toxicity. Environ Sci Technol 54(13):8269–8279 Zhao D, Fang Z, Tang Y, Tao J (2020) Graphene oxide as an effective soil water retention agent can confer drought stress tolerance to Paeonia ostii without toxicity. Environ Sci Technol 54(13):8269–8279
42.
go back to reference Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H (2014) Slow-release fertilizer encapsulated by graphene oxide films. Chem Eng J 255:107–113CrossRef Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H (2014) Slow-release fertilizer encapsulated by graphene oxide films. Chem Eng J 255:107–113CrossRef
43.
go back to reference Kausar A (2021) Advances in condensation polymer containing zero-dimensional nanocarbon reinforcement—fullerene, carbon nano-onion, and nanodiamond. Polym-Plast Technol Mater 60(7):695–713 Kausar A (2021) Advances in condensation polymer containing zero-dimensional nanocarbon reinforcement—fullerene, carbon nano-onion, and nanodiamond. Polym-Plast Technol Mater 60(7):695–713
44.
go back to reference Shi H, Gu R, Xu W, Huang H, Xue L, Wang W, Zhang Y, Si W, Dong X (2019) Near-infrared light-harvesting fullerene-based nanoparticles for promoted synergetic tumor phototheranostics. ACS Appl Mater Interfaces 11(48):44970–44977PubMedCrossRef Shi H, Gu R, Xu W, Huang H, Xue L, Wang W, Zhang Y, Si W, Dong X (2019) Near-infrared light-harvesting fullerene-based nanoparticles for promoted synergetic tumor phototheranostics. ACS Appl Mater Interfaces 11(48):44970–44977PubMedCrossRef
45.
go back to reference Fan X, Soin N, Li H, Li H, Xia X, Geng J (2020) Fullerene (C60) nanowires: the preparation, characterization, and potential applications. Energy Environ Mater 3(4):469–491CrossRef Fan X, Soin N, Li H, Li H, Xia X, Geng J (2020) Fullerene (C60) nanowires: the preparation, characterization, and potential applications. Energy Environ Mater 3(4):469–491CrossRef
46.
go back to reference Stoilova O, Jérôme C, Detrembleur C, Mouithys-Mickalad A, Manolova N, Rashkov I, Jérôme R (2007) C60-containing nanostructured polymeric materials with potential biomedical applications. Polymer 48(7):1835–1843CrossRef Stoilova O, Jérôme C, Detrembleur C, Mouithys-Mickalad A, Manolova N, Rashkov I, Jérôme R (2007) C60-containing nanostructured polymeric materials with potential biomedical applications. Polymer 48(7):1835–1843CrossRef
47.
go back to reference Azizi-Lalabadi M, Hashemi H, Feng J, Jafari SM (2020) Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv Coll Interface Sci 284:102250CrossRef Azizi-Lalabadi M, Hashemi H, Feng J, Jafari SM (2020) Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv Coll Interface Sci 284:102250CrossRef
48.
go back to reference Panova GG, Kanash EV, Semenov KN, Charykov NA, Khomyakov YV, Anikina LM, Artem’eva AM, Kornyukhin DL, Vertebnyi VE, Sinyavina NG, Udalova OR (2018) Fullerene derivatives influence production process, growth and resistance to oxidative stress in barley and wheat plants. Sel’skokhozyaĭstvennaya Biol 53(1):38–49 Panova GG, Kanash EV, Semenov KN, Charykov NA, Khomyakov YV, Anikina LM, Artem’eva AM, Kornyukhin DL, Vertebnyi VE, Sinyavina NG, Udalova OR (2018) Fullerene derivatives influence production process, growth and resistance to oxidative stress in barley and wheat plants. Sel’skokhozyaĭstvennaya Biol 53(1):38–49
49.
50.
go back to reference Mykhailiv O, Zubyk H, Plonska-Brzezinska ME (2017) Carbon nano-onions: unique carbon nanostructures with fascinating properties and their potential applications. Inorg Chim Acta 468:49–66CrossRef Mykhailiv O, Zubyk H, Plonska-Brzezinska ME (2017) Carbon nano-onions: unique carbon nanostructures with fascinating properties and their potential applications. Inorg Chim Acta 468:49–66CrossRef
51.
go back to reference Sonkar SK, Roy M, Babar DG, Sarkar S (2012) Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale 4(24):7670–7675PubMedCrossRef Sonkar SK, Roy M, Babar DG, Sarkar S (2012) Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale 4(24):7670–7675PubMedCrossRef
52.
go back to reference Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N (2016) Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev 116(8):4850–4883PubMedCrossRef Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N (2016) Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev 116(8):4850–4883PubMedCrossRef
53.
go back to reference Sun X, Lei Y (2017) Fluorescent carbon dots and their sensing applications. TrAC, Trends Anal Chem 89:163–180CrossRef Sun X, Lei Y (2017) Fluorescent carbon dots and their sensing applications. TrAC, Trends Anal Chem 89:163–180CrossRef
54.
go back to reference Wang B, Huang J, Zhang M, Wang Y, Wang H, Ma Y, Zhao X, Wang X, Liu C, Huang H, Liu Y (2020) Carbon dots enable efficient delivery of functional DNA in plants. ACS Appl Bio Mater 3(12):8857–8864PubMedCrossRef Wang B, Huang J, Zhang M, Wang Y, Wang H, Ma Y, Zhao X, Wang X, Liu C, Huang H, Liu Y (2020) Carbon dots enable efficient delivery of functional DNA in plants. ACS Appl Bio Mater 3(12):8857–8864PubMedCrossRef
55.
go back to reference Li Y, Xu X, Wu Y, Zhuang J, Zhang X, Zhang H, Lei B, Hu C, Liu Y (2020) A review on the effects of carbon dots in plant systems. Mater Chem Front 4(2):437–448CrossRef Li Y, Xu X, Wu Y, Zhuang J, Zhang X, Zhang H, Lei B, Hu C, Liu Y (2020) A review on the effects of carbon dots in plant systems. Mater Chem Front 4(2):437–448CrossRef
56.
go back to reference Guirguis A, Yang W, Conlan XA, Kong L, Cahill DM, Wang Y (2023) Boosting plant photosynthesis with carbon dots: a critical review of performance and prospects. Small 28:2300671CrossRef Guirguis A, Yang W, Conlan XA, Kong L, Cahill DM, Wang Y (2023) Boosting plant photosynthesis with carbon dots: a critical review of performance and prospects. Small 28:2300671CrossRef
57.
go back to reference Gupta C, Prakash D, Gupta S (2017) Cancer treatment with nano-diamonds. Front Biosci (Schol Ed) 9:62–70PubMedCrossRef Gupta C, Prakash D, Gupta S (2017) Cancer treatment with nano-diamonds. Front Biosci (Schol Ed) 9:62–70PubMedCrossRef
58.
go back to reference Su LX, Lou Q, Jiao Z, Shan CX (2016) Plant cell imaging based on nanodiamonds with excitation-dependent fluorescence. Nanoscale Res Lett 11:1–7CrossRef Su LX, Lou Q, Jiao Z, Shan CX (2016) Plant cell imaging based on nanodiamonds with excitation-dependent fluorescence. Nanoscale Res Lett 11:1–7CrossRef
59.
go back to reference González-Grandío E, Demirer GS, Jackson CT, Yang D, Ebert S, Molawi K, Keller H, Landry MP (2021) Carbon nanotube biocompatibility in plants is determined by their surface chemistry. J Nanobiotechnol 19(1):1–5CrossRef González-Grandío E, Demirer GS, Jackson CT, Yang D, Ebert S, Molawi K, Keller H, Landry MP (2021) Carbon nanotube biocompatibility in plants is determined by their surface chemistry. J Nanobiotechnol 19(1):1–5CrossRef
60.
go back to reference Smirnova E, Gusev A, Zaytseva O, Sheina O, Tkachev A, Kuznetsova E, Lazareva E, Onishchenko G, Feofanov A, Kirpichnikov M (2012) Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng 6:132–138CrossRef Smirnova E, Gusev A, Zaytseva O, Sheina O, Tkachev A, Kuznetsova E, Lazareva E, Onishchenko G, Feofanov A, Kirpichnikov M (2012) Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng 6:132–138CrossRef
61.
go back to reference González-García Y, Cadenas-Pliego G, Alpuche-Solís ÁG, Cabrera RI, Juárez-Maldonado A (2021) Carbon nanotubes decrease the negative impact of Alternaria solani in tomato crop. Nanomaterials 11(5):1080PubMedPubMedCentralCrossRef González-García Y, Cadenas-Pliego G, Alpuche-Solís ÁG, Cabrera RI, Juárez-Maldonado A (2021) Carbon nanotubes decrease the negative impact of Alternaria solani in tomato crop. Nanomaterials 11(5):1080PubMedPubMedCentralCrossRef
62.
go back to reference Wang X, Liu X, Chen J, Han H, Yuan Z (2014) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798–806CrossRef Wang X, Liu X, Chen J, Han H, Yuan Z (2014) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798–806CrossRef
63.
go back to reference Wang X, Zhou Z, Chen F (2017) Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials 10(12):1375PubMedPubMedCentralCrossRef Wang X, Zhou Z, Chen F (2017) Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials 10(12):1375PubMedPubMedCentralCrossRef
64.
go back to reference Hao Y, Cao X, Ma C, Zhang Z, Zhao N, Ali A, Hou T, Xiang Z, Zhuang J, Wu S, Xing B (2017) Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front Plant Sci 8:1332PubMedPubMedCentralCrossRef Hao Y, Cao X, Ma C, Zhang Z, Zhao N, Ali A, Hou T, Xiang Z, Zhuang J, Wu S, Xing B (2017) Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front Plant Sci 8:1332PubMedPubMedCentralCrossRef
65.
go back to reference Hao Y, Fang P, Ma C, White JC, Xiang Z, Wang H, Zhang Z, Rui Y, Xing B (2019) Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environ Res 170:1–6PubMedCrossRef Hao Y, Fang P, Ma C, White JC, Xiang Z, Wang H, Zhang Z, Rui Y, Xing B (2019) Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environ Res 170:1–6PubMedCrossRef
66.
go back to reference Adeel M, Farooq T, White JC, Hao Y, He Z, Rui Y (2021) Carbon-based nanomaterials suppress tobacco mosaic virus (TMV) infection and induce resistance in Nicotiana benthamiana. J Hazard Mater 404:124167PubMedCrossRef Adeel M, Farooq T, White JC, Hao Y, He Z, Rui Y (2021) Carbon-based nanomaterials suppress tobacco mosaic virus (TMV) infection and induce resistance in Nicotiana benthamiana. J Hazard Mater 404:124167PubMedCrossRef
67.
go back to reference Hao Y, Yuan W, Ma C, White JC, Zhang Z, Adeel M, Zhou T, Rui Y, Xing B (2018) Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environ Sci Nano 5(7):1685–1693CrossRef Hao Y, Yuan W, Ma C, White JC, Zhang Z, Adeel M, Zhou T, Rui Y, Xing B (2018) Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environ Sci Nano 5(7):1685–1693CrossRef
68.
go back to reference Wang X, Liu X, Han H (2013) Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf, B 103:136–142CrossRef Wang X, Liu X, Han H (2013) Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf, B 103:136–142CrossRef
69.
go back to reference Chen Z, Zhao J, Cao J, Zhao Y, Huang J, Zheng Z, Li W, Jiang S, Qiao J, Xing B, Zhang J (2022) Opportunities for graphene, single-walled and multi-walled carbon nanotube applications in agriculture: a review. Crop Des 1(1):100006 Chen Z, Zhao J, Cao J, Zhao Y, Huang J, Zheng Z, Li W, Jiang S, Qiao J, Xing B, Zhang J (2022) Opportunities for graphene, single-walled and multi-walled carbon nanotube applications in agriculture: a review. Crop Des 1(1):100006
70.
go back to reference Wang X, Xie H, Wang Z, He K (2019) Graphene oxide as a pesticide delivery vector for enhancing acaricidal activity against spider mites. Colloids Surf, B 173:632–638CrossRef Wang X, Xie H, Wang Z, He K (2019) Graphene oxide as a pesticide delivery vector for enhancing acaricidal activity against spider mites. Colloids Surf, B 173:632–638CrossRef
71.
go back to reference Zhang X, Cao H, Zhao J, Wang H, Xing B, Chen Z, Li X, Zhang J (2021) Graphene oxide exhibited positive effects on the growth of Aloe vera L. Physiol Mol Biol Plants 27:815–824PubMedPubMedCentralCrossRef Zhang X, Cao H, Zhao J, Wang H, Xing B, Chen Z, Li X, Zhang J (2021) Graphene oxide exhibited positive effects on the growth of Aloe vera L. Physiol Mol Biol Plants 27:815–824PubMedPubMedCentralCrossRef
72.
go back to reference Chen Z, Zhao J, Song J, Han S, Du Y, Qiao Y, Liu Z, Qiao J, Li W, Li J, Wang H (2021) Influence of graphene on the multiple metabolic pathways of Zea mays roots based on transcriptome analysis. PLoS ONE 16(1):e0244856PubMedPubMedCentralCrossRef Chen Z, Zhao J, Song J, Han S, Du Y, Qiao Y, Liu Z, Qiao J, Li W, Li J, Wang H (2021) Influence of graphene on the multiple metabolic pathways of Zea mays roots based on transcriptome analysis. PLoS ONE 16(1):e0244856PubMedPubMedCentralCrossRef
73.
go back to reference He Y, Hu R, Zhong Y, Zhao X, Chen Q, Zhu H (2018) Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res 11:1928–1937CrossRef He Y, Hu R, Zhong Y, Zhao X, Chen Q, Zhu H (2018) Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res 11:1928–1937CrossRef
74.
go back to reference Zhang M, Gao B, Chen J, Li Y (2015) Effects of graphene on seed germination and seedling growth. J Nanopart Res 17:1–8CrossRef Zhang M, Gao B, Chen J, Li Y (2015) Effects of graphene on seed germination and seedling growth. J Nanopart Res 17:1–8CrossRef
75.
go back to reference Siddiqui ZA, Parveen A, Ahmad L, Hashem A (2019) Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Sci Hortic 249:374–382CrossRef Siddiqui ZA, Parveen A, Ahmad L, Hashem A (2019) Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Sci Hortic 249:374–382CrossRef
76.
go back to reference El-Abeid SE, Ahmed Y, Daròs JA, Mohamed MA (2020) Reduced graphene oxide nanosheet-decorated copper oxide nanoparticles: a potent antifungal nanocomposite against fusarium root rot and wilt diseases of tomato and pepper plants. Nanomaterials 10(5):1001PubMedPubMedCentralCrossRef El-Abeid SE, Ahmed Y, Daròs JA, Mohamed MA (2020) Reduced graphene oxide nanosheet-decorated copper oxide nanoparticles: a potent antifungal nanocomposite against fusarium root rot and wilt diseases of tomato and pepper plants. Nanomaterials 10(5):1001PubMedPubMedCentralCrossRef
77.
go back to reference Chen J, Sun L, Cheng Y, Lu Z, Shao K, Li T, Hu C, Han H (2016) Graphene oxide-silver nanocomposite: novel agricultural antifungal agent against Fusarium graminearum for crop disease prevention. ACS Appl Mater Interfaces 8(36):24057–24070PubMedCrossRef Chen J, Sun L, Cheng Y, Lu Z, Shao K, Li T, Hu C, Han H (2016) Graphene oxide-silver nanocomposite: novel agricultural antifungal agent against Fusarium graminearum for crop disease prevention. ACS Appl Mater Interfaces 8(36):24057–24070PubMedCrossRef
78.
go back to reference Chen J, Wang X, Han H (2013) A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae. J Nanoparticle Res 15:1–4CrossRef Chen J, Wang X, Han H (2013) A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae. J Nanoparticle Res 15:1–4CrossRef
79.
go back to reference Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13(1):1CrossRef Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13(1):1CrossRef
80.
go back to reference He A, Jiang J, Ding J, Sheng GD (2021) Blocking effect of fullerene nanoparticles (nC60) on the plant cell structure and its phytotoxicity. Chemosphere 278:130474PubMedCrossRef He A, Jiang J, Ding J, Sheng GD (2021) Blocking effect of fullerene nanoparticles (nC60) on the plant cell structure and its phytotoxicity. Chemosphere 278:130474PubMedCrossRef
81.
go back to reference Li H, Huang J, Lu F, Liu Y, Song Y, Sun Y, Zhong J, Huang H, Wang Y, Li S, Lifshitz Y (2018) Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Appl Bio Mater 1(3):663–672PubMedCrossRef Li H, Huang J, Lu F, Liu Y, Song Y, Sun Y, Zhong J, Huang H, Wang Y, Li S, Lifshitz Y (2018) Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Appl Bio Mater 1(3):663–672PubMedCrossRef
82.
go back to reference El-Ganainy SM, Mosa MA, Ismail AM, Khalil AE (2023) Lignin-loaded carbon nanoparticles as a promising control agent against Fusarium verticillioides in maize: physiological and biochemical analyses. Polymers 15(5):1193PubMedPubMedCentralCrossRef El-Ganainy SM, Mosa MA, Ismail AM, Khalil AE (2023) Lignin-loaded carbon nanoparticles as a promising control agent against Fusarium verticillioides in maize: physiological and biochemical analyses. Polymers 15(5):1193PubMedPubMedCentralCrossRef
83.
go back to reference Shekhawat GS, Mahawar L, Rajput P, Rajput VD, Minkina T, Singh RK (2021) Role of engineered carbon nanoparticles (CNPs) in promoting growth and metabolism of Vigna radiata (L.) Wilczek: insights into the biochemical and physiological responses. Plants 10(7):1317 Shekhawat GS, Mahawar L, Rajput P, Rajput VD, Minkina T, Singh RK (2021) Role of engineered carbon nanoparticles (CNPs) in promoting growth and metabolism of Vigna radiata (L.) Wilczek: insights into the biochemical and physiological responses. Plants 10(7):1317
84.
go back to reference Liang T, Yin Q, Zhang Y, Wang B, Guo W, Wang J, Xie J (2013) Effects of carbon nanoparticles application on the growth, physiological characteristics and nutrient accumulation in tobacco plants. J Food Agric Environ 11(3/4):954–958 Liang T, Yin Q, Zhang Y, Wang B, Guo W, Wang J, Xie J (2013) Effects of carbon nanoparticles application on the growth, physiological characteristics and nutrient accumulation in tobacco plants. J Food Agric Environ 11(3/4):954–958
85.
go back to reference Kumar A, Singh A, Panigrahy M, Sahoo PK, Panigrahi KC (2018) Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana. Plant Cell Rep 37:901–912PubMedCrossRef Kumar A, Singh A, Panigrahy M, Sahoo PK, Panigrahi KC (2018) Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana. Plant Cell Rep 37:901–912PubMedCrossRef
86.
go back to reference Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17CrossRef Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17CrossRef
87.
go back to reference Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3(44):21743–21752CrossRef Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3(44):21743–21752CrossRef
88.
go back to reference Zhang H, Yue M, Zheng X, Xie C, Zhou H, Li L (2017) Physiological effects of single- and multi-walled carbon nanotubes on rice seedlings. IEEE Trans Nanobiosci 16(7):563–570CrossRef Zhang H, Yue M, Zheng X, Xie C, Zhou H, Li L (2017) Physiological effects of single- and multi-walled carbon nanotubes on rice seedlings. IEEE Trans Nanobiosci 16(7):563–570CrossRef
Metadata
Title
Role of Carbon Nanomaterials in the Prevention of Plant Disease
Authors
Mayur Mukut Murlidhar Sharma
Divya Kapoor
Pankaj Sharma
Azamal Husen
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0240-4_6

Premium Partners