Skip to main content
Top
Published in: Journal of Nanoparticle Research 3/2020

01-03-2020 | Research Paper

Room temperature oxidation of Si nanocrystals at dry and wet air

Authors: Vadim M. Popelensky, Sergey G. Dorofeev, Nikolay N. Kononov, Sergey S. Bubenov, Alexander A. Vinokurov

Published in: Journal of Nanoparticle Research | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Oxidation of HF vapor-etched nanocrystalline silicon films, prepared by drop coating from nanocrystalline Si sol in acetonitrile, was studied. Oxidation of nanocrystalline silicon at room temperature in air with 5% and 86% relative humidity was observed by means of infrared spectroscopy for 2 days. The change in film mass after 15 h of oxidation was determined using quartz crystal microbalance. In dry air, film mass and integral intensity of bands attributed to vibrations in Si3 − x–Si–Hx and Si–O–Si groups changed linearly with time. In humid air, intensity of in Si3 − x–Si–Hx band decays exponentially and intensity of Si–O–Si band increases as a square root of oxidation time. Film mass gain after 15 h of oxidation corresponds to an average oxide layer thickness of 0.02 nm in dry air and 0.51 nm in wet air.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Conibeer G, Green M, Corkish R, Cho Y, Cho E, Jiang C, Fangsuwannarak T, Pink E, Huang Y, Puzzer T, Trupke T, Richards B, Shalav A, Lin K (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511:654–662CrossRef Conibeer G, Green M, Corkish R, Cho Y, Cho E, Jiang C, Fangsuwannarak T, Pink E, Huang Y, Puzzer T, Trupke T, Richards B, Shalav A, Lin K (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511:654–662CrossRef
go back to reference Falcao BP, Leitao JP, Soares MR, Ricardo L, Aguas H, Martins R, Pereira RN (2019) Oxidation and strain in free-standing silicon nanocrystals. Phys Rev Appl 11:2CrossRef Falcao BP, Leitao JP, Soares MR, Ricardo L, Aguas H, Martins R, Pereira RN (2019) Oxidation and strain in free-standing silicon nanocrystals. Phys Rev Appl 11:2CrossRef
go back to reference Froner E, Adamo R, Gaburro Z, Margesin B, Pavesi L, Rigo A, Scarpa M (2006) Luminescence of porous silicon derived nanocrystals dispersed in water: dependence on initial porous silicon oxidation. J Nanopart Res 8:1071–1074CrossRef Froner E, Adamo R, Gaburro Z, Margesin B, Pavesi L, Rigo A, Scarpa M (2006) Luminescence of porous silicon derived nanocrystals dispersed in water: dependence on initial porous silicon oxidation. J Nanopart Res 8:1071–1074CrossRef
go back to reference Gaburroa Z, Puckera G, Belluttib P, Pavesi L (2000) Electroluminescence in MOS structures with Si/SiO2 nanometricmultilayers. Solid State Commun 114:33–37CrossRef Gaburroa Z, Puckera G, Belluttib P, Pavesi L (2000) Electroluminescence in MOS structures with Si/SiO2 nanometricmultilayers. Solid State Commun 114:33–37CrossRef
go back to reference Grove AS, Deal BE (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770–3778CrossRef Grove AS, Deal BE (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770–3778CrossRef
go back to reference Hess DW, Deal BE (1977) Kinetics of the thermal oxidation of silicon O2/HCl mixtures. J Electrochem Soc 124:735–739CrossRef Hess DW, Deal BE (1977) Kinetics of the thermal oxidation of silicon O2/HCl mixtures. J Electrochem Soc 124:735–739CrossRef
go back to reference Ji X, Wang H, Song B, Chu B, He Y (2018) Silicon nanomaterials for biosensing and bioimaging analysis. Front Chem 6:38CrossRef Ji X, Wang H, Song B, Chu B, He Y (2018) Silicon nanomaterials for biosensing and bioimaging analysis. Front Chem 6:38CrossRef
go back to reference Kanemitsu Y (1995) Light emission from porous silicon and related materials. Phys Rep 263:1–91CrossRef Kanemitsu Y (1995) Light emission from porous silicon and related materials. Phys Rep 263:1–91CrossRef
go back to reference Khalilov U, Neyts EC, Pourtois G, van Duin ACT (2011) Can we control the thickness of ultrathin silica layers by hyperthermal silicon oxidation at room temperature. J Phys Chem C 115:24839–24848CrossRef Khalilov U, Neyts EC, Pourtois G, van Duin ACT (2011) Can we control the thickness of ultrathin silica layers by hyperthermal silicon oxidation at room temperature. J Phys Chem C 115:24839–24848CrossRef
go back to reference Koshida N, Matsumoto N (2003) Fabrication and quantum properties of nanostructured silicon. Mater Sci Eng R Rep 40:169–205CrossRef Koshida N, Matsumoto N (2003) Fabrication and quantum properties of nanostructured silicon. Mater Sci Eng R Rep 40:169–205CrossRef
go back to reference Kovalevskii AA, Shevchenok AA, Strogova AS (2008) Oxidation behavior of micro- and nanostructured silicon powders. Inorg Mater 44:445–449CrossRef Kovalevskii AA, Shevchenok AA, Strogova AS (2008) Oxidation behavior of micro- and nanostructured silicon powders. Inorg Mater 44:445–449CrossRef
go back to reference Kuz’min GP, Kononov NN, Rozhanskii NV, Surkov AA, Tikhonevich OV (2012) The formation of nanoparticles in laser-induced SiH4 gas reactions. Mater Lett 68:504–506CrossRef Kuz’min GP, Kononov NN, Rozhanskii NV, Surkov AA, Tikhonevich OV (2012) The formation of nanoparticles in laser-induced SiH4 gas reactions. Mater Lett 68:504–506CrossRef
go back to reference Litvinenko S, Alekseev S, Lysenko V, Venturello A, Geobaldo F, Gulina L, Kuznetsov G, Tolstoy V, Skryshevsky V, Garrone E, Barbier D (2010) Hydrogen production from nano-porous Si powder formed by stain etching. Int J Hydrog Energy 35:6773–6778CrossRef Litvinenko S, Alekseev S, Lysenko V, Venturello A, Geobaldo F, Gulina L, Kuznetsov G, Tolstoy V, Skryshevsky V, Garrone E, Barbier D (2010) Hydrogen production from nano-porous Si powder formed by stain etching. Int J Hydrog Energy 35:6773–6778CrossRef
go back to reference Massoud HZ, Plummer JD (1985) Thermal oxidation of silicon in dry oxygen growth-rate enhancement in the thin regime. J Electrochem Soc 132:2685–2693CrossRef Massoud HZ, Plummer JD (1985) Thermal oxidation of silicon in dry oxygen growth-rate enhancement in the thin regime. J Electrochem Soc 132:2685–2693CrossRef
go back to reference Massoud HZ, Plummer JD (1987) Analytical relationship for the oxidation of silicon in dry oxygen in the thin-film regime. J Appl Phys 62:3416–3422CrossRef Massoud HZ, Plummer JD (1987) Analytical relationship for the oxidation of silicon in dry oxygen in the thin-film regime. J Appl Phys 62:3416–3422CrossRef
go back to reference Melanie LM, Kenneth KC, Kristine L, Gilberto C, Geoffrey AO (2014) Size-dependent chemical reactivity of silicon nanocrystals with water and oxygen. J Phys Chem 119:826–834 Melanie LM, Kenneth KC, Kristine L, Gilberto C, Geoffrey AO (2014) Size-dependent chemical reactivity of silicon nanocrystals with water and oxygen. J Phys Chem 119:826–834
go back to reference Morita M, Ohmi T, Hasegawa E, Kawakami M, Ohwada M (1990) Growth of native oxide on a silicon surface. J Appl Phys 68:1272–1280CrossRef Morita M, Ohmi T, Hasegawa E, Kawakami M, Ohwada M (1990) Growth of native oxide on a silicon surface. J Appl Phys 68:1272–1280CrossRef
go back to reference Ni Z, Zhou S, Zhao S, Peng W, Yang D, Pi XD (2019) Silicon nanocrystals: unfading silicon materials for optoelectronics. Mater Sci Eng R Rep 138:85–117CrossRef Ni Z, Zhou S, Zhao S, Peng W, Yang D, Pi XD (2019) Silicon nanocrystals: unfading silicon materials for optoelectronics. Mater Sci Eng R Rep 138:85–117CrossRef
go back to reference Niesar S, Pereira RN, Stegner AR, Erhard N, Hoeb M, Baumer A, Wiggers H, Brandt MS, Stutzmann M (2012) Low-cost post-growth treatments of crystalline silicon nanoparticles improving surface and electronic properties. Adv Funct Mater 22:1190–1198CrossRef Niesar S, Pereira RN, Stegner AR, Erhard N, Hoeb M, Baumer A, Wiggers H, Brandt MS, Stutzmann M (2012) Low-cost post-growth treatments of crystalline silicon nanoparticles improving surface and electronic properties. Adv Funct Mater 22:1190–1198CrossRef
go back to reference Niwano M, Kageyama J, Kurita K (1994) Infrared spectroscopy study of initial stages of oxidation of hydrogen terminated Si surfaces stored in air. J Appl Phys 76:2157–2162CrossRef Niwano M, Kageyama J, Kurita K (1994) Infrared spectroscopy study of initial stages of oxidation of hydrogen terminated Si surfaces stored in air. J Appl Phys 76:2157–2162CrossRef
go back to reference Ostraat ML, De Blauwe JW, Green ML, Bell LD, Brongersma ML, Casperson J, Flagan RC, Atwater HA (2001) Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Appl Phys Lett 79:433–435CrossRef Ostraat ML, De Blauwe JW, Green ML, Bell LD, Brongersma ML, Casperson J, Flagan RC, Atwater HA (2001) Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Appl Phys Lett 79:433–435CrossRef
go back to reference Pai PG, Chao SS, Takagi Y, Lucovsky G (1986) Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition. J Vac Sci Technol 4:689–694CrossRef Pai PG, Chao SS, Takagi Y, Lucovsky G (1986) Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition. J Vac Sci Technol 4:689–694CrossRef
go back to reference Pi XD, Mangolini L, Campbell SA, Kortshagen U (2007) Room-temperature atmospheric oxidation of Si nanocrystals after HF etching. Phys Rev B 75:085423CrossRef Pi XD, Mangolini L, Campbell SA, Kortshagen U (2007) Room-temperature atmospheric oxidation of Si nanocrystals after HF etching. Phys Rev B 75:085423CrossRef
go back to reference Raider SI, Flitsch R, Palmer MJ (1975) Oxide growth on etched silicon in air at room temperature. J Electrochem Soc 122:413–418CrossRef Raider SI, Flitsch R, Palmer MJ (1975) Oxide growth on etched silicon in air at room temperature. J Electrochem Soc 122:413–418CrossRef
go back to reference Sprung C, Heimfarth J, Erler J, Ziegenbalg G, Patzold C, Singliar U, Frohlich P, Muller A, Schubert C, Roewer G, Bohmhammel K, Mertens F, Seidel J, Bertau M, Kroke M (2015) Hydrogen terminated silicon nanopowders: gas phase synthesis oxidation behavior and Si-H reactivity. Silicon 7:31–42CrossRef Sprung C, Heimfarth J, Erler J, Ziegenbalg G, Patzold C, Singliar U, Frohlich P, Muller A, Schubert C, Roewer G, Bohmhammel K, Mertens F, Seidel J, Bertau M, Kroke M (2015) Hydrogen terminated silicon nanopowders: gas phase synthesis oxidation behavior and Si-H reactivity. Silicon 7:31–42CrossRef
go back to reference Weldon MK, Queeney KT, Gurevich AB, Chabal YJ, Raghavachari K (2000) Si–H bending modes as a probe of local chemical structure: thermal and chemical routes to decomposition of H2O on Si (100)-(2×1). J Chem Phys 113:2440–2446CrossRef Weldon MK, Queeney KT, Gurevich AB, Chabal YJ, Raghavachari K (2000) Si–H bending modes as a probe of local chemical structure: thermal and chemical routes to decomposition of H2O on Si (100)-(2×1). J Chem Phys 113:2440–2446CrossRef
go back to reference Pi XD, Wang R, Yang D (2014) Density functional theory study on the oxidation of hydrosilylated silicon nanocrystals. J Mater Sci Technol 30:639–643CrossRef Pi XD, Wang R, Yang D (2014) Density functional theory study on the oxidation of hydrosilylated silicon nanocrystals. J Mater Sci Technol 30:639–643CrossRef
go back to reference Yu DK, Zhang RQ, Lee ST (2002) Structural properties of hydrogenated silicon nanocrystals and nanoclusters. J Appl Phys 92:7453–7458CrossRef Yu DK, Zhang RQ, Lee ST (2002) Structural properties of hydrogenated silicon nanocrystals and nanoclusters. J Appl Phys 92:7453–7458CrossRef
go back to reference Yuan TH, Pi XD, Yang D (2017) Nonthermal plasma synthesized boron-doped germanium nanocrystals. IEEE J Sel Top Quantum Electron 23:1–5CrossRef Yuan TH, Pi XD, Yang D (2017) Nonthermal plasma synthesized boron-doped germanium nanocrystals. IEEE J Sel Top Quantum Electron 23:1–5CrossRef
Metadata
Title
Room temperature oxidation of Si nanocrystals at dry and wet air
Authors
Vadim M. Popelensky
Sergey G. Dorofeev
Nikolay N. Kononov
Sergey S. Bubenov
Alexander A. Vinokurov
Publication date
01-03-2020
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 3/2020
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-020-4762-4

Other articles of this Issue 3/2020

Journal of Nanoparticle Research 3/2020 Go to the issue

Premium Partners