Skip to main content
Top
Published in: Designs, Codes and Cryptography 1-2/2017

02-08-2016

Row reduction applied to decoding of rank-metric and subspace codes

Authors: Sven Puchinger, Johan Rosenkilde né Nielsen, Wenhui Li, Vladimir Sidorenko

Published in: Designs, Codes and Cryptography | Issue 1-2/2017

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We show that decoding of \(\ell \)-Interleaved Gabidulin codes, as well as list-\(\ell \) decoding of Mahdavifar–Vardy (MV) codes can be performed by row reducing skew polynomial matrices. Inspired by row reduction of \(\mathbb {F}[x]\) matrices, we develop a general and flexible approach of transforming matrices over skew polynomial rings into a certain reduced form. We apply this to solve generalised shift register problems over skew polynomial rings which occur in decoding \(\ell \)-Interleaved Gabidulin codes. We obtain an algorithm with complexity \(O(\ell \mu ^2)\) where \(\mu \) measures the size of the input problem and is proportional to the code length n in the case of decoding. Further, we show how to perform the interpolation step of list-\(\ell \)-decoding MV codes in complexity \(O(\ell n^2)\), where n is the number of interpolation constraints.
Footnotes
1
We opted for using the term “row reduction” rather than “module minimisation”, as we used in [24], since the former is more common in the literature.
 
2
\(\mathcal{{R}}\) is also right Euclidean, a right PID and right Noetherian, but we will only need its left module structure.
 
3
Skew fields are sometimes known as “division rings”.
 
4
There is a precise notion of “row reduced” [20, p. 384] for \(\mathbb {F}[x]\) matrices. Weak Popov form implies being row reduced, but we will not formally define row reduced in this paper.
 
5
In [28], the claimed complexity of their root-finding is \(O(\ell ^{O(1)} k)\). However, we have to point out that the complexity analysis of that algorithm has severe issues which are outside the scope of this paper to amend. There are two problems: (1) It is not proven that the recursive calls will not produce many spurious “pseudo-roots” which are sifted away only at the leaf of the recursions; and (2) the cost analysis ignores the cost of computing the shifts \(Q(X, Y^q + \gamma Y)\). Issue 1 is necessary to resolve for assuring polynomial complexity. For the original \(\mathbb {F}[x]\)-algorithm this is proved as [42, Proposition 6.4], and an analogous proof might carry over. Issue 2 is critical since these shifts dominate the complexity: assuming the algorithm makes a total of \(O(\ell k)\) recursive calls to itself, then \(O(\ell k)\) shifts need to be computed, each of which costs \(O(\ell \deg _x Q) \subset O(\ell n)\). If Issue 1 is resolved the algorithm should then have complexity \(O(\ell ^2 k n)\).
 
6
This is a realistic shift register problem arising in decoding of an Interleaved Gabidulin code with \(n=s=100\), \(k_1 = 58\), \(k_2 = 31\).
 
7
In the conference version of this paper [24], we erroneously claimed a too strong statement concerning this. However, one can relate the complexity of Algorithm 4 to the number of non-zero monomials of \(g_i\), as long as all but the leading monomial have low degree; however the precise statement becomes cumbersome and is not very relevant for this paper.
 
Literature
1.
go back to reference Abramov S.A., Bronstein M.: On solutions of linear functional systems. In: Proceedings of ISSAC, pp. 1–6 (2001). Abramov S.A., Bronstein M.: On solutions of linear functional systems. In: Proceedings of ISSAC, pp. 1–6 (2001).
2.
go back to reference Alekhnovich M.: Linear Diophantine equations over polynomials and soft decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory 51(7), 2257–2265 (2005). Alekhnovich M.: Linear Diophantine equations over polynomials and soft decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory 51(7), 2257–2265 (2005).
3.
go back to reference Augot D., Loidreau P., Robert G.: Rank metric and Gabidulin codes in characteristic zero. In: ISIT (2013). Augot D., Loidreau P., Robert G.: Rank metric and Gabidulin codes in characteristic zero. In: ISIT (2013).
4.
go back to reference Baker G., Graves-Morris P.: Padé Approximants, vol. 59. Cambridge University Press, Cambridge (1996). Baker G., Graves-Morris P.: Padé Approximants, vol. 59. Cambridge University Press, Cambridge (1996).
5.
go back to reference Beckermann B., Labahn G.: A uniform approach for the fast computation of matrix-type Padé approximants. SIAM J. Matrix Anal. Appl. 15(3), 804–823 (1994). Beckermann B., Labahn G.: A uniform approach for the fast computation of matrix-type Padé approximants. SIAM J. Matrix Anal. Appl. 15(3), 804–823 (1994).
6.
go back to reference Beckermann B., Cheng H., Labahn G.: Fraction-free row reduction of matrices of Ore polynomials. J. Symb. Comput. 41(5), 513–543 (2006). Beckermann B., Cheng H., Labahn G.: Fraction-free row reduction of matrices of Ore polynomials. J. Symb. Comput. 41(5), 513–543 (2006).
7.
go back to reference Beelen P., Brander K.: Key equations for list decoding of Reed–Solomon codes and how to solve them. J. Symb. Comput. 45(7), 773–786 (2010). Beelen P., Brander K.: Key equations for list decoding of Reed–Solomon codes and how to solve them. J. Symb. Comput. 45(7), 773–786 (2010).
8.
go back to reference Boucher D., Ulmer F.: Linear codes using skew polynomials with automorphisms and derivations. Des. Codes Cryptogr. 70(3), 405–431 (2014). Boucher D., Ulmer F.: Linear codes using skew polynomials with automorphisms and derivations. Des. Codes Cryptogr. 70(3), 405–431 (2014).
9.
11.
go back to reference Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory 25(3), 226–241 (1978). Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory 25(3), 226–241 (1978).
12.
go back to reference Dieudonné J.: Les déterminants sur un corps non commutatif. Bull. Soc. Math. France 71, 27–45 (1943). Dieudonné J.: Les déterminants sur un corps non commutatif. Bull. Soc. Math. France 71, 27–45 (1943).
13.
go back to reference Draxl P.K.: Skew Fields, vol. 81. Cambridge University Press, Cambridge (1983). Draxl P.K.: Skew Fields, vol. 81. Cambridge University Press, Cambridge (1983).
14.
go back to reference Feng G.L., Tzeng K.K.: A generalization of the Berlekamp–Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes. IEEE Trans. Inf. Theory 37(5), 1274–1287 (1991). Feng G.L., Tzeng K.K.: A generalization of the Berlekamp–Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes. IEEE Trans. Inf. Theory 37(5), 1274–1287 (1991).
15.
go back to reference Gabidulin E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985). Gabidulin E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985).
16.
go back to reference Giorgi P., Jeannerod C., Villard G.: On the complexity of polynomial matrix computations. In: Proceedings of ISSAC, pp. 135–142 (2003). Giorgi P., Jeannerod C., Villard G.: On the complexity of polynomial matrix computations. In: Proceedings of ISSAC, pp. 135–142 (2003).
17.
go back to reference Guruswami V., Sudan M.: Improved decoding of Reed–Solomon codes and algebraic-geometric codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999). Guruswami V., Sudan M.: Improved decoding of Reed–Solomon codes and algebraic-geometric codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999).
18.
go back to reference Guruswami V., Wang C.: Explicit rank-metric codes list-decodable with optimal redundancy. In: Proceedings of RANDOM (2014). arXiv:1311.7084. Guruswami V., Wang C.: Explicit rank-metric codes list-decodable with optimal redundancy. In: Proceedings of RANDOM (2014). arXiv:​1311.​7084.
19.
go back to reference Guruswami V., Xing C.: List decoding Reed-solomon, algebraic-geometric, and Gabidulin subcodes up to the singleton bound. In: Proceedings of STOC, pp. 843–852. ACM, New York (2013) Guruswami V., Xing C.: List decoding Reed-solomon, algebraic-geometric, and Gabidulin subcodes up to the singleton bound. In: Proceedings of STOC, pp. 843–852. ACM, New York (2013)
20.
go back to reference Kailath T.: Linear Systems. Prentice-Hall, Upper Saddle River (1980). Kailath T.: Linear Systems. Prentice-Hall, Upper Saddle River (1980).
21.
go back to reference Lee K., O’Sullivan M.E.: List decoding of Reed–Solomon codes from a Gröbner basis perspective. J. Symb. Comput. 43(9), 645–658 (2008). Lee K., O’Sullivan M.E.: List decoding of Reed–Solomon codes from a Gröbner basis perspective. J. Symb. Comput. 43(9), 645–658 (2008).
22.
go back to reference Lenstra A.: Factoring multivariate polynomials over finite fields. J. Comput. Syst. Sci. 30(2), 235–246 (1985). Lenstra A.: Factoring multivariate polynomials over finite fields. J. Comput. Syst. Sci. 30(2), 235–246 (1985).
23.
go back to reference Li W., Sidorenko V., Silva D.: On transform-domain error and erasure correction by Gabidulin codes. Des. Codes Cryptogr. 73(2), 571–586 (2014). Li W., Sidorenko V., Silva D.: On transform-domain error and erasure correction by Gabidulin codes. Des. Codes Cryptogr. 73(2), 571–586 (2014).
24.
go back to reference Li W., Nielsen J.S.R., Puchinger S., Sidorenko V.: Solving shift register problems over skew polynomial rings using module minimisation. In: Proceedings of WCC (2015). Li W., Nielsen J.S.R., Puchinger S., Sidorenko V.: Solving shift register problems over skew polynomial rings using module minimisation. In: Proceedings of WCC (2015).
25.
go back to reference Loidreau P., Overbeck R.: Decoding rank errors beyond the error correcting capability. In: Proceedings of ACCT, pp. 186–190 (2006). Loidreau P., Overbeck R.: Decoding rank errors beyond the error correcting capability. In: Proceedings of ACCT, pp. 186–190 (2006).
26.
go back to reference Mahdavifar H.: List decoding of subspace codes and rank-metric codes. Ph.D. thesis, University of California, San Diego (2012). Mahdavifar H.: List decoding of subspace codes and rank-metric codes. Ph.D. thesis, University of California, San Diego (2012).
27.
go back to reference Mahdavifar H., Vardy A.: Algebraic list-decoding of subspace codes with multiplicities. In: Allerton Conference on Communication, Control, and Computing, pp. 1430–1437 (2011). Mahdavifar H., Vardy A.: Algebraic list-decoding of subspace codes with multiplicities. In: Allerton Conference on Communication, Control, and Computing, pp. 1430–1437 (2011).
28.
go back to reference Mahdavifar H., Vardy A.: Algebraic list-decoding of subspace codes. IEEE Trans. Inf. Theory 59(12), 7814–7828 (2013). Mahdavifar H., Vardy A.: Algebraic list-decoding of subspace codes. IEEE Trans. Inf. Theory 59(12), 7814–7828 (2013).
29.
go back to reference Middeke J.: A computational view on normal forms of matrices of Ore polynomials. Ph.D. thesis, Research Institute for Symbolic Computation (RISC) (2011). Middeke J.: A computational view on normal forms of matrices of Ore polynomials. Ph.D. thesis, Research Institute for Symbolic Computation (RISC) (2011).
30.
go back to reference Müelich S., Puchinger S., Mödinger D., Bossert M.: An alternative decoding method for Gabidulin codes in characteristic zero. In: Proceedings of IEEE ISIT (2016). arXiv:1601.05205. Müelich S., Puchinger S., Mödinger D., Bossert M.: An alternative decoding method for Gabidulin codes in characteristic zero. In: Proceedings of IEEE ISIT (2016). arXiv:​1601.​05205.
32.
go back to reference Nielsen J.S.R.: Generalised multi-sequence shift-register synthesis using module minimisation. In: Proceedings of IEEE ISIT, pp. 882–886 (2013). Nielsen J.S.R.: Generalised multi-sequence shift-register synthesis using module minimisation. In: Proceedings of IEEE ISIT, pp. 882–886 (2013).
33.
go back to reference Nielsen J.S.R.: Power decoding Reed–Solomon codes up to the Johnson radius. In: Proceedings of ACCT (2014). Nielsen J.S.R.: Power decoding Reed–Solomon codes up to the Johnson radius. In: Proceedings of ACCT (2014).
34.
go back to reference Nielsen J.S.R., Beelen P.: Sub-quadratic decoding of one-point Hermitian codes. IEEE Trans. Inf. Theory 61(6), 3225–3240 (2015). Nielsen J.S.R., Beelen P.: Sub-quadratic decoding of one-point Hermitian codes. IEEE Trans. Inf. Theory 61(6), 3225–3240 (2015).
35.
go back to reference Nielsen R.R., Høholdt T.: Decoding Reed–Solomon codes beyond half the minimum distance. In: Coding Theory, Cryptography and Related Areas, pp. 221–236. Springer, Berlin (1998). Nielsen R.R., Høholdt T.: Decoding Reed–Solomon codes beyond half the minimum distance. In: Coding Theory, Cryptography and Related Areas, pp. 221–236. Springer, Berlin (1998).
36.
go back to reference Olesh Z., Storjohann A.: The vector rational function reconstruction problem. In: Proceedings of WWCA, pp. 137–149 (2006). Olesh Z., Storjohann A.: The vector rational function reconstruction problem. In: Proceedings of WWCA, pp. 137–149 (2006).
37.
go back to reference Ore O.: On a special class of polynomials. Trans. Am. Math. Soc. 35(3), 559–584 (1933). Ore O.: On a special class of polynomials. Trans. Am. Math. Soc. 35(3), 559–584 (1933).
38.
go back to reference Ore O.: Theory of non-commutative polynomials. Ann. Math. 34(3), 480–508 (1933). Ore O.: Theory of non-commutative polynomials. Ann. Math. 34(3), 480–508 (1933).
39.
go back to reference Puchinger S., Wachter-Zeh A.: Fast operations on linearized polynomials and their applications in coding theory. J. Symb. Comput. (2015). arXiv:1512.06520. Puchinger S., Wachter-Zeh A.: Fast operations on linearized polynomials and their applications in coding theory. J. Symb. Comput. (2015). arXiv:​1512.​06520.
40.
go back to reference Puchinger S., Müelich S., Mödinger D., Nielsen J.S.R., Bossert M.: Decoding interleaved Gabidulin codes using Alekhnovich’s algorithm. In: Proceedings of ACCT (2016). arXiv:1604.04397. Puchinger S., Müelich S., Mödinger D., Nielsen J.S.R., Bossert M.: Decoding interleaved Gabidulin codes using Alekhnovich’s algorithm. In: Proceedings of ACCT (2016). arXiv:​1604.​04397.
41.
go back to reference Roth R.M.: Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inf. Theory 37(2), 328–336 (1991). Roth R.M.: Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inf. Theory 37(2), 328–336 (1991).
42.
go back to reference Roth R., Ruckenstein G.: Efficient decoding of Reed–Solomon codes beyond half the minimum distance. IEEE Trans. Inf. Theory 46(1), 246–257 (2000). Roth R., Ruckenstein G.: Efficient decoding of Reed–Solomon codes beyond half the minimum distance. IEEE Trans. Inf. Theory 46(1), 246–257 (2000).
43.
go back to reference Sidorenko V., Bossert M.: Fast skew-feedback shift-register synthesis. Des. Codes Cryptogr. 70(1–2), 55–67 (2014). Sidorenko V., Bossert M.: Fast skew-feedback shift-register synthesis. Des. Codes Cryptogr. 70(1–2), 55–67 (2014).
44.
go back to reference Sidorenko V., Jiang L., Bossert M.: Skew-feedback shift-register synthesis and decoding interleaved Gabidulin codes. IEEE Trans. Inf. Theory 57(2), 621–632 (2011). Sidorenko V., Jiang L., Bossert M.: Skew-feedback shift-register synthesis and decoding interleaved Gabidulin codes. IEEE Trans. Inf. Theory 57(2), 621–632 (2011).
45.
go back to reference Sidorenko V., Schmidt G.: A linear algebraic approach to multisequence shift-register synthesis. Probl. Inf. Transm. 47(2), 149–165 (2011). Sidorenko V., Schmidt G.: A linear algebraic approach to multisequence shift-register synthesis. Probl. Inf. Transm. 47(2), 149–165 (2011).
46.
go back to reference Taelman L.: Dieudonné determinants for skew polynomial rings. J. Algebra Appl. 5(1), 89–93 (2006). Taelman L.: Dieudonné determinants for skew polynomial rings. J. Algebra Appl. 5(1), 89–93 (2006).
47.
go back to reference Wachter-Zeh A.: Decoding of block and convolutional codes in rank metric. Ph.D. thesis, Universität Ulm (2013). Wachter-Zeh A.: Decoding of block and convolutional codes in rank metric. Ph.D. thesis, Universität Ulm (2013).
48.
go back to reference Xie H., Lin J., Yan Z., Suter B.W.: Linearized polynomial interpolation and its applications. IEEE Trans. Signal Process. 61(1), 206–217 (2013). Xie H., Lin J., Yan Z., Suter B.W.: Linearized polynomial interpolation and its applications. IEEE Trans. Signal Process. 61(1), 206–217 (2013).
49.
go back to reference Zeh A., Gentner C., Augot D.: An interpolation procedure for list decoding Reed–Solomon codes based on generalized key equations. IEEE Trans. Inf. Theory 57(9), 5946–5959 (2011). Zeh A., Gentner C., Augot D.: An interpolation procedure for list decoding Reed–Solomon codes based on generalized key equations. IEEE Trans. Inf. Theory 57(9), 5946–5959 (2011).
50.
go back to reference Zhou W., Labahn G.: Efficient algorithms for order basis computation. J. Symb. Comput. 47(7), 793–819 (2012). Zhou W., Labahn G.: Efficient algorithms for order basis computation. J. Symb. Comput. 47(7), 793–819 (2012).
Metadata
Title
Row reduction applied to decoding of rank-metric and subspace codes
Authors
Sven Puchinger
Johan Rosenkilde né Nielsen
Wenhui Li
Vladimir Sidorenko
Publication date
02-08-2016
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 1-2/2017
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-016-0257-9

Other articles of this Issue 1-2/2017

Designs, Codes and Cryptography 1-2/2017 Go to the issue

Premium Partner