Skip to main content
Top
Published in: Foundations of Computational Mathematics 5/2016

01-10-2016

Sampling and Cubature on Sparse Grids Based on a B-spline Quasi-Interpolation

Author: Dinh Dũng

Published in: Foundations of Computational Mathematics | Issue 5/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let \(X_n = \{x^j\}_{j=1}^n\) be a set of n points in the d-cube \({\mathbb {I}}^d:=[0,1]^d\), and \(\Phi _n = \{\varphi _j\}_{j =1}^n\) a family of n functions on \({\mathbb {I}}^d\). We consider the approximate recovery of functions f on \({{\mathbb {I}}}^d\) from the sampled values \(f(x^1), \ldots , f(x^n)\), by the linear sampling algorithm \( L_n(X_n,\Phi _n,f) := \sum _{j=1}^n f(x^j)\varphi _j. \) The error of sampling recovery is measured in the norm of the space \(L_q({\mathbb {I}}^d)\)-norm or the energy quasi-norm of the isotropic Sobolev space \(W^\gamma _q({\mathbb {I}}^d)\) for \(1 < q < \infty \) and \(\gamma > 0\). Functions f to be recovered are from the unit ball in Besov-type spaces of an anisotropic smoothness, in particular, spaces \(B^{\alpha ,\beta }_{p,\theta }\) of a “hybrid” of mixed smoothness \(\alpha > 0\) and isotropic smoothness \(\beta \in {\mathbb {R}}\), and spaces \(B^a_{p,\theta }\) of a nonuniform mixed smoothness \(a \in {\mathbb {R}}^d_+\). We constructed asymptotically optimal linear sampling algorithms \(L_n(X_n^*,\Phi _n^*,\cdot )\) on special sparse grids \(X_n^*\) and a family \(\Phi _n^*\) of linear combinations of integer or half integer translated dilations of tensor products of B-splines. We computed the asymptotic order of the error of the optimal recovery. This construction is based on B-spline quasi-interpolation representations of functions in \(B^{\alpha ,\beta }_{p,\theta }\) and \(B^a_{p,\theta }\). As consequences, we obtained the asymptotic order of optimal cubature formulas for numerical integration of functions from the unit ball of these Besov-type spaces.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Babenko, On the approximation of periodic functions of several variables by trigonometric polynomials, Dokl. Akad. Nauk USSR 132, 247–250 (1960); English transl. in Soviet Math. Dokl. 1(1960). K. Babenko, On the approximation of periodic functions of several variables by trigonometric polynomials, Dokl. Akad. Nauk USSR  132, 247–250 (1960); English transl. in Soviet Math. Dokl. 1(1960).
2.
go back to reference R. Bellmann, Dynamic Programming, (Princeton University Press, Princeton, 1957).MATH R. Bellmann, Dynamic Programming, (Princeton University Press, Princeton, 1957).MATH
3.
go back to reference J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, (Grundlehren der Mathematischen Wissenschaften 223, Springer-Verlag, 1976). J. Bergh and J.  Löfström, Interpolation Spaces, An Introduction, (Grundlehren der Mathematischen Wissenschaften 223, Springer-Verlag, 1976).
4.
go back to reference O. Bokanowski, J. Garcke, M. Griebel, I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations, J. of Scientific Computing 55, 575–605 (2013). O. Bokanowski, J. Garcke, M. Griebel, I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations, J. of Scientific Computing  55, 575–605 (2013).
5.
go back to reference H.-J. Bungartz, M. Griebel, A note on the complexity of solving Poisson’s equation for spaces of bounded mixed derivatives, J. Complexity 15, 167–199 (1999). H.-J. Bungartz, M. Griebel, A note on the complexity of solving Poisson’s equation for spaces of bounded mixed derivatives, J. Complexity  15, 167–199 (1999).
6.
go back to reference H.-J. Bungartz, M. Griebel, Sparse grids, Acta Numer. 13, 147–269 (2004). H.-J. Bungartz, M. Griebel, Sparse grids, Acta Numer.  13, 147–269 (2004).
7.
go back to reference G. Byrenheid, D. Dũng, W. Sickel, T. Ullrich, Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in \(H^{\gamma }\), arXiv:1408.3498 [math.NA] (2014). G. Byrenheid, D. Dũng, W. Sickel, T. Ullrich, Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in \(H^{\gamma }\), arXiv:​1408.​3498 [math.NA] (2014).
8.
go back to reference C. Chui, An Introduction to Wavelets, (Academic Press, New York, 1992).MATH C. Chui, An Introduction to Wavelets, (Academic Press, New York, 1992).MATH
9.
go back to reference C. de Bore, K. Höllig, S. Riemenschneider, Box Spline, (Springer-Verlag, Berlin, 1993).CrossRef C. de Bore, K. Höllig, S. Riemenschneider, Box Spline, (Springer-Verlag, Berlin, 1993).CrossRef
10.
11.
go back to reference D. Dũng (Din’ Zung), The number of integral points in some sets and approximation of functions of several variables, Mat. Zametki 36, 479–491 (1984). D. Dũng (Din’ Zung), The number of integral points in some sets and approximation of functions of several variables, Mat. Zametki  36, 479–491 (1984).
12.
go back to reference D. Dũng (Din’ Zung), Approximation of functions of several variables on a torus by trigonometric polynomials, Mat. Sb. (N.S.) 131(173)(2), 251–271 (1986). D. Dũng (Din’ Zung), Approximation of functions of several variables on a torus by trigonometric polynomials, Mat. Sb. (N.S.)  131(173)(2), 251–271 (1986).
13.
go back to reference D. Dũng (Din’ Zung), On recovery and one-sided approximation of periodic functions of several variables, Dokl. Akad. SSSR 313, 787–790 (1990). D. Dũng (Din’ Zung), On recovery and one-sided approximation of periodic functions of several variables, Dokl. Akad. SSSR  313, 787–790 (1990).
14.
go back to reference D. Dũng, On optimal recovery of multivariate periodic functions, In Harmonic Analysis, ed. by S. Igary, (Springer, Berlin, 1991), pp. 96–105. D. Dũng, On optimal recovery of multivariate periodic functions, In Harmonic Analysis, ed. by S. Igary, (Springer, Berlin, 1991), pp. 96–105.
15.
go back to reference D. Dũng, Optimal recovery of functions of a certain mixed smoothness, Vietnam J. Math. 20(2), 18–32 (1992). D. Dũng, Optimal recovery of functions of a certain mixed smoothness, Vietnam J. Math.  20(2), 18–32 (1992).
16.
go back to reference D. Dũng, Non-linear sampling recovery based on quasi-interpolant wavelet representations, Adv. Comput. Math. 30, 375–401 (2009). D. Dũng, Non-linear sampling recovery based on quasi-interpolant wavelet representations, Adv. Comput. Math.  30, 375–401 (2009).
17.
go back to reference D. Dũng, Optimal adaptive sampling recovery, Adv. Comput. Math. 34, 1–41 (2011). D. Dũng, Optimal adaptive sampling recovery, Adv. Comput. Math.  34, 1–41 (2011).
18.
go back to reference D. Dũng, B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness, J. Complexity 27, 541–567 (2011). D. Dũng, B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness, J. Complexity  27, 541–567 (2011).
19.
20.
go back to reference D. Dũng, T. Ullrich, \(N\)-dimensions for high-dimensional approximations, Foundations of Comp. Math. 13, 965–1003 (2013). D. Dũng, T. Ullrich, \(N\)-dimensions for high-dimensional approximations, Foundations of Comp. Math.  13, 965–1003 (2013).
21.
go back to reference D. Dũng, T. Ullrich, Lower bounds for the integration error for multivariate functions with mixed smoothness and optimal Fibonacci cubature for functions on the square, Math. Nachr. doi: 10.1002/mana.201400048 (2014). D. Dũng, T. Ullrich, Lower bounds for the integration error for multivariate functions with mixed smoothness and optimal Fibonacci cubature for functions on the square, Math. Nachr. doi: 10.​1002/​mana.​201400048 (2014).
22.
go back to reference J. Garcke, M. Hegland, Fitting multidimensional data using gradient penalties and the sparse grid combination technique, Computing 84(1–2), 1–25 (2009). J. Garcke, M. Hegland, Fitting multidimensional data using gradient penalties and the sparse grid combination technique, Computing  84(1–2), 1–25 (2009).
23.
go back to reference T. Gerstner, M. Griebel, Numerical Integration using Sparse Grids, Numer. Algorithms 18, 209–232 (1998). T. Gerstner, M. Griebel, Numerical Integration using Sparse Grids, Numer. Algorithms  18, 209–232 (1998).
24.
go back to reference T. Gerstner, M. Griebel, Sparse grids, In Encyclopedia of Quantitative Finance, ed. by R. Cont, (John Wiley and Sons, 2010). T. Gerstner, M. Griebel, Sparse grids, In Encyclopedia of Quantitative Finance, ed. by R. Cont, (John Wiley and Sons, 2010).
25.
go back to reference M. Griebel, J. Hamaekers, Tensor product multiscale many-particle spaces with finite-order weights for the electronic Schrödinger equation, Zeitschrift für Physikalische Chemie 224, 527–543 (2010). M. Griebel, J. Hamaekers, Tensor product multiscale many-particle spaces with finite-order weights for the electronic Schrödinger equation, Zeitschrift für Physikalische Chemie  224, 527–543 (2010).
26.
go back to reference M. Griebel, J. Hamaekers, Fast discrete Fourier transform on generalized sparse grids, in Sparse grids and Applications, volume 97 of Lecture Notes in Computational Science and Engineering, (Springer, Berlin, 2014), pp. 75–108. M. Griebel, J. Hamaekers, Fast discrete Fourier transform on generalized sparse grids, in Sparse grids and Applications, volume 97 of Lecture Notes in Computational Science and Engineering, (Springer, Berlin, 2014), pp. 75–108.
27.
go back to reference M. Griebel, H. Harbrecht, A note on the construction of \(L\)-fold sparse tensor product spaces, Constr. Approximation 38(2), 235–251 (2013). M. Griebel, H. Harbrecht, A note on the construction of \(L\)-fold sparse tensor product spaces, Constr. Approximation  38(2), 235–251 (2013).
28.
go back to reference M. Griebel, H. Harbrecht, On the construction of sparse tensor product spaces, Mathematics of Computations 82(282), 975–994 (2013). M. Griebel, H. Harbrecht, On the construction of sparse tensor product spaces, Mathematics of Computations  82(282), 975–994 (2013).
29.
go back to reference M. Griebel, M. Holtz, Dimension-wise integration of high-dimensional functions with applications to finance, J. Complexity 26, 455–489 (2010). M. Griebel, M. Holtz, Dimension-wise integration of high-dimensional functions with applications to finance, J. Complexity  26, 455–489 (2010).
30.
go back to reference M. Griebel, S. Knapek, Optimized general sparse grid approximation spaces for operator equations, Math. Comp. 78(268), 2223–2257 (2009). M. Griebel, S. Knapek, Optimized general sparse grid approximation spaces for operator equations, Math. Comp.  78(268), 2223–2257 (2009).
31.
go back to reference H.-C. Kreusler, H. Yserentant, The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces, Numer. Math. 121, 781–802 (2012). H.-C. Kreusler, H. Yserentant, The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces, Numer. Math.  121, 781–802 (2012).
32.
go back to reference S. Nikol’skii, Approximation of functions of several variables and embedding theorems, (Springer, Berlin, 1975).CrossRef S. Nikol’skii, Approximation of functions of several variables and embedding theorems, (Springer, Berlin, 1975).CrossRef
33.
go back to reference E. Novak, H. Triebel, Function spaces in Lipschitz domains and optimal rates of convergence for sampling, Constr. Approx. 23, 325–350 (2006). E. Novak, H. Triebel, Function spaces in Lipschitz domains and optimal rates of convergence for sampling, Constr. Approx.  23, 325–350 (2006).
34.
go back to reference E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume I: Linear Information, EMS Tracts in Mathematics, Vol. 6, (Eur. Math. Soc. Publ. House, Zürich, 2008). E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume I: Linear Information, EMS Tracts in Mathematics, Vol. 6, (Eur. Math. Soc. Publ. House, Zürich, 2008).
35.
go back to reference E. Novak and H. Woźniakowski, Tractability of Multivariate Problems, Volume II: Standard Information for Functionals, EMS Tracts in Mathematics, Vol. 12, (Eur. Math. Soc. Publ. House, Zürich, 2010). E. Novak and H. Woźniakowski, Tractability of Multivariate Problems, Volume II: Standard Information for Functionals, EMS Tracts in Mathematics, Vol. 12, (Eur. Math. Soc. Publ. House, Zürich, 2010).
36.
go back to reference W. Sickel, T. Ullrich, The Smolyak algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness, East J. Approx. 13, 387–425 (2007). W. Sickel, T. Ullrich, The Smolyak algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness, East J. Approx.  13, 387–425 (2007).
37.
go back to reference W. Sickel, T. Ullrich, Spline Interpolation on sparse grids, Applicable Analysis 90, 337–383 (2011). W. Sickel, T. Ullrich, Spline Interpolation on sparse grids, Applicable Analysis  90, 337–383 (2011).
38.
go back to reference S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk 148, 1042–1045 (1963). S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk  148, 1042–1045 (1963).
39.
go back to reference S. Telyakovskii, Some estimates for trigonometric series with quasi-convex coefficients, Mat. Sb. 63(105), 426–444 (1964); English transl. in Amer. Math. Soc. Transl. 86 (1970). S. Telyakovskii, Some estimates for trigonometric series with quasi-convex coefficients, Mat. Sb.  63(105), 426–444 (1964); English transl. in Amer. Math. Soc. Transl. 86 (1970).
40.
go back to reference V. Temlyakov, Approximation recovery of periodic functions of several variables, Mat. Sb. 128(1985), 256–268. V. Temlyakov, Approximation recovery of periodic functions of several variables, Mat. Sb.  128(1985), 256–268.
41.
go back to reference V. Temlyakov, Approximation of functions with bounded mixed derivative, Trudy MIAN, 178(1986); English transl. in Proc. Steklov Inst. Math. (1989), Issue 1. V. Temlyakov, Approximation of functions with bounded mixed derivative, Trudy MIAN, 178(1986); English transl. in Proc. Steklov Inst. Math. (1989), Issue 1.
42.
go back to reference V. Temlyakov, On approximate recovery of functions with bounded mixed derivative, J. Complexity 9, 41–59 (1993). V. Temlyakov, On approximate recovery of functions with bounded mixed derivative, J. Complexity  9, 41–59 (1993).
43.
go back to reference V. Temlyakov, Approximation of periodic functions, (Nova Science Publishers, Inc., New York, 1993).MATH V. Temlyakov, Approximation of periodic functions, (Nova Science Publishers, Inc., New York, 1993).MATH
44.
go back to reference H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, (VEB Deutscher Verlag der Wissenschaften, Berlin, 1978), (Johann Ambrosius Barth, Heidelberg, 1995). H.  Triebel, Interpolation Theory, Function Spaces, Differential Operators, (VEB Deutscher Verlag der Wissenschaften, Berlin, 1978), (Johann Ambrosius Barth, Heidelberg, 1995).
45.
go back to reference H. Triebel, Bases in function spaces, sampling, discrepancy, numerical integration, (European Math. Soc. Publishing House, Zürich, 2010).CrossRefMATH H. Triebel, Bases in function spaces, sampling, discrepancy, numerical integration, (European Math. Soc. Publishing House, Zürich, 2010).CrossRefMATH
46.
go back to reference T. Ullrich, Smolyak’s algorithm, sampling on sparse grids and Sobolev spaces of dominating mixed smoothness. East J. Approx. 14, 1–38 (2008). T. Ullrich, Smolyak’s algorithm, sampling on sparse grids and Sobolev spaces of dominating mixed smoothness. East J. Approx.  14, 1–38 (2008).
47.
go back to reference T. Ullrich and B. Vedel, Hyperbolic wavelet analysis of classical isotropic and anisotropic Besov-Sobolev spaces, Manuscript (2015). T. Ullrich and B. Vedel, Hyperbolic wavelet analysis of classical isotropic and anisotropic Besov-Sobolev spaces, Manuscript (2015).
48.
go back to reference H. Yserentant, The hyperbolic cross space approximation of electronic wavefunctions, Numer. Math. 105, 659–690 (2007). H. Yserentant, The hyperbolic cross space approximation of electronic wavefunctions, Numer. Math.  105, 659–690 (2007).
49.
go back to reference H. Yserentant, Regularity and approximability of electronic wave functions, Lecture Notes in Mathematics, 2000, (Springer-Verlag, Berlin, 2010). H. Yserentant, Regularity and approximability of electronic wave functions, Lecture Notes in Mathematics, 2000, (Springer-Verlag, Berlin, 2010).
50.
go back to reference H. Yserentant, The mixed regularity of electronic wave functions multiplied by explicit correlation factors, ESAIM Math. Model. Numer. Anal. 45, 803–824 (2011). H. Yserentant, The mixed regularity of electronic wave functions multiplied by explicit correlation factors, ESAIM Math. Model. Numer. Anal.  45, 803–824 (2011).
51.
go back to reference C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations ed. by W. Hackbusch, Vol. 31 of Notes on Numerical Fluid Mechanics, (Vieweg, Braunschweig/Wiesbaden, 1991). C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations ed. by W. Hackbusch, Vol. 31 of Notes on Numerical Fluid Mechanics, (Vieweg, Braunschweig/Wiesbaden, 1991).
Metadata
Title
Sampling and Cubature on Sparse Grids Based on a B-spline Quasi-Interpolation
Author
Dinh Dũng
Publication date
01-10-2016
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 5/2016
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-015-9274-8

Other articles of this Issue 5/2016

Foundations of Computational Mathematics 5/2016 Go to the issue

Premium Partner