Skip to main content
Top
Published in: Cluster Computing 1/2019

01-02-2018

Scalable distributed data cube computation for large-scale multidimensional data analysis on a Spark cluster

Authors: Suan Lee, Seok Kang, Jinho Kim, Eun Jung Yu

Published in: Cluster Computing | Special Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A data cube is a powerful analytical tool that stores all aggregate values over a set of dimensions. It provides users with a simple and efficient means of performing complex data analysis while assisting in decision making. Since the computation time for building a data cube is very large, however, efficient methods for reducing the data cube computation time are needed. Previous works have developed various algorithms for efficiently generating data cubes using MapReduce, which is a large-scale distributed parallel processing framework. However, MapReduce incurs the overhead of disk I/Os and network traffic. To overcome these MapReduce limitations, Spark was recently proposed as a memory-based parallel/distributed processing framework. It has attracted considerable research attention owing to its high performance. In this paper, we propose two algorithms for efficiently building data cubes. The algorithms fully leverage Spark’s mechanisms and properties: Resilient Distributed Top-Down Computation (RDTDC) and Resilient Distributed Bottom-Up Computation (RDBUC). The former is an algorithm for computing the components (i.e., cuboids) of a data cube in a top-down approach; the latter is a bottom-up approach. The RDTDC algorithm has three key functions. (1) It approximates the size of the cuboid using the cardinality without additional Spark action computation to determine the size of each cuboid during top-down computation. Thus, one cuboid can be computed from the upper cuboid of a smaller size. (2) It creates an execution plan that is optimized to input the smaller sized cuboid. (3) Lastly, it uses a method of reusing the result of the already computed cuboid by top-down computation and simultaneously computes the cuboid of several dimensions. In addition, we propose the RDBUC bottom-up algorithm in Spark, which is widely used in computing Iceberg cubes to maintain only cells satisfying a certain condition of minimum support. This algorithm incorporates two primary strategies: (1) reducing the input size to compute aggregate values for a dimension combination (e.g., A, B, and C) by removing the input, which does not satisfy the Iceberg cube condition at its lower dimension combination (e.g., A and B) computed earlier. (2) We use a lazy materialization strategy that computes every combination of dimensions using only transformation operations without any action operation. It then stores them in a single action operation. To prove the efficiency of the proposed algorithms using a lazy materialization strategy by employing only one action operation, we conducted extensive experiments. We compared them to the cube() function, a built-in cube computation library of Spark SQL. The results showed that the proposed RDTDC and RDBUC algorithms outperformed Spark SQL cube().

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kim, J., Lee, W., Song, J.J., Lee, S.B.: Optimized combinatorial clustering for stochastic processes. Clust. Comput. 20, 1135–1148 (2017)CrossRef Kim, J., Lee, W., Song, J.J., Lee, S.B.: Optimized combinatorial clustering for stochastic processes. Clust. Comput. 20, 1135–1148 (2017)CrossRef
2.
go back to reference Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pirahesh, H.: Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min. Knowl. Disc. 1, 29–53 (1997)CrossRef Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pirahesh, H.: Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min. Knowl. Disc. 1, 29–53 (1997)CrossRef
3.
go back to reference Xin, D., Han, J., Li, X., Wah, B.W.: Star-cubing: computing iceberg cubes by top-down and bottom-up integration. In: Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29 (2003) Xin, D., Han, J., Li, X., Wah, B.W.: Star-cubing: computing iceberg cubes by top-down and bottom-up integration. In: Proceedings of the 29th International Conference on Very Large Data Bases, vol. 29 (2003)
4.
go back to reference Xin, D., Shao, Z., Han, J., Liu, H.: C-cubing: efficient computation of closed cubes by aggregation-based checking. In: ICDE’06. Proceedings of the 22nd International Conference on Data Engineering, 2006 (2006) Xin, D., Shao, Z., Han, J., Liu, H.: C-cubing: efficient computation of closed cubes by aggregation-based checking. In: ICDE’06. Proceedings of the 22nd International Conference on Data Engineering, 2006 (2006)
5.
go back to reference Han, J., Pei, J., Dong, G., Wang, K.: Efficient computation of iceberg cubes with complex measures. In: ACM SIGMOD Record (2001) Han, J., Pei, J., Dong, G., Wang, K.: Efficient computation of iceberg cubes with complex measures. In: ACM SIGMOD Record (2001)
6.
go back to reference Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J. D.: Computing iceberg queries efficiently. In: International Conference on Very Large Databases (VLDB’98), New York, August 1998 (1999) Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J. D.: Computing iceberg queries efficiently. In: International Conference on Very Large Databases (VLDB’98), New York, August 1998 (1999)
7.
go back to reference Wang, Z., Chu, Y., Tan, K.-L., Agrawal, D., Abbadi, A.E.I., Xu, X.: Scalable data cube analysis over big data. arXiv preprint. arXiv:1311.5663 (2013) Wang, Z., Chu, Y., Tan, K.-L., Agrawal, D., Abbadi, A.E.I., Xu, X.: Scalable data cube analysis over big data. arXiv preprint. arXiv:​1311.​5663 (2013)
8.
go back to reference Nandi, A., Yu, C., Bohannon, P., Ramakrishnan, R.: Data cube materialization and mining over mapreduce. IEEE Trans. Knowl. Data Eng. 24, 1747–1759 (2012)CrossRef Nandi, A., Yu, C., Bohannon, P., Ramakrishnan, R.: Data cube materialization and mining over mapreduce. IEEE Trans. Knowl. Data Eng. 24, 1747–1759 (2012)CrossRef
9.
go back to reference Milo, T., Altshuler, E.: An efficient MapReduce cube algorithm for varied DataDistributions. In: Proceedings of the 2016 International Conference on Management of Data (2016) Milo, T., Altshuler, E.: An efficient MapReduce cube algorithm for varied DataDistributions. In: Proceedings of the 2016 International Conference on Management of Data (2016)
10.
go back to reference Apache Hadoop: Welcome to Apache Hadoop (2016) Apache Hadoop: Welcome to Apache Hadoop (2016)
11.
go back to reference Apache Spark: Apache Spark: lightning-fast cluster computing (2015) Apache Spark: Apache Spark: lightning-fast cluster computing (2015)
12.
go back to reference Zhao, Y., Deshpande, P.M., Naughton, J.F.: An array-based algorithm for simultaneous multidimensional aggregates. In: ACM SIGMOD Record (1997) Zhao, Y., Deshpande, P.M., Naughton, J.F.: An array-based algorithm for simultaneous multidimensional aggregates. In: ACM SIGMOD Record (1997)
13.
go back to reference Agarwal, S., Agrawal, R., Deshpande, P.M., Gupta, A., Naughton, J.F., Ramakrishnan, R., Sarawagi, S.: On the computation of multidimensional aggregates. In: VLDB (1996) Agarwal, S., Agrawal, R., Deshpande, P.M., Gupta, A., Naughton, J.F., Ramakrishnan, R., Sarawagi, S.: On the computation of multidimensional aggregates. In: VLDB (1996)
14.
go back to reference Beyer, K., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cube. In: ACM SIGMOD Record (1999) Beyer, K., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cube. In: ACM SIGMOD Record (1999)
15.
go back to reference Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (2012) Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (2012)
16.
go back to reference Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. Proceedings of the 20th International Conference Very Large Data Bases. VLDB, vol. 1215, pp. 487–499 (1994) Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. Proceedings of the 20th International Conference Very Large Data Bases. VLDB, vol. 1215, pp. 487–499 (1994)
17.
go back to reference Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., et al.: Spark sql: relational data processing in Spark. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1383–1394 (2015) Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., et al.: Spark sql: relational data processing in Spark. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1383–1394 (2015)
18.
go back to reference Spark-SQL: DataFrame. http://spark.apache.org/docs/latest/sql-programming-guide.html Spark-SQL: DataFrame. http://​spark.​apache.​org/​docs/​latest/​sql-programming-guide.​html
19.
go back to reference Adamic, L.A.: Zipf, power-laws, and pareto-a ranking tutorial. Xerox Palo Alto Research Center, Palo Alto, CA. http://ginger.hpl.hp.com/shl/papers/ranking/ranking.html (2000) Adamic, L.A.: Zipf, power-laws, and pareto-a ranking tutorial. Xerox Palo Alto Research Center, Palo Alto, CA. http://​ginger.​hpl.​hp.​com/​shl/​papers/​ranking/​ranking.​html (2000)
20.
go back to reference GDELT: http://www.gdeltproject.org GDELT: http://​www.​gdeltproject.​org
21.
go back to reference Lee, S., Kim, J., Moon, Y.-S., Lee, W.: Efficient distributed parallel top-down computation of ROLAP data cube using mapreduce. In: International Conference on Data Warehousing and Knowledge Discovery, pp. 168–179 (2012) Lee, S., Kim, J., Moon, Y.-S., Lee, W.: Efficient distributed parallel top-down computation of ROLAP data cube using mapreduce. In: International Conference on Data Warehousing and Knowledge Discovery, pp. 168–179 (2012)
22.
go back to reference Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. ACM SIGMOD Record 25, 205–216 (1996)CrossRef Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. ACM SIGMOD Record 25, 205–216 (1996)CrossRef
23.
go back to reference Agarwal, S., Agrawal, R., Deshpande, P.M., Gupta, A., Naughton, J.F., Ramakrishnan, R., Sarawagi, S.: On the computation of multidimensional aggregates. VLDB 96, 506–521 (1996) Agarwal, S., Agrawal, R., Deshpande, P.M., Gupta, A., Naughton, J.F., Ramakrishnan, R., Sarawagi, S.: On the computation of multidimensional aggregates. VLDB 96, 506–521 (1996)
24.
go back to reference Ross, K.A., Srivastava, D.: Fast computation of sparse datacubes. VLDB 97, 25–29 (1997) Ross, K.A., Srivastava, D.: Fast computation of sparse datacubes. VLDB 97, 25–29 (1997)
25.
go back to reference Roussopoulos, N., Kotidis, Y., Roussopoulos, M.: Cubetree: organization of and bulk incremental updates on the data cube. ACM SIGMOD Record 26, 89–99 (1997)CrossRef Roussopoulos, N., Kotidis, Y., Roussopoulos, M.: Cubetree: organization of and bulk incremental updates on the data cube. ACM SIGMOD Record 26, 89–99 (1997)CrossRef
26.
go back to reference Mumick, I.S., Quass, D., Mumick, B.S.: Maintenance of data cubes and summary tables in a warehouse. ACM Sigmod Record 26, 100–111 (1997)CrossRef Mumick, I.S., Quass, D., Mumick, B.S.: Maintenance of data cubes and summary tables in a warehouse. ACM Sigmod Record 26, 100–111 (1997)CrossRef
27.
go back to reference Goil, S., Choudhary, A.: High performance OLAP and data mining on parallel computers. Data Min. Knowl. Disc. 1, 391–417 (1997)CrossRef Goil, S., Choudhary, A.: High performance OLAP and data mining on parallel computers. Data Min. Knowl. Disc. 1, 391–417 (1997)CrossRef
28.
go back to reference Goil, S., Choudhary, A.: Parallel data cube construction for high performance on-line analytical processing. Proceedings of the Fourth International Conference on High-Performance Computing 1997, 10–15 (1997)CrossRef Goil, S., Choudhary, A.: Parallel data cube construction for high performance on-line analytical processing. Proceedings of the Fourth International Conference on High-Performance Computing 1997, 10–15 (1997)CrossRef
29.
go back to reference Goil, S., Choudhary, A.: A parallel scalable infrastructure for OLAP and data mining. In: Proceedings. IDEAS’99. International Symposium Database Engineering and Applications, 1999, pp. 178–186 (1999) Goil, S., Choudhary, A.: A parallel scalable infrastructure for OLAP and data mining. In: Proceedings. IDEAS’99. International Symposium Database Engineering and Applications, 1999, pp. 178–186 (1999)
30.
go back to reference Ng, R.T., Wagner, A., Yin, Y.: Iceberg-cube computation with PC clusters. ACM SIGMOD Record 30, 25–36 (2001)CrossRef Ng, R.T., Wagner, A., Yin, Y.: Iceberg-cube computation with PC clusters. ACM SIGMOD Record 30, 25–36 (2001)CrossRef
31.
go back to reference Dehne, F., Eavis, T., Rau-Chaplin, A.: A cluster architecture for parallel data warehousing. In: Proceedings. First IEEE/ACM International Symposium on Cluster Computing and the Grid, 2001, pp. 161–168 (2001) Dehne, F., Eavis, T., Rau-Chaplin, A.: A cluster architecture for parallel data warehousing. In: Proceedings. First IEEE/ACM International Symposium on Cluster Computing and the Grid, 2001, pp. 161–168 (2001)
32.
go back to reference Dehne, F., Eavis, T., Rau-Chaplin, A.: Computing partial data cubes for parallel data warehousing applications. In: European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, pp. 319–326 (2001) Dehne, F., Eavis, T., Rau-Chaplin, A.: Computing partial data cubes for parallel data warehousing applications. In: European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, pp. 319–326 (2001)
33.
go back to reference Dehne, F., Eavis, T., Hambrusch, S., Rau-Chaplin, A.: Parallelizing the data cube. Distrib. Parallel Databases 11, 181–201 (2002)MATH Dehne, F., Eavis, T., Hambrusch, S., Rau-Chaplin, A.: Parallelizing the data cube. Distrib. Parallel Databases 11, 181–201 (2002)MATH
34.
go back to reference Dehne, F., Eavis, T., Rau-Chaplin, A.: Top-down computation of partial ROLAP data cubes. In: Proceedings of the 37th Annual Hawaii International Conference on System Sciences, 2004, p. 10 (2004) Dehne, F., Eavis, T., Rau-Chaplin, A.: Top-down computation of partial ROLAP data cubes. In: Proceedings of the 37th Annual Hawaii International Conference on System Sciences, 2004, p. 10 (2004)
35.
go back to reference Chen, Y., Dehne, F., Eavis, T., Rau-Chaplin, A.: Parallel ROLAP data cube construction on shared-nothing multiprocessors. Distrib. Parallel Databases 15, 219–236 (2004)CrossRef Chen, Y., Dehne, F., Eavis, T., Rau-Chaplin, A.: Parallel ROLAP data cube construction on shared-nothing multiprocessors. Distrib. Parallel Databases 15, 219–236 (2004)CrossRef
36.
go back to reference Dehne, F., Eavis, T., Rau-Chaplin, A.: Parallel querying of ROLAP cubes in the presence of hierarchies. In: Proceedings of the 8th ACM International Workshop on Data Warehousing and OLAP, pp. 89–96 (2005) Dehne, F., Eavis, T., Rau-Chaplin, A.: Parallel querying of ROLAP cubes in the presence of hierarchies. In: Proceedings of the 8th ACM International Workshop on Data Warehousing and OLAP, pp. 89–96 (2005)
37.
go back to reference Dehne, F., Eavis, T., Rau-Chaplin, A.: The cgmCUBE project: optimizing parallel data cube generation for ROLAP. Distrib. Parallel Databases 19, 29–62 (2006)CrossRef Dehne, F., Eavis, T., Rau-Chaplin, A.: The cgmCUBE project: optimizing parallel data cube generation for ROLAP. Distrib. Parallel Databases 19, 29–62 (2006)CrossRef
38.
go back to reference Jin, R., Vaidyanathan, K., Yang, G., Agrawal, G.: Communication and memory optimal parallel data cube construction. IEEE Trans. Parallel Distrib. Syst. 16, 1105–1119 (2005)CrossRef Jin, R., Vaidyanathan, K., Yang, G., Agrawal, G.: Communication and memory optimal parallel data cube construction. IEEE Trans. Parallel Distrib. Syst. 16, 1105–1119 (2005)CrossRef
39.
go back to reference Chen, Y., Dehne, F., Eavis, T., Rau-Chaplin, A.: Improved data partitioning for building large ROLAP data cubes in parallel. Int. J. Data Warehous. Mining (IJDWM) 2, 1–26 (2006)CrossRef Chen, Y., Dehne, F., Eavis, T., Rau-Chaplin, A.: Improved data partitioning for building large ROLAP data cubes in parallel. Int. J. Data Warehous. Mining (IJDWM) 2, 1–26 (2006)CrossRef
40.
go back to reference Chen, Y., Rau-Chaplin, A., Dehne, F., Eavis, T., Green, D., Sithirasenan, E.: cgmOLAP: efficient parallel generation and querying of terabyte size ROLAP data cubes. In: Proceedings of the 22nd International Conference on Data Engineering, 2006. ICDE’06, pp. 164–164 (2006) Chen, Y., Rau-Chaplin, A., Dehne, F., Eavis, T., Green, D., Sithirasenan, E.: cgmOLAP: efficient parallel generation and querying of terabyte size ROLAP data cubes. In: Proceedings of the 22nd International Conference on Data Engineering, 2006. ICDE’06, pp. 164–164 (2006)
41.
go back to reference You, J., Xi, J., Zhang, P., Chen, H.: A parallel algorithm for closed cube computation. In: Seventh IEEE/ACIS International Conference on Computer and Information Science, 2008. ICIS 08, pp. 95–99 (2008) You, J., Xi, J., Zhang, P., Chen, H.: A parallel algorithm for closed cube computation. In: Seventh IEEE/ACIS International Conference on Computer and Information Science, 2008. ICIS 08, pp. 95–99 (2008)
42.
go back to reference Chen, Y., Dehne, F., Eavis, T., Rau-Chaplin, A.: PnP: sequential, external memory, and parallel iceberg cube computation. Distrib. Parallel Databases 23, 99–126 (2008)CrossRef Chen, Y., Dehne, F., Eavis, T., Rau-Chaplin, A.: PnP: sequential, external memory, and parallel iceberg cube computation. Distrib. Parallel Databases 23, 99–126 (2008)CrossRef
43.
go back to reference Dehne, F., Zaboli, H.: Parallel real-time OLAP on multi-core processors. In: Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pp. 588–594 (2012) Dehne, F., Zaboli, H.: Parallel real-time OLAP on multi-core processors. In: Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pp. 588–594 (2012)
44.
go back to reference Kamat, N., Jayachandran, P., Tunga, K., Nandi, A.: Distributed and interactive cube exploration. In: 2014 IEEE 30th International Conference on Data Engineering (ICDE), pp. 472–483 (2014) Kamat, N., Jayachandran, P., Tunga, K., Nandi, A.: Distributed and interactive cube exploration. In: 2014 IEEE 30th International Conference on Data Engineering (ICDE), pp. 472–483 (2014)
45.
go back to reference Sergey, K., Yury, K.: Applying map-reduce paradigm for parallel closed cube computation. In: First International Conference on Advances in Databases, Knowledge, and Data Applications, 2009. DBKDA’09, pp. 62–67 (2009) Sergey, K., Yury, K.: Applying map-reduce paradigm for parallel closed cube computation. In: First International Conference on Advances in Databases, Knowledge, and Data Applications, 2009. DBKDA’09, pp. 62–67 (2009)
46.
go back to reference Wang, Y., Song, A., Luo, J.: A mapreducemerge-based data cube construction method. In: 2010 9th International Conference on Grid and Cooperative Computing (GCC), pp. 1–6 (2010) Wang, Y., Song, A., Luo, J.: A mapreducemerge-based data cube construction method. In: 2010 9th International Conference on Grid and Cooperative Computing (GCC), pp. 1–6 (2010)
47.
go back to reference Wang, Z., Chu, Y., Tan, K.-L., Agrawal, D., Abbadi, A.E.: HaCube: extending MapReduce for efficient OLAP cube materialization and view maintenance. In: International Conference on Database Systems for Advanced Applications, pp. 113–129 (2016) Wang, Z., Chu, Y., Tan, K.-L., Agrawal, D., Abbadi, A.E.: HaCube: extending MapReduce for efficient OLAP cube materialization and view maintenance. In: International Conference on Database Systems for Advanced Applications, pp. 113–129 (2016)
48.
go back to reference Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.: MapReduce online. Nsdi 10, 20 (2010) Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.: MapReduce online. Nsdi 10, 20 (2010)
49.
go back to reference Condie, T., Conway, N., Alvaro, P., Hellerstein, J. M., Gerth, J., Talbot, J., et al.: Online aggregation and continuous query support in mapreduce. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pp. 1115–1118 (2010) Condie, T., Conway, N., Alvaro, P., Hellerstein, J. M., Gerth, J., Talbot, J., et al.: Online aggregation and continuous query support in mapreduce. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pp. 1115–1118 (2010)
50.
go back to reference Suan, L., Yang-Sae, M., Jinho, K.: Distributed parallel top-down computation of data cube using MapReduce. In: Proceedings of the 3rd International Conference on Emerging Databases, Incheon, Korea, pp. 303–306 (2011) Suan, L., Yang-Sae, M., Jinho, K.: Distributed parallel top-down computation of data cube using MapReduce. In: Proceedings of the 3rd International Conference on Emerging Databases, Incheon, Korea, pp. 303–306 (2011)
51.
go back to reference Nandi, A., Yu, C., Bohannon, P., Ramakrishnan, R.: Distributed cube materialization on holistic measures. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 183–194 (2011) Nandi, A., Yu, C., Bohannon, P., Ramakrishnan, R.: Distributed cube materialization on holistic measures. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 183–194 (2011)
52.
go back to reference Li, J., Meng, L., Wang, F.Z., Zhang, W., Cai, Y.: A map-reduce-enabled SOLAP cube for large-scale remotely sensed data aggregation. Comput. Geosci. 70, 110–119 (2014)CrossRef Li, J., Meng, L., Wang, F.Z., Zhang, W., Cai, Y.: A map-reduce-enabled SOLAP cube for large-scale remotely sensed data aggregation. Comput. Geosci. 70, 110–119 (2014)CrossRef
53.
go back to reference Phan, D.-H., DellÁmico, M., Michiardi, P.: On the design space of MapReduce ROLLUP aggregates. In: EDBT/ICDT Workshops, pp. 10–18 (2014) Phan, D.-H., DellÁmico, M., Michiardi, P.: On the design space of MapReduce ROLLUP aggregates. In: EDBT/ICDT Workshops, pp. 10–18 (2014)
54.
go back to reference Wang, B., Gui, H., Roantree, M.: OĆonnor. Data cube computational model with hadoop mapreduce, M.F. (2014) Wang, B., Gui, H., Roantree, M.: OĆonnor. Data cube computational model with hadoop mapreduce, M.F. (2014)
55.
go back to reference Lee, S., Jo, S., Kim, J.: MRDataCube: data cube computation using MapReduce. In: 2015 International Conference on Big Data and Smart Computing (BigComp), pp. 95–102 (2015) Lee, S., Jo, S., Kim, J.: MRDataCube: data cube computation using MapReduce. In: 2015 International Conference on Big Data and Smart Computing (BigComp), pp. 95–102 (2015)
56.
go back to reference Lee, S., Kim, J.: Performance evaluation of MRDataCube for data cube computation algorithm using MapReduce. In: 2016 International Conference on Big Data and Smart Computing (BigComp), pp. 325–328 (2016) Lee, S., Kim, J.: Performance evaluation of MRDataCube for data cube computation algorithm using MapReduce. In: 2016 International Conference on Big Data and Smart Computing (BigComp), pp. 325–328 (2016)
57.
go back to reference Phan, D.-H., Michiardi, P.: A novel, low-latency algorithm for multiple Group-By query optimization. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 301–312 (2016) Phan, D.-H., Michiardi, P.: A novel, low-latency algorithm for multiple Group-By query optimization. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 301–312 (2016)
60.
go back to reference Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF querying with SPARQL on Spark. Proc. VLDB Endow. 9(10), 804–815 (2016)CrossRef Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF querying with SPARQL on Spark. Proc. VLDB Endow. 9(10), 804–815 (2016)CrossRef
Metadata
Title
Scalable distributed data cube computation for large-scale multidimensional data analysis on a Spark cluster
Authors
Suan Lee
Seok Kang
Jinho Kim
Eun Jung Yu
Publication date
01-02-2018
Publisher
Springer US
Published in
Cluster Computing / Issue Special Issue 1/2019
Print ISSN: 1386-7857
Electronic ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-018-1811-1

Other articles of this Special Issue 1/2019

Cluster Computing 1/2019 Go to the issue

Premium Partner