Skip to main content
Top

2018 | OriginalPaper | Chapter

93. Scanning Near-Field Optical Microscopy/Near-Field Scanning Optical Microscopy

Author : Tetsuya Narushima

Published in: Compendium of Surface and Interface Analysis

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Scanning near-field optical microscopy (SNOM)/near-field scanning optical microscopy (NSOM) is one of the scanning probe microscopies, especially for investigation of optical properties and phenomena in nanometer scale. SNOM/NSOM observation provides high spatial resolution of 10–100 nm that conventional optical microscopes do not achieve, in principle.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Saiki, T., Matsuda, K.: Near-field optical fiber probe optimized for illuminationcollection hybrid mode operation. Appl. Phys. Lett. 74, 2773–2775 (1999)CrossRef Saiki, T., Matsuda, K.: Near-field optical fiber probe optimized for illuminationcollection hybrid mode operation. Appl. Phys. Lett. 74, 2773–2775 (1999)CrossRef
2.
go back to reference Novotny, L., Hecht, B.: Principles of Nano-Optics, 1st edn, pp. 173–224. Cambridge University Press, Cambridge (2006)CrossRef Novotny, L., Hecht, B.: Principles of Nano-Optics, 1st edn, pp. 173–224. Cambridge University Press, Cambridge (2006)CrossRef
3.
go back to reference Anger, P., Bharadwaj, P., Novotny, L.: Enhancement and quenching of single molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)CrossRef Anger, P., Bharadwaj, P., Novotny, L.: Enhancement and quenching of single molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)CrossRef
4.
go back to reference Hoeppener, C., Novotny, L.: Antenna-based optical imaging of single Ca2 transmembrane proteins in liquids. Nano Lett. 8, 642–646 (2008)CrossRef Hoeppener, C., Novotny, L.: Antenna-based optical imaging of single Ca2 transmembrane proteins in liquids. Nano Lett. 8, 642–646 (2008)CrossRef
5.
go back to reference Keilmann, F., Hillenbrand, R.: Near-field microscopy by elastic light scattering from a tip. Phil. Trans. Roy. Soc. Lond. A 362, 787–805 (2004)CrossRef Keilmann, F., Hillenbrand, R.: Near-field microscopy by elastic light scattering from a tip. Phil. Trans. Roy. Soc. Lond. A 362, 787–805 (2004)CrossRef
6.
go back to reference Chen, C., Hayazawa, N., Kawata, S.: A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 3312 (2014) Chen, C., Hayazawa, N., Kawata, S.: A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 3312 (2014)
7.
go back to reference Okamoto, H., Narushima, T., Nishiyama, Y., Imura, K.: Local optical responses of plasmon resonances visualised by near-field optical imaging. Phys. Chem. Chem. Phys. (Perspective) 17, 6192–6206 (2015)CrossRef Okamoto, H., Narushima, T., Nishiyama, Y., Imura, K.: Local optical responses of plasmon resonances visualised by near-field optical imaging. Phys. Chem. Chem. Phys. (Perspective) 17, 6192–6206 (2015)CrossRef
8.
go back to reference Okamoto, H., Imura, K.: Near-Field Optical Imaging of Nanoscale Optical Fields and Plasmon Waves. Jpn. J. Appl. Phys. 47, 6055–6062 (2008)CrossRef Okamoto, H., Imura, K.: Near-Field Optical Imaging of Nanoscale Optical Fields and Plasmon Waves. Jpn. J. Appl. Phys. 47, 6055–6062 (2008)CrossRef
9.
go back to reference Vallius, T., Jefimovs, K., Turunen, J., Vahimaa, P., Svirko, Y.: Optical activity in subwavelength-period arrays of chiral metallic particles. Appl. Phys. Lett. 83, 234–236 (2003)CrossRef Vallius, T., Jefimovs, K., Turunen, J., Vahimaa, P., Svirko, Y.: Optical activity in subwavelength-period arrays of chiral metallic particles. Appl. Phys. Lett. 83, 234–236 (2003)CrossRef
10.
go back to reference Kuwata-Gonokami, M. et al.: Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401-1-4 (2005) Kuwata-Gonokami, M. et al.: Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401-1-4 (2005)
11.
go back to reference Schäferling, M., Dregely, D., Hentschel, M. Giessen, H.: Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010-1-9 (2012) Schäferling, M., Dregely, D., Hentschel, M. Giessen, H.: Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010-1-9 (2012)
12.
go back to reference Narushima, T., Okamoto, H.: Circular dichroism nano-imaging of two-dimensional metal nanostructures. Phys. Chem. Chem. Phys. 15, 13805–13809 (2013)CrossRef Narushima, T., Okamoto, H.: Circular dichroism nano-imaging of two-dimensional metal nanostructures. Phys. Chem. Chem. Phys. 15, 13805–13809 (2013)CrossRef
13.
go back to reference Narushima, T., Okamoto, H.: Strong nanoscale optical activity localized in two-dimensional chiral metal nanostructures. J. Phys. Chem. C. 117, 23964–23969 (2013)CrossRef Narushima, T., Okamoto, H.: Strong nanoscale optical activity localized in two-dimensional chiral metal nanostructures. J. Phys. Chem. C. 117, 23964–23969 (2013)CrossRef
14.
go back to reference Narushima, T., Hashiyada, S., Okamoto, H.: Nanoscopic study on developing optical activity with increasing chirality for two-dimensional metal nano- structures. ACS photonics 1, 732–738 (2014)CrossRef Narushima, T., Hashiyada, S., Okamoto, H.: Nanoscopic study on developing optical activity with increasing chirality for two-dimensional metal nano- structures. ACS photonics 1, 732–738 (2014)CrossRef
15.
go back to reference Hashiyada, S., Narushima, T., Okamoto, H.: Local optical activity in achiral two-dimensional gold nanostructures. J. Phys. Chem. C. 118, 22229–22233 (2014)CrossRef Hashiyada, S., Narushima, T., Okamoto, H.: Local optical activity in achiral two-dimensional gold nanostructures. J. Phys. Chem. C. 118, 22229–22233 (2014)CrossRef
Metadata
Title
Scanning Near-Field Optical Microscopy/Near-Field Scanning Optical Microscopy
Author
Tetsuya Narushima
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6156-1_93

Premium Partners