Skip to main content
Top
Published in: Pattern Analysis and Applications 3/2020

25-02-2020 | Theoretical advances

Scene classification using a new radial basis function classifier and integrated SIFT–LBP features

Authors: Davar Giveki, Maryam Karami

Published in: Pattern Analysis and Applications | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Scene classification is one of the most significant and challenging tasks in computer vision. This paper presents a new method for scene classification using bag of visual words and a particle swarm optimization (PSO)-based artificial neural network classifier. Contributions of this paper are introducing a novel feature integration method using scale invariant feature transform (SIFT) and local binary pattern (LBP) and a new framework for training radial basis function neural network, combining optimum steepest decent method with a specially designed PSO-based optimizer for center adjustment of radial basis function neural network. Our study shows that using LBP increases the performance of classification task compared to using SIFT only. In addition, our experiments on Proben1 dataset demonstrate improvements in classification performance (averagely about 6.04%) and convergence speed of the proposed radial basis function neural network. The proposed radial basis function neural network is then employed in scene classification task. Results are reported for classification of the Oliva and Torralba, Fei–Fei and Perona and Lazebnik et al. datasets. We compare the performance of the proposed classifier with a multi-way SVM classifier. Experimental results show the superiority of the proposed classifier over the state-of-the-art on the three datasets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Giveki D, Montazer GA, Soltanshahi MA (2017) Atanassov's intuitionistic fuzzy histon for robust moving object detection. Int J Approximate Reasoning 91:80–95MathSciNetCrossRef Giveki D, Montazer GA, Soltanshahi MA (2017) Atanassov's intuitionistic fuzzy histon for robust moving object detection. Int J Approximate Reasoning 91:80–95MathSciNetCrossRef
2.
go back to reference Montazer GA, Giveki D (2017) Scene classification using multi-resolution WAHOLB features and neural network classifier. Neural Proc Lett 46(2):681–704CrossRef Montazer GA, Giveki D (2017) Scene classification using multi-resolution WAHOLB features and neural network classifier. Neural Proc Lett 46(2):681–704CrossRef
3.
go back to reference Giveki D, Rastegar H, Karami M (2019) Erratum to: A new neural network classifier based on atanassov's intuitionistic fuzzy set theory. Opt Mem Neural Netw 28(3):237–237CrossRef Giveki D, Rastegar H, Karami M (2019) Erratum to: A new neural network classifier based on atanassov's intuitionistic fuzzy set theory. Opt Mem Neural Netw 28(3):237–237CrossRef
4.
go back to reference Montazer GA, Giveki D (2015) Content based image retrieval system using clustered scale invariant feature transforms. Optik 126(18):1695–1699CrossRef Montazer GA, Giveki D (2015) Content based image retrieval system using clustered scale invariant feature transforms. Optik 126(18):1695–1699CrossRef
5.
go back to reference Giveki D, Rastegar H (2019) Designing a new radial basis function neural network by harmony search for diabetes diagnosis. Opt Mem Neural Netw 28(4):321–331CrossRef Giveki D, Rastegar H (2019) Designing a new radial basis function neural network by harmony search for diabetes diagnosis. Opt Mem Neural Netw 28(4):321–331CrossRef
6.
go back to reference Giveki D, Soltanshahi MA, Montazer GA (2017) A new image feature descriptor for content based image retrieval using scale invariant feature transform and local derivative pattern. Optik 131:242–254CrossRef Giveki D, Soltanshahi MA, Montazer GA (2017) A new image feature descriptor for content based image retrieval using scale invariant feature transform and local derivative pattern. Optik 131:242–254CrossRef
7.
go back to reference Giveki D, Soltanshahi MA, Shiri F, Tarrah H (2015) A new SIFT-based image descriptor applicable for content-based image retrieval. J Comput Commun 3:66–73CrossRef Giveki D, Soltanshahi MA, Shiri F, Tarrah H (2015) A new SIFT-based image descriptor applicable for content-based image retrieval. J Comput Commun 3:66–73CrossRef
8.
go back to reference Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554MathSciNetCrossRef Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554MathSciNetCrossRef
9.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
10.
go back to reference Chan T, Jia K, Gao S, Lu J, Zeng Z, Ma YP (2014) A simple deep learning baseline for image classification? arXiv preprint. arXiv preprint arXiv:14043606 Chan T, Jia K, Gao S, Lu J, Zeng Z, Ma YP (2014) A simple deep learning baseline for image classification? arXiv preprint. arXiv preprint arXiv:​14043606
11.
go back to reference Fan H, Zhou E (2016) Approaching human level facial landmark localization by deep learning. Image Vis Comput 47:27–35CrossRef Fan H, Zhou E (2016) Approaching human level facial landmark localization by deep learning. Image Vis Comput 47:27–35CrossRef
12.
go back to reference Wang R, Tao D (2016) Non-local auto-encoder with collaborative stabilization for image restoration. IEEE Trans Image Process 25(5):2117–2129MathSciNetCrossRef Wang R, Tao D (2016) Non-local auto-encoder with collaborative stabilization for image restoration. IEEE Trans Image Process 25(5):2117–2129MathSciNetCrossRef
13.
go back to reference Tian Y, Luo P, Wang X, Tang X (2015) Deep learning strong parts for pedestrian detection. In: Proceedings of the IEEE international conference on computer vision, pp 1904–1912 Tian Y, Luo P, Wang X, Tang X (2015) Deep learning strong parts for pedestrian detection. In: Proceedings of the IEEE international conference on computer vision, pp 1904–1912
14.
15.
go back to reference Wang N, Yeung DY (2013). Learning a deep compact image representation for visual tracking. In: Advances in neural information processing systems, pp 809–817 Wang N, Yeung DY (2013). Learning a deep compact image representation for visual tracking. In: Advances in neural information processing systems, pp 809–817
16.
go back to reference Wang W, Yang X, Ooi BC, Zhang D, Zhuang Y (2016) Effective deep learning-based multi-modal retrieval. VLDB J 25(1):79–101CrossRef Wang W, Yang X, Ooi BC, Zhang D, Zhuang Y (2016) Effective deep learning-based multi-modal retrieval. VLDB J 25(1):79–101CrossRef
17.
go back to reference Zhu Z, Wang X, Bai S, Yao C, Bai X (2016) Deep learning representation using autoencoder for 3D shape retrieval. Neurocomputing 204:41–50CrossRef Zhu Z, Wang X, Bai S, Yao C, Bai X (2016) Deep learning representation using autoencoder for 3D shape retrieval. Neurocomputing 204:41–50CrossRef
18.
go back to reference Sun S (2013) A survey of multi-view machine learning. Neural Comput Appl 23(7–8):2031–2038CrossRef Sun S (2013) A survey of multi-view machine learning. Neural Comput Appl 23(7–8):2031–2038CrossRef
20.
go back to reference Yu J, Rui Y, Tang YY, Tao D (2014) High-order distance-based multiview stochastic learning in image classification. IEEE Trans Cybernet 44(12):2431–2442CrossRef Yu J, Rui Y, Tang YY, Tao D (2014) High-order distance-based multiview stochastic learning in image classification. IEEE Trans Cybernet 44(12):2431–2442CrossRef
21.
go back to reference Fathi V, Montazer GA (2013) An improvement in RBF learning algorithm based on PSO for real time applications. Neuro Comput, pp 169–176 Fathi V, Montazer GA (2013) An improvement in RBF learning algorithm based on PSO for real time applications. Neuro Comput, pp 169–176
22.
go back to reference Song X, Jiao LC, Yang S, Zhang X, Shang F (2013) Sparse coding and classifier ensemble based multi-instance learning for image categorization. Sig Process 93:1–11CrossRef Song X, Jiao LC, Yang S, Zhang X, Shang F (2013) Sparse coding and classifier ensemble based multi-instance learning for image categorization. Sig Process 93:1–11CrossRef
23.
go back to reference Luo H-L, Wei H, Hu F-X (2011) Improvements in image categorization using codebook ensembles. Image Vis Comput 29:759–773CrossRef Luo H-L, Wei H, Hu F-X (2011) Improvements in image categorization using codebook ensembles. Image Vis Comput 29:759–773CrossRef
24.
go back to reference Kim BS, Park J-Y, Gilbert AC, Savarese S (2013) Hierarchical classification of images by sparse approximation. Image Vis Comput 31:982–991CrossRef Kim BS, Park J-Y, Gilbert AC, Savarese S (2013) Hierarchical classification of images by sparse approximation. Image Vis Comput 31:982–991CrossRef
25.
go back to reference Zhang C, Liu J, Liang C, Huang Q, Tian Q (2013) Image classification using Harr-like transformation of local features with coding residuals. Sig Process 93:2111–2118CrossRef Zhang C, Liu J, Liang C, Huang Q, Tian Q (2013) Image classification using Harr-like transformation of local features with coding residuals. Sig Process 93:2111–2118CrossRef
26.
go back to reference Qin J, Yung NHC (2012) Feature fusion within local region using localized maximum-margin learning for scene categorization. Pattern Recognit 45:1671–1683CrossRef Qin J, Yung NHC (2012) Feature fusion within local region using localized maximum-margin learning for scene categorization. Pattern Recognit 45:1671–1683CrossRef
27.
go back to reference Shang L, Xiao B (2012) Discriminative features for image classification and retrieval. Pattern Recognit Lett 33:744–751CrossRef Shang L, Xiao B (2012) Discriminative features for image classification and retrieval. Pattern Recognit Lett 33:744–751CrossRef
28.
go back to reference Song T, Li H (2013) Wave LBP based hierarchical features for image classification. Pattern Recognit Lett 34:1323–1328CrossRef Song T, Li H (2013) Wave LBP based hierarchical features for image classification. Pattern Recognit Lett 34:1323–1328CrossRef
29.
go back to reference Tian X, Jiao L, Liu X, Zhang X (2014) Feature integration of EODH and color-SIFT: application to image retrieval based on codebook. Sig Process Image Commun 29:530–554CrossRef Tian X, Jiao L, Liu X, Zhang X (2014) Feature integration of EODH and color-SIFT: application to image retrieval based on codebook. Sig Process Image Commun 29:530–554CrossRef
30.
go back to reference Subrahmanyama M, Maheshwari RP, Balasubramanian R (2012) Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Sig Process 92:1467–1479CrossRef Subrahmanyama M, Maheshwari RP, Balasubramanian R (2012) Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Sig Process 92:1467–1479CrossRef
31.
go back to reference Lin I-C, Liou C-Y (2007) Least-mean-square training of cluster-weighted modeling. In: Sá JM, Alexandre LA, Duch W, Mandic D (eds) Artificial neural networks—ICANN, vol 4669. Springer, Berlin, pp 301–310 Lin I-C, Liou C-Y (2007) Least-mean-square training of cluster-weighted modeling. In: Sá JM, Alexandre LA, Duch W, Mandic D (eds) Artificial neural networks—ICANN, vol 4669. Springer, Berlin, pp 301–310
32.
go back to reference Chen X (2007) Deformation measurement of the large flexible surface by improved RBFNN algorithm and BPNN algorithm. In: Chen X (2007) Deformation measurement of the large flexible surface by improved RBFNN algorithm and BPNN algorithm. In:
33.
go back to reference Cancelliere R, Gai M (2003) A comparative analysis of neural network performances in astronomical imaging. Appl Numer Math 45(1):87–98CrossRef Cancelliere R, Gai M (2003) A comparative analysis of neural network performances in astronomical imaging. Appl Numer Math 45(1):87–98CrossRef
34.
go back to reference Montazer GA, Sabzevari R, Khatir HG (2007) Improvement of learning algorithms for RBF neural networks in a helicopter sound identification system. Neurocomputing 71(1–3):167–173CrossRef Montazer GA, Sabzevari R, Khatir HG (2007) Improvement of learning algorithms for RBF neural networks in a helicopter sound identification system. Neurocomputing 71(1–3):167–173CrossRef
35.
go back to reference Montazer GA, Sabzevari R, Ghorbani F (2009) Three-phase strategy for the OSD learning method in RBF neural networks. Neurocomputing 72:1797–1802CrossRef Montazer GA, Sabzevari R, Ghorbani F (2009) Three-phase strategy for the OSD learning method in RBF neural networks. Neurocomputing 72:1797–1802CrossRef
36.
go back to reference Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRef Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRef
37.
go back to reference Ojala D, Pietikäinen M, Mäenpää T (2002) Multiresolution gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987CrossRef Ojala D, Pietikäinen M, Mäenpää T (2002) Multiresolution gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987CrossRef
38.
go back to reference Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: IEEE computer society conference on computer vision and pattern recognition, volume 2, pp 2169–2178 Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: IEEE computer society conference on computer vision and pattern recognition, volume 2, pp 2169–2178
39.
go back to reference Prechelt L (1994) Proben1: a set of neural network benchmark problems and benchmarking rules Prechelt L (1994) Proben1: a set of neural network benchmark problems and benchmarking rules
40.
go back to reference Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175CrossRef Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175CrossRef
41.
go back to reference Fei-Fei L, Perona P (2005) A bayesian hierarchical model for learning natural scene categories. In: IEEE computer society conference on computer vision and pattern recognition, vol. 2, pp 524–531 Fei-Fei L, Perona P (2005) A bayesian hierarchical model for learning natural scene categories. In: IEEE computer society conference on computer vision and pattern recognition, vol. 2, pp 524–531
42.
go back to reference Fan R, Chang K, Hsieh C, Wang X, Lin C (2008) LIBLINEAR: a library for large linear classification. JMLR 9:1871–1874MATH Fan R, Chang K, Hsieh C, Wang X, Lin C (2008) LIBLINEAR: a library for large linear classification. JMLR 9:1871–1874MATH
43.
go back to reference van Gemert JC, Geusebroek J-M, Veenman CJ, Smeulders AWM (2008) Kernel codebooks for scene categorization. In: ECCV van Gemert JC, Geusebroek J-M, Veenman CJ, Smeulders AWM (2008) Kernel codebooks for scene categorization. In: ECCV
44.
go back to reference Bolovinou A, Pratikakis I, Perantonis S (2013) Bag of spatio-visual words for context inference in scene classification. Pattern Recognit 46(3):1039–1053CrossRef Bolovinou A, Pratikakis I, Perantonis S (2013) Bag of spatio-visual words for context inference in scene classification. Pattern Recognit 46(3):1039–1053CrossRef
45.
go back to reference Zhang S, Tian Q, Hua G, Huang Q, Gao W (2014) ScenePatchNet: towards scalable and semantic image annotation and retrieval. Comput Vis Image Underst 118:16–29CrossRef Zhang S, Tian Q, Hua G, Huang Q, Gao W (2014) ScenePatchNet: towards scalable and semantic image annotation and retrieval. Comput Vis Image Underst 118:16–29CrossRef
46.
go back to reference Qin J, Yung NHC (2010) Scene categorization via contextual visual words. In: Proceedings of the CVPR, vol 43 Qin J, Yung NHC (2010) Scene categorization via contextual visual words. In: Proceedings of the CVPR, vol 43
47.
go back to reference Wang Y, Gong S (2007) Conditional random field for natural scene image classification. In: Proceedings of the British machine vision conference, Warwick Wang Y, Gong S (2007) Conditional random field for natural scene image classification. In: Proceedings of the British machine vision conference, Warwick
48.
go back to reference Qin J, Yung NHC (2010) Scene categorization via contextual visual words. Pattern Recognit 43:1874–1888CrossRef Qin J, Yung NHC (2010) Scene categorization via contextual visual words. Pattern Recognit 43:1874–1888CrossRef
49.
go back to reference Zhou L, Zhou Z, Hu D (2013) Scene classification using a multi-resolution bag-of-features model. Pattern Recognit 46:424–433CrossRef Zhou L, Zhou Z, Hu D (2013) Scene classification using a multi-resolution bag-of-features model. Pattern Recognit 46:424–433CrossRef
50.
go back to reference Meng X, Wang Z, Wu L (2012) Building global image features for scene recognition. Pattern Recognit 45:373–380CrossRef Meng X, Wang Z, Wu L (2012) Building global image features for scene recognition. Pattern Recognit 45:373–380CrossRef
51.
go back to reference Wang S, Wang Y, Zhu S-C (2013) Hierarchical space tiling for scene modeling. In: Computer vision-ACCV 2012. Springer, Berlin, pp 796–810 Wang S, Wang Y, Zhu S-C (2013) Hierarchical space tiling for scene modeling. In: Computer vision-ACCV 2012. Springer, Berlin, pp 796–810
Metadata
Title
Scene classification using a new radial basis function classifier and integrated SIFT–LBP features
Authors
Davar Giveki
Maryam Karami
Publication date
25-02-2020
Publisher
Springer London
Published in
Pattern Analysis and Applications / Issue 3/2020
Print ISSN: 1433-7541
Electronic ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-020-00868-7

Other articles of this Issue 3/2020

Pattern Analysis and Applications 3/2020 Go to the issue

Premium Partner