Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Segmentation Guided Scoring of Pathological Lesions in Swine Through CNNs

Authors : Luca Bergamini, Abigail Rose Trachtman, Andrea Palazzi, Ercole Del Negro, Andrea Capobianco Dondona, Giuseppe Marruchella, Simone Calderara

Published in: New Trends in Image Analysis and Processing – ICIAP 2019

Publisher: Springer International Publishing

share
SHARE

Abstract

The slaughterhouse is widely recognised as a useful checkpoint for assessing the health status of livestock. At the moment, this is implemented through the application of scoring systems by human experts. The automation of this process would be extremely helpful for veterinarians to enable a systematic examination of all slaughtered livestock, positively influencing herd management. However, such systems are not yet available, mainly because of a critical lack of annotated data.
In this work we: (i) introduce a large scale dataset to enable the development and benchmarking of these systems, featuring more than 4000 high-resolution swine carcass images annotated by domain experts with pixel-level segmentation; (ii) exploit part of this annotation to train a deep learning model in the task of pleural lesion scoring.
In this setting, we propose a segmentation-guided framework which stacks together a fully convolutional neural network performing semantic segmentation with a rule-based classifier integrating a-priori veterinary knowledge in the process. Thorough experimental analysis against state-of-the-art baselines proves our method to be superior both in terms of accuracy and in terms of model interpretability.
Code and dataset are publicly available here:

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Footnotes
1
According to PEPP [5, 12, 13], we consider the area between the first and the fifth intercostal space as chest wall 1 and the rest of the chest wall as chest wall 2.
 
Literature
1.
go back to reference Aslam, B., et al.: Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11, 1645 (2018) CrossRef Aslam, B., et al.: Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11, 1645 (2018) CrossRef
2.
go back to reference Bao, C., et al.: Establishment and comparison of actinobacillus pleuropneumoniae experimental infection model in mice and piglets. Microb. Pathog. 128, 381–389 (2019) CrossRef Bao, C., et al.: Establishment and comparison of actinobacillus pleuropneumoniae experimental infection model in mice and piglets. Microb. Pathog. 128, 381–389 (2019) CrossRef
3.
go back to reference Chung, Y., Oh, S., Lee, J., Park, D., Chang, H.H., Kim, S.: Automatic detection and recognition of pig wasting diseases using sound data in audio surveillance systems. Sensors 13(10), 12929–12942 (2013) CrossRef Chung, Y., Oh, S., Lee, J., Park, D., Chang, H.H., Kim, S.: Automatic detection and recognition of pig wasting diseases using sound data in audio surveillance systems. Sensors 13(10), 12929–12942 (2013) CrossRef
4.
go back to reference Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009) Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
5.
go back to reference Di Provvido, A., et al.: Pleurisy evaluation on the parietal pleura: an alternative scoring method in slaughtered pigs. J. Swine Health Prod. (2019) Di Provvido, A., et al.: Pleurisy evaluation on the parietal pleura: an alternative scoring method in slaughtered pigs. J. Swine Health Prod. (2019)
6.
go back to reference Gottschalk, M.: Diseases of Swine, 10th edn. vol. 2012, pp. 653–669. Wiley-Blackwell, Oxford (2012) Gottschalk, M.: Diseases of Swine, 10th edn. vol. 2012, pp. 653–669. Wiley-Blackwell, Oxford (2012)
7.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
8.
go back to reference Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)
10.
go back to reference Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
11.
go back to reference Marcato, P.S.: Patologia Suina: Testo E Atlante; a Colour Atlas of Pathology of the Pig. Edagricole (1998) Marcato, P.S.: Patologia Suina: Testo E Atlante; a Colour Atlas of Pathology of the Pig. Edagricole (1998)
12.
go back to reference Marruchella, G., Odintzov Vaintrub, M., Di Provvido, A., Farina, E., Fragassi, G., Vignola, G.: Alternative scoring method of pleurisy in slaughtered pigs: Preliminary investigations. In: Proceedings of SIPAS, pp. 375–380 (2018) Marruchella, G., Odintzov Vaintrub, M., Di Provvido, A., Farina, E., Fragassi, G., Vignola, G.: Alternative scoring method of pleurisy in slaughtered pigs: Preliminary investigations. In: Proceedings of SIPAS, pp. 375–380 (2018)
13.
go back to reference Marruchella, G., Odintzov Vaintrub, M., Di Provvido, A., Farina, E., Vignola, G.: Scoring pleurisy in slaughtered pigs. In: Proceedings of SISVet, pp. 238–239 (2018) Marruchella, G., Odintzov Vaintrub, M., Di Provvido, A., Farina, E., Vignola, G.: Scoring pleurisy in slaughtered pigs. In: Proceedings of SISVet, pp. 238–239 (2018)
14.
go back to reference Mathew, A.G., Cissell, R., Liamthong, S.: Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. Foodborne Pathog. Dis. 4(2), 115–133 (2007) CrossRef Mathew, A.G., Cissell, R., Liamthong, S.: Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. Foodborne Pathog. Dis. 4(2), 115–133 (2007) CrossRef
15.
go back to reference McAllister, P., Zheng, H., Bond, R., Moorhead, A.: Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets. Comput. Biol. Med. 95, 217–233 (2018) CrossRef McAllister, P., Zheng, H., Bond, R., Moorhead, A.: Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets. Comput. Biol. Med. 95, 217–233 (2018) CrossRef
16.
go back to reference Merialdi, G., et al.: Survey of pleuritis and pulmonary lesions in pigs at abattoir with a focus on the extent of the condition and herd risk factors. Vet. J. 193(1), 234–239 (2012) CrossRef Merialdi, G., et al.: Survey of pleuritis and pulmonary lesions in pigs at abattoir with a focus on the extent of the condition and herd risk factors. Vet. J. 193(1), 234–239 (2012) CrossRef
18.
go back to reference Scollo, A., Gottardo, F., Contiero, B., Mazzoni, C., Leneveu, P., Edwards, S.A.: Benchmarking of pluck lesions at slaughter as a health monitoring tool for pigs slaughtered at 170 kg (heavy pigs). Prev. Vet. Med. 144, 20–28 (2017) CrossRef Scollo, A., Gottardo, F., Contiero, B., Mazzoni, C., Leneveu, P., Edwards, S.A.: Benchmarking of pluck lesions at slaughter as a health monitoring tool for pigs slaughtered at 170 kg (heavy pigs). Prev. Vet. Med. 144, 20–28 (2017) CrossRef
19.
go back to reference Shao, B., Xin, H.: A real-time computer vision assessment and control of thermal comfort for group-housed pigs. Comput. Electron. Agric. 62(1), 15–21 (2008) CrossRef Shao, B., Xin, H.: A real-time computer vision assessment and control of thermal comfort for group-housed pigs. Comput. Electron. Agric. 62(1), 15–21 (2008) CrossRef
20.
go back to reference Sorenson, V., Jorsal, S., Mousing, J.: Diseases of Swine, 9th edn. pp. 149–178. Blackwell Pubishing (2006) Sorenson, V., Jorsal, S., Mousing, J.: Diseases of Swine, 9th edn. pp. 149–178. Blackwell Pubishing (2006)
21.
go back to reference Van Boeckel, T.P., et al.: Reducing antimicrobial use in food animals. Science 357(6358), 1350–1352 (2017) CrossRef Van Boeckel, T.P., et al.: Reducing antimicrobial use in food animals. Science 357(6358), 1350–1352 (2017) CrossRef
Metadata
Title
Segmentation Guided Scoring of Pathological Lesions in Swine Through CNNs
Authors
Luca Bergamini
Abigail Rose Trachtman
Andrea Palazzi
Ercole Del Negro
Andrea Capobianco Dondona
Giuseppe Marruchella
Simone Calderara
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-30754-7_35

Premium Partner