Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 7/2023

10-03-2023 | Original Article

Segmentation of retinal vessels in fundus images based on U-Net with self-calibrated convolutions and spatial attention modules

Authors: YiBiao Rong, Yu Xiong, Chong Li, Ying Chen, Peiwei Wei, Chuliang Wei, Zhun Fan

Published in: Medical & Biological Engineering & Computing | Issue 7/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Automated and accurate segmentation of retinal vessels in fundus images is an important step for screening and diagnosing various ophthalmologic diseases. However, many factors, including the variations of vessels in color, shape and size, make this task become an intricate challenge. One kind of the most popular methods for vessel segmentation is U-Net based methods. However, in the U-Net based methods, the size of the convolution kernels is generally fixed. As a result, the receptive field for an individual convolution operation is single, which is not conducive to the segmentation of retinal vessels with various thicknesses. To overcome this problem, in this paper, we employed self-calibrated convolutions to replace the traditional convolutions for the U-Net, which can make the U-Net learn discriminative representations from different receptive fields. Besides, we proposed an improved spatial attention module, instead of using traditional convolutions, to connect the encoding part and decoding part of the U-Net, which can improve the ability of the U-Net to detect thin vessels. The proposed method has been tested on Digital Retinal Images for Vessel Extraction (DRIVE) database and Child Heart and Health Study in England Database (CHASE DB1). The metrics used to evaluate the performance of the proposed method are accuracy (ACC), sensitivity (SE), specificity (SP), F1-score (F1) and the area under the receiver operating characteristic curve (AUC). The ACC, SE, SP, F1 and AUC obtained by the proposed method are 0.9680, 0.8036, 0.9840, 0.8138 and 0.9840 respectively on DRIVE database, and 0.9756, 0.8118, 0.9867, 0.8068 and 0.9888 respectively on CHASE DB1, which are better than those obtained by the traditional U-Net (the ACC, SE, SP, F1 and AUC obtained by U-Net are 0.9646, 0.7895, 0.9814, 0.7963 and 0.9791 respectively on DRIVE database, and 0.9733, 0.7817, 0.9862, 0.7870 and 0.9810 respectively on CHASE DB1). The experimental results indicate that the proposed modifications in the U-Net are effective for vessel segmentation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alom MZ, Yakopcic C, Hasan M, Taha TM, Asari VK (2019) Recurrent residual U-Net for medical image segmentation. J Med Imaging 6(1):014,006CrossRef Alom MZ, Yakopcic C, Hasan M, Taha TM, Asari VK (2019) Recurrent residual U-Net for medical image segmentation. J Med Imaging 6(1):014,006CrossRef
2.
go back to reference Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable cosfire filters for vessel delineation with application to retinal images. Med Image Anal 19(1):46–57CrossRefPubMed Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable cosfire filters for vessel delineation with application to retinal images. Med Image Anal 19(1):46–57CrossRefPubMed
3.
go back to reference Fan Z, Lu J, Wei C, Huang H, Cai X, Chen X (2018) A hierarchical image matting model for blood vessel segmentation in fundus images. IEEE Trans Image Process 28(5):2367–2377CrossRef Fan Z, Lu J, Wei C, Huang H, Cai X, Chen X (2018) A hierarchical image matting model for blood vessel segmentation in fundus images. IEEE Trans Image Process 28(5):2367–2377CrossRef
4.
go back to reference Fazlali HR, Karimi N, Soroushmehr SR, Shirani S, Nallamothu BK, Ward KR, Samavi S, Najarian K (2018) Vessel segmentation and catheter detection in x-ray angiograms using superpixels. Med Biol Eng Comput 56(9):1515–1530CrossRefPubMed Fazlali HR, Karimi N, Soroushmehr SR, Shirani S, Nallamothu BK, Ward KR, Samavi S, Najarian K (2018) Vessel segmentation and catheter detection in x-ray angiograms using superpixels. Med Biol Eng Comput 56(9):1515–1530CrossRefPubMed
5.
go back to reference Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) Blood vessel segmentation methodologies in retinal images–a survey. Comput Methods Programs Biomed 108(1):407–433CrossRefPubMed Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) Blood vessel segmentation methodologies in retinal images–a survey. Comput Methods Programs Biomed 108(1):407–433CrossRefPubMed
6.
go back to reference Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548CrossRefPubMed Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548CrossRefPubMed
7.
go back to reference Guo C, Szemenyei M, Yi Y, Wang W, Chen B, Fan C (2020) SA-UNet: Spatial attention U-Net for retinal vessel segmentation. arXiv:2004.03696 Guo C, Szemenyei M, Yi Y, Wang W, Chen B, Fan C (2020) SA-UNet: Spatial attention U-Net for retinal vessel segmentation. arXiv:2004.​03696
8.
go back to reference Guo X, Xiao R, Zhang T, Chen C, Wang J, Wang Z (2020) A novel method to model hepatic vascular network using vessel segmentation, thinning, and completion. Med Biol Eng Comput 1–16 Guo X, Xiao R, Zhang T, Chen C, Wang J, Wang Z (2020) A novel method to model hepatic vascular network using vessel segmentation, thinning, and completion. Med Biol Eng Comput 1–16
9.
go back to reference Hamamoto Y, Uchimura S, Watanabe M, Yasuda T, Mitani Y, Tomita S (1998) A Gabor filter-based method for recognizing handwritten numerals. Pattern Recogn 31(4):395–400CrossRef Hamamoto Y, Uchimura S, Watanabe M, Yasuda T, Mitani Y, Tomita S (1998) A Gabor filter-based method for recognizing handwritten numerals. Pattern Recogn 31(4):395–400CrossRef
10.
go back to reference Lam BS, Gao Y, Liew AWC (2010) General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans Med Imaging 29(7):1369–1381CrossRefPubMed Lam BS, Gao Y, Liew AWC (2010) General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans Med Imaging 29(7):1369–1381CrossRefPubMed
12.
go back to reference Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
13.
go back to reference Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2015) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1):109–118CrossRefPubMed Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2015) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1):109–118CrossRefPubMed
14.
go back to reference Li X, Wang L, Sung E (2008) AdaBoost with SVM-based component classifiers. Eng Appl Artif Intel 21(5):785–795CrossRef Li X, Wang L, Sung E (2008) AdaBoost with SVM-based component classifiers. Eng Appl Artif Intel 21(5):785–795CrossRef
15.
go back to reference Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380CrossRefPubMed Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380CrossRefPubMed
16.
go back to reference Liu I, Sun Y (1993) Recursive tracking of vascular networks in angiograms based on the detection-deletion scheme. IEEE Trans Med Imaging 12(2):334–341CrossRefPubMed Liu I, Sun Y (1993) Recursive tracking of vascular networks in angiograms based on the detection-deletion scheme. IEEE Trans Med Imaging 12(2):334–341CrossRefPubMed
17.
go back to reference Liu JJ, Hou Q, Cheng MM, Wang C, Feng J (2020) Improving convolutional networks with self-calibrated convolutions. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10,096–10,105 Liu JJ, Hou Q, Cheng MM, Wang C, Feng J (2020) Improving convolutional networks with self-calibrated convolutions. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10,096–10,105
18.
go back to reference Mendonca AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25(9):1200–1213CrossRefPubMed Mendonca AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25(9):1200–1213CrossRefPubMed
19.
go back to reference Mou L, Zhao Y, Fu H, Liu Y, Cheng J, Zheng Y, Su P, Yang J, Chen L, Frangi AF et al (2021) CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging. Med Image Anal 67:101,874CrossRef Mou L, Zhao Y, Fu H, Liu Y, Cheng J, Zheng Y, Su P, Yang J, Chen L, Frangi AF et al (2021) CS2-Net: Deep learning segmentation of curvilinear structures in medical imaging. Med Image Anal 67:101,874CrossRef
20.
go back to reference Nguyen V, Blumenstein M (2011) An application of the 2D gaussian filter for enhancing feature extraction in off-line signature verification. In: 2011 international conference on document analysis and recognition. IEEE, pp 339–343 Nguyen V, Blumenstein M (2011) An application of the 2D gaussian filter for enhancing feature extraction in off-line signature verification. In: 2011 international conference on document analysis and recognition. IEEE, pp 339–343
21.
go back to reference Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26(10):1357–1365CrossRefPubMed Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26(10):1357–1365CrossRefPubMed
22.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer, pp 234–241
23.
go back to reference Roychowdhury S, Koozekanani DD, Parhi KK (2014) Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J Biomed Health Inf 19(3):1118–1128 Roychowdhury S, Koozekanani DD, Parhi KK (2014) Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J Biomed Health Inf 19(3):1118–1128
24.
go back to reference Salem SA, Salem NM, Nandi AK (2007) Segmentation of retinal blood vessels using a novel clustering algorithm (RACAL) with a partial supervision strategy. Med Biol Eng Comput 45(3):261–273CrossRefPubMed Salem SA, Salem NM, Nandi AK (2007) Segmentation of retinal blood vessels using a novel clustering algorithm (RACAL) with a partial supervision strategy. Med Biol Eng Comput 45(3):261–273CrossRefPubMed
25.
go back to reference Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509CrossRefPubMed Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509CrossRefPubMed
26.
go back to reference Wang B, Qiu S, He H (2019) Dual encoding U-Net for retinal vessel segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 84–92 Wang B, Qiu S, He H (2019) Dual encoding U-Net for retinal vessel segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 84–92
27.
go back to reference Wang B, Wang S, Qiu S, Wei W, Wang H, He H (2020) CSU-Net: a context spatial u-net for accurate blood vessel segmentation in fundus images. IEEE J Biomed Health Inform 25(4):1128–1138CrossRef Wang B, Wang S, Qiu S, Wei W, Wang H, He H (2020) CSU-Net: a context spatial u-net for accurate blood vessel segmentation in fundus images. IEEE J Biomed Health Inform 25(4):1128–1138CrossRef
28.
go back to reference Wang W, Wang W, Hu Z (2019) Segmenting retinal vessels with revised top-bottom-hat transformation and flattening of minimum circumscribed ellipse. Med Biol Eng Comput 57(7):1481–1496CrossRefPubMed Wang W, Wang W, Hu Z (2019) Segmenting retinal vessels with revised top-bottom-hat transformation and flattening of minimum circumscribed ellipse. Med Biol Eng Comput 57(7):1481–1496CrossRefPubMed
29.
go back to reference Wei J, Zhu G, Fan Z, Liu J, Rong Y, Mo J, Li W, Chen X (2022) Genetic U-Net: automatically designed deep networks for retinal vessel segmentation using a genetic algorithm. IEEE Trans Med Imaging 41(2):292–307CrossRefPubMed Wei J, Zhu G, Fan Z, Liu J, Rong Y, Mo J, Li W, Chen X (2022) Genetic U-Net: automatically designed deep networks for retinal vessel segmentation using a genetic algorithm. IEEE Trans Med Imaging 41(2):292–307CrossRefPubMed
30.
go back to reference Woo S, Park J, Lee JY, Kweon IS (2018) CBAM: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19 Woo S, Park J, Lee JY, Kweon IS (2018) CBAM: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19
31.
go back to reference Wu Y, Xia Y, Song Y, Zhang Y, Cai W (2018) Multiscale network followed network model for retinal vessel segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 119–126 Wu Y, Xia Y, Song Y, Zhang Y, Cai W (2018) Multiscale network followed network model for retinal vessel segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 119–126
32.
go back to reference Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging 34(9):1797–1807CrossRefPubMed Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging 34(9):1797–1807CrossRefPubMed
Metadata
Title
Segmentation of retinal vessels in fundus images based on U-Net with self-calibrated convolutions and spatial attention modules
Authors
YiBiao Rong
Yu Xiong
Chong Li
Ying Chen
Peiwei Wei
Chuliang Wei
Zhun Fan
Publication date
10-03-2023
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 7/2023
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-023-02806-1

Other articles of this Issue 7/2023

Medical & Biological Engineering & Computing 7/2023 Go to the issue

Premium Partner