Skip to main content
Top

2018 | OriginalPaper | Chapter

Selective Transformations of the Anomeric Centre in Water Using DMC and Derivatives

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

2-Chloro-1,3-dimethylimidazolinium chloride (DMC) and its derivatives are useful for numerous synthetic transformations, which involve selective activation of the anomeric centre of unprotected reducing sugars in water. This chapter summarises research reported to date using DMC and derivatives, such as 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (ADMP). DMC has been successfully employed for the synthesis of glycosyl oxazolines, 1,6-anhydro-, 1-azido-, and a variety of thioglycosides. The use of ADMP allows the one-pot synthesis of glycosyl triazoles in water via the Cu-catalysed azide-alkyne Huisgen cycloaddition reaction. This latter methodology can be applied to a wide variety of carbohydrates and is also amenable to convergent glycopeptide synthesis in which oligosaccharides are directly conjugated to peptides that contain propargyl glycine residues. Such protecting group free methodologies, particularly when applied to complex oligosaccharides isolated from natural sources, may allow ready access to a wide variety of biologically interesting glycoconjugates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Donohoe TJ, Logan JG, Laffan DDP (2003) Trichloro-oxazolines as activated donors for aminosugar coupling. Org Lett 5:4995–4998CrossRef Donohoe TJ, Logan JG, Laffan DDP (2003) Trichloro-oxazolines as activated donors for aminosugar coupling. Org Lett 5:4995–4998CrossRef
2.
go back to reference Blatter G, Beau J-M, Jacquinet J-C (1994) The use of 2-deoxy-2-trichloroacetamido-D-glucopyranose derivatives in syntheses of oligosaccharides. Carbohydr Res 260:189–202CrossRef Blatter G, Beau J-M, Jacquinet J-C (1994) The use of 2-deoxy-2-trichloroacetamido-D-glucopyranose derivatives in syntheses of oligosaccharides. Carbohydr Res 260:189–202CrossRef
3.
go back to reference Fairbanks AJ (2011) Endohexosaminidase catalysed glycosylation with oxazoline donors: the development of robust biocatalytic methods for synthesis of defined homogeneous glycoconjugates. C R Chim 14:44–58CrossRef Fairbanks AJ (2011) Endohexosaminidase catalysed glycosylation with oxazoline donors: the development of robust biocatalytic methods for synthesis of defined homogeneous glycoconjugates. C R Chim 14:44–58CrossRef
4.
go back to reference Fairbanks AJ (2013) Endohexosaminidase-catalyzed synthesis of glycopeptides and proteins. Pure Appl Chem 85:1847–1863CrossRef Fairbanks AJ (2013) Endohexosaminidase-catalyzed synthesis of glycopeptides and proteins. Pure Appl Chem 85:1847–1863CrossRef
5.
go back to reference Kadokawa J, Mito M, Takahashi S et al (2004) Direct conversion of 2-Acetamido-2-deoxysugars to 1,2-Oxazoline derivatives by dehydrative cyclization in water. Heterocycles 63:1531–1535CrossRef Kadokawa J, Mito M, Takahashi S et al (2004) Direct conversion of 2-Acetamido-2-deoxysugars to 1,2-Oxazoline derivatives by dehydrative cyclization in water. Heterocycles 63:1531–1535CrossRef
6.
go back to reference Isobe T, Ishikawa T (1999) 2-Chloro-1,3-dimethylimidazolinium chloride. 2. Its application to the construction of heterocycles through dehydration reactions. J Org Chem 64:6989–6992CrossRef Isobe T, Ishikawa T (1999) 2-Chloro-1,3-dimethylimidazolinium chloride. 2. Its application to the construction of heterocycles through dehydration reactions. J Org Chem 64:6989–6992CrossRef
7.
go back to reference Isobe T, Ishikawa T (1999) 2-Chloro-1,3-dimethylimidazolinium chloride. 1. A powerful dehydrating equivalent to DCC. J Org Chem 64:6984–6988CrossRef Isobe T, Ishikawa T (1999) 2-Chloro-1,3-dimethylimidazolinium chloride. 1. A powerful dehydrating equivalent to DCC. J Org Chem 64:6984–6988CrossRef
8.
go back to reference Noguchi M, Tanaka T, Gyakushi H et al (2009) Efficient synthesis of sugar oxazolines from unprotected N-acetyl-2-amino sugars by using chloroformamidinium reagent in water. J Org Chem 74:2210–2212CrossRef Noguchi M, Tanaka T, Gyakushi H et al (2009) Efficient synthesis of sugar oxazolines from unprotected N-acetyl-2-amino sugars by using chloroformamidinium reagent in water. J Org Chem 74:2210–2212CrossRef
9.
go back to reference Matta KL, Johnson EA, Barlow JJ (1973) A simple method for the synthesis of 2-acetamido-2-deoxy-β-D-galactopyranosides. Carbohydr Res 26:215–218CrossRef Matta KL, Johnson EA, Barlow JJ (1973) A simple method for the synthesis of 2-acetamido-2-deoxy-β-D-galactopyranosides. Carbohydr Res 26:215–218CrossRef
10.
go back to reference Srivastava VK (1982) A facile synthesis of 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-e]-2-oxazoline. Carbohydr Res 103:286–292CrossRef Srivastava VK (1982) A facile synthesis of 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-e]-2-oxazoline. Carbohydr Res 103:286–292CrossRef
11.
go back to reference Nakabayashi S, Warren CD, Jeanloz RW (1986) A new procedure for the preparation of oligosaccharide oxazolines. Carbohydr Res 150:c7–c10CrossRef Nakabayashi S, Warren CD, Jeanloz RW (1986) A new procedure for the preparation of oligosaccharide oxazolines. Carbohydr Res 150:c7–c10CrossRef
12.
go back to reference Colon M, Staveski MM, Davis JT (1991) Mild conditions for the preparation of high-mannose oligosaccharide oxazolines: entry point for β-glycoside and neoglycoprotein syntheses. Tetrahedron Lett 32:4447–4450CrossRef Colon M, Staveski MM, Davis JT (1991) Mild conditions for the preparation of high-mannose oligosaccharide oxazolines: entry point for β-glycoside and neoglycoprotein syntheses. Tetrahedron Lett 32:4447–4450CrossRef
13.
go back to reference Kowalczyk R, Brimble MA, Tomabechi Y et al (2014) Convergent chemoenzymatic synthesis of a library of glycosylated analogues of pramlintide: structure–activity relationships for amylin receptor agonism. Org Biomol Chem 12:8142–8151CrossRef Kowalczyk R, Brimble MA, Tomabechi Y et al (2014) Convergent chemoenzymatic synthesis of a library of glycosylated analogues of pramlintide: structure–activity relationships for amylin receptor agonism. Org Biomol Chem 12:8142–8151CrossRef
14.
go back to reference McIntosh JD, Brimble MA, Brooks AES et al (2015) Convergent chemo-enzymatic synthesis of mannosylated glycopeptides; targeting of putative vaccine candidates to antigen presenting cells. Chem Sci 6:4636–4642CrossRef McIntosh JD, Brimble MA, Brooks AES et al (2015) Convergent chemo-enzymatic synthesis of mannosylated glycopeptides; targeting of putative vaccine candidates to antigen presenting cells. Chem Sci 6:4636–4642CrossRef
15.
go back to reference Tomabechi Y, Krippner G, Rendle PM et al (2013) Glycosylation of pramlintide: synthetic glycopeptides that display in vitro and in vivo activities as amylin receptor agonists. Chem Eur J 19:15084–15088CrossRef Tomabechi Y, Krippner G, Rendle PM et al (2013) Glycosylation of pramlintide: synthetic glycopeptides that display in vitro and in vivo activities as amylin receptor agonists. Chem Eur J 19:15084–15088CrossRef
16.
go back to reference Tomabechi Y, Squire MA, Fairbanks AJ (2014) Endo-β-N-acetylglucosaminidase catalysed glycosylation: tolerance of enzymes to structural variation of the glycosyl amino acid acceptor. Org Biomol Chem 12:942–955CrossRef Tomabechi Y, Squire MA, Fairbanks AJ (2014) Endo-β-N-acetylglucosaminidase catalysed glycosylation: tolerance of enzymes to structural variation of the glycosyl amino acid acceptor. Org Biomol Chem 12:942–955CrossRef
17.
go back to reference Lomino JV, Naegeli A, Orwenyo J et al (2013) A two-step enzymatic glycosylation of polypeptides with complex N-glycans. Bioorg Med Chem 21:2262–2270CrossRef Lomino JV, Naegeli A, Orwenyo J et al (2013) A two-step enzymatic glycosylation of polypeptides with complex N-glycans. Bioorg Med Chem 21:2262–2270CrossRef
18.
go back to reference Orwenyo J, Huang W, Wang L-X (2013) Chemoenzymatic synthesis and lectin recognition of a selectively fluorinated glycoprotein. Bioorg Med Chem 21:4768–4777CrossRef Orwenyo J, Huang W, Wang L-X (2013) Chemoenzymatic synthesis and lectin recognition of a selectively fluorinated glycoprotein. Bioorg Med Chem 21:4768–4777CrossRef
19.
go back to reference Smith EL, Giddens JP, Iavarone AT et al (2014) Chemoenzymatic Fc glycosylation via engineered aldehyde tags. Bioconjug Chem 25:788–795CrossRef Smith EL, Giddens JP, Iavarone AT et al (2014) Chemoenzymatic Fc glycosylation via engineered aldehyde tags. Bioconjug Chem 25:788–795CrossRef
20.
go back to reference Umekawa M, Huang W, Li B et al (2008) Mutants of mucor hiemalis endo-β-N-acetylglucosaminidase show enhanced transglycosylation and glycosynthase-like activities. J Biol Chem 283:4469–4479CrossRef Umekawa M, Huang W, Li B et al (2008) Mutants of mucor hiemalis endo-β-N-acetylglucosaminidase show enhanced transglycosylation and glycosynthase-like activities. J Biol Chem 283:4469–4479CrossRef
21.
go back to reference Umekawa M, Higashiyama T, Koga Y et al (2010) Efficient transfer of sialo-oligosaccharide onto proteins by combined use of a glycosynthase-like mutant of Mucor hiemalis endoglycosidase and synthetic sialo-complex-type sugar oxazoline. Biochim Biophys Acta Gen Subj 1800:1203–1209CrossRef Umekawa M, Higashiyama T, Koga Y et al (2010) Efficient transfer of sialo-oligosaccharide onto proteins by combined use of a glycosynthase-like mutant of Mucor hiemalis endoglycosidase and synthetic sialo-complex-type sugar oxazoline. Biochim Biophys Acta Gen Subj 1800:1203–1209CrossRef
22.
go back to reference Umekawa M, Li C, Higashiyama T et al (2010) Efficient glycosynthase mutant derived from mucor hiemalis endo-β-N-acetylglucosaminidase capable of transferring oligosaccharide from both sugar oxazoline and natural N-glycan. J Biol Chem 285:511–521CrossRef Umekawa M, Li C, Higashiyama T et al (2010) Efficient glycosynthase mutant derived from mucor hiemalis endo-β-N-acetylglucosaminidase capable of transferring oligosaccharide from both sugar oxazoline and natural N-glycan. J Biol Chem 285:511–521CrossRef
23.
go back to reference Noguchi M, Fujieda T, Huang WC et al (2012) A practical one-step synthesis of 1,2-oxazoline derivatives from unprotected sugars and its application to chemoenzymatic β-N-acetylglucosaminidation of disialo-oligosaccharide. Helv Chim Acta 95:1928–1936CrossRef Noguchi M, Fujieda T, Huang WC et al (2012) A practical one-step synthesis of 1,2-oxazoline derivatives from unprotected sugars and its application to chemoenzymatic β-N-acetylglucosaminidation of disialo-oligosaccharide. Helv Chim Acta 95:1928–1936CrossRef
24.
go back to reference Sun B, Bao W, Tian X et al (2014) A simplified procedure for gram-scale production of sialylglycopeptide (SGP) from egg yolks and subsequent semi-synthesis of Man3GlcNAc oxazoline. Carbohydr Res 396:62–69CrossRef Sun B, Bao W, Tian X et al (2014) A simplified procedure for gram-scale production of sialylglycopeptide (SGP) from egg yolks and subsequent semi-synthesis of Man3GlcNAc oxazoline. Carbohydr Res 396:62–69CrossRef
25.
go back to reference Tanaka T, Huang WC, Noguchi M et al (2009) Direct synthesis of 1,6-anhydro sugars from unprotected glycopyranoses by using 2-chloro-1,3-dimethylimidazolinium chloride. Tetrahedron Lett 50:2154–2157CrossRef Tanaka T, Huang WC, Noguchi M et al (2009) Direct synthesis of 1,6-anhydro sugars from unprotected glycopyranoses by using 2-chloro-1,3-dimethylimidazolinium chloride. Tetrahedron Lett 50:2154–2157CrossRef
26.
go back to reference Köll P, Metzger J (1978) Thermal degradation of cellulose and chitin in supercritical acetone. Angew Chem Int Ed 17:754–755CrossRef Köll P, Metzger J (1978) Thermal degradation of cellulose and chitin in supercritical acetone. Angew Chem Int Ed 17:754–755CrossRef
27.
go back to reference Miura M, Kaga H, Yoshida T, Ando K (2001) Microwave pyrolysis of cellulosic materials for the production of anhydrosugars. J Wood Sci 47:502–506CrossRef Miura M, Kaga H, Yoshida T, Ando K (2001) Microwave pyrolysis of cellulosic materials for the production of anhydrosugars. J Wood Sci 47:502–506CrossRef
28.
go back to reference Sasaki M, Takahashi K, Haneda Y et al (2008) Thermochemical transformation of glucose to 1,6-anhydroglucose in high-temperature steam. Carbohydr Res 343:848–854CrossRef Sasaki M, Takahashi K, Haneda Y et al (2008) Thermochemical transformation of glucose to 1,6-anhydroglucose in high-temperature steam. Carbohydr Res 343:848–854CrossRef
29.
go back to reference Köll P, Borchers G, Metzger JO (1991) Thermal degradation of chitin and cellulose. J Anal Appl Pyrolysis 19:119–129CrossRef Köll P, Borchers G, Metzger JO (1991) Thermal degradation of chitin and cellulose. J Anal Appl Pyrolysis 19:119–129CrossRef
30.
go back to reference Tanaka T, Nagai H, Noguchi M, et al. (2009) One-step conversion of unprotected sugars to β-glycosyl azides using 2-chloroimidazolinium salt in aqueous solution. Chem Commun 3378–3379 Tanaka T, Nagai H, Noguchi M, et al. (2009) One-step conversion of unprotected sugars to β-glycosyl azides using 2-chloroimidazolinium salt in aqueous solution. Chem Commun 3378–3379
31.
go back to reference Tanaka T, Matsumoto T, Noguchi M et al (2009) Direct Transformation of unprotected sugars to Aryl 1-Thio-β-glycosides in aqueous media using 2-Chloro-1,3-dimethylimidazolinium chloride. Chem Lett 38:458–459CrossRef Tanaka T, Matsumoto T, Noguchi M et al (2009) Direct Transformation of unprotected sugars to Aryl 1-Thio-β-glycosides in aqueous media using 2-Chloro-1,3-dimethylimidazolinium chloride. Chem Lett 38:458–459CrossRef
32.
go back to reference Sarkar S, Sucheck SJ (2011) Comparing the use of 2-methylenenapthyl, 4-methoxybenzyl, 3,4-dimethoxybenzyl and 2,4,6-trimethoxybenzyl as N-H protecting groups for p-tolyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-1-thio-β-D-glucosides. Carbohydr Res 346:393–400CrossRef Sarkar S, Sucheck SJ (2011) Comparing the use of 2-methylenenapthyl, 4-methoxybenzyl, 3,4-dimethoxybenzyl and 2,4,6-trimethoxybenzyl as N-H protecting groups for p-tolyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-1-thio-β-D-glucosides. Carbohydr Res 346:393–400CrossRef
33.
go back to reference Milhomme O, Dhénin SGY, Djedaïni-Pilard F et al (2012) Synthetic studies toward the anthrax tetrasaccharide: alternative synthesis of this antigen. Carbohydr Res 356:115–131CrossRef Milhomme O, Dhénin SGY, Djedaïni-Pilard F et al (2012) Synthetic studies toward the anthrax tetrasaccharide: alternative synthesis of this antigen. Carbohydr Res 356:115–131CrossRef
34.
go back to reference Ennis SC, Fairbanks AJ, Slinn CA et al (2001) N-Iodosuccinimide-mediated intramolecular aglycon delivery. Tetrahedron 57:4221–4230CrossRef Ennis SC, Fairbanks AJ, Slinn CA et al (2001) N-Iodosuccinimide-mediated intramolecular aglycon delivery. Tetrahedron 57:4221–4230CrossRef
35.
go back to reference Yasomanee JP, Demchenko AV (2014) Hydrogen bond mediated aglycone delivery: synthesis of linear and branched α-glucans. Angew Chem Int Ed 53:10453–10456CrossRef Yasomanee JP, Demchenko AV (2014) Hydrogen bond mediated aglycone delivery: synthesis of linear and branched α-glucans. Angew Chem Int Ed 53:10453–10456CrossRef
36.
go back to reference Rye CS, Withers SG (2004) The synthesis of a novel thio-linked disaccharide of chondroitin as a potential inhibitor of polysaccharide lyases. Carbohydr Res 339:699–703CrossRef Rye CS, Withers SG (2004) The synthesis of a novel thio-linked disaccharide of chondroitin as a potential inhibitor of polysaccharide lyases. Carbohydr Res 339:699–703CrossRef
37.
go back to reference Rempel BP, Withers SG (2008) Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology 18:570–586CrossRef Rempel BP, Withers SG (2008) Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology 18:570–586CrossRef
38.
go back to reference Drouin L, Cowley AR, Fairbanks AJ, Thompson AL (2008) 4-Methoxyphenyl 2,3,4,6-tetra-O-acetyl-1-thio-α-D-mannopyranoside. Acta Crystallogr E 64:o1401–o1401CrossRef Drouin L, Cowley AR, Fairbanks AJ, Thompson AL (2008) 4-Methoxyphenyl 2,3,4,6-tetra-O-acetyl-1-thio-α-D-mannopyranoside. Acta Crystallogr E 64:o1401–o1401CrossRef
39.
go back to reference Pei Z, Dong H, Caraballo R, Ramström O (2007) Synthesis of positional thiol analogs of β-D-galactopyranose. Eur J Org Chem 4927–4934 Pei Z, Dong H, Caraballo R, Ramström O (2007) Synthesis of positional thiol analogs of β-D-galactopyranose. Eur J Org Chem 4927–4934
40.
go back to reference Funabashi M, Arai S, Shinohara M (1999) Novel syntheses of diphenyl and/or trimethylene dithioacetals of mono- and oligosaccharides in 90% trifluoroacetic acid. J Carbohydr Chem 18:333–341CrossRef Funabashi M, Arai S, Shinohara M (1999) Novel syntheses of diphenyl and/or trimethylene dithioacetals of mono- and oligosaccharides in 90% trifluoroacetic acid. J Carbohydr Chem 18:333–341CrossRef
41.
go back to reference Yanase M, Funabashi M (2000) Stereoselective 1,2-cis-1-thioglycosidation of aldohexoses with tert-butyl mercaptan in 90% trifluoroacetic acid. J Carbohydr Chem 19:53–66CrossRef Yanase M, Funabashi M (2000) Stereoselective 1,2-cis-1-thioglycosidation of aldohexoses with tert-butyl mercaptan in 90% trifluoroacetic acid. J Carbohydr Chem 19:53–66CrossRef
42.
go back to reference Yoshida N, Noguchi M, Tanaka T et al (2011) Direct dehydrative pyridylthio-glycosidation of unprotected sugars in aqueous media using 2-chloro-1,3-dimethylimidazolinium chloride as a condensing agent. Chem Asian J 6:1876–1885CrossRef Yoshida N, Noguchi M, Tanaka T et al (2011) Direct dehydrative pyridylthio-glycosidation of unprotected sugars in aqueous media using 2-chloro-1,3-dimethylimidazolinium chloride as a condensing agent. Chem Asian J 6:1876–1885CrossRef
43.
go back to reference Hase S (2010) Pyridylamination as a means of analyzing complex sugar chains. Proc Jpn Acad Ser B 86:378–390CrossRef Hase S (2010) Pyridylamination as a means of analyzing complex sugar chains. Proc Jpn Acad Ser B 86:378–390CrossRef
44.
go back to reference Kallin E, Lonn H, Norberg T (1988) Derivatization procedures for reducing oligosaccharides, part 2: chemical transformation of 1-Deoxy-1-(4-trifluoroacetamidophenyl)aminoalditols. Glycoconj J 5:145–150CrossRef Kallin E, Lonn H, Norberg T (1988) Derivatization procedures for reducing oligosaccharides, part 2: chemical transformation of 1-Deoxy-1-(4-trifluoroacetamidophenyl)aminoalditols. Glycoconj J 5:145–150CrossRef
45.
go back to reference Suzuki S, Fujimori T, Yodoshi M (2006) Recovery of free oligosaccharides from derivatives labeled by reductive amination. Anal Biochem 354:94–103CrossRef Suzuki S, Fujimori T, Yodoshi M (2006) Recovery of free oligosaccharides from derivatives labeled by reductive amination. Anal Biochem 354:94–103CrossRef
46.
go back to reference Yoshida N, Fujieda T, Kobayashi A et al (2013) Direct introduction of detachable fluorescent tag into oligosaccharides. Chem Lett 42:1038–1039CrossRef Yoshida N, Fujieda T, Kobayashi A et al (2013) Direct introduction of detachable fluorescent tag into oligosaccharides. Chem Lett 42:1038–1039CrossRef
47.
go back to reference Lee YC, Lee RT (1995) Carbohydrate-protein interactions: basis of glycobiology. Acc Chem Res 28:321–327CrossRef Lee YC, Lee RT (1995) Carbohydrate-protein interactions: basis of glycobiology. Acc Chem Res 28:321–327CrossRef
48.
go back to reference Lundquist JJ, Toone EJ (2002) The cluster glycoside effect. Chem Rev 102:555–578CrossRef Lundquist JJ, Toone EJ (2002) The cluster glycoside effect. Chem Rev 102:555–578CrossRef
49.
go back to reference Lee RT, Lee YC (2000) Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconj J 17:543–551CrossRef Lee RT, Lee YC (2000) Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconj J 17:543–551CrossRef
50.
go back to reference Dam TK, Brewer CF (2010) Multivalent lectin—carbohydrate interactions, pp 139–164 Dam TK, Brewer CF (2010) Multivalent lectin—carbohydrate interactions, pp 139–164
51.
go back to reference Le Droumaguet B, Nicolas J (2010) Recent advances in the design of bioconjugates from controlled/living radical polymerization. Polym Chem 1:563CrossRef Le Droumaguet B, Nicolas J (2010) Recent advances in the design of bioconjugates from controlled/living radical polymerization. Polym Chem 1:563CrossRef
52.
go back to reference Tanaka K, Siwu ERO, Minami K et al (2010) Noninvasive imaging of dendrimer-type N-glycan clusters. In Vivo dynamics dependence on oligosaccharide structure. Angew Chem Int Ed 49:8195–8200CrossRef Tanaka K, Siwu ERO, Minami K et al (2010) Noninvasive imaging of dendrimer-type N-glycan clusters. In Vivo dynamics dependence on oligosaccharide structure. Angew Chem Int Ed 49:8195–8200CrossRef
53.
go back to reference Poonthiyil V, Nagesh PT, Husain M et al (2015) Gold nanoparticles decorated with sialic acid terminated Bi-antennary N-glycans for the detection of influenza virus at nanomolar concentrations. ChemistryOpen 4:708–716CrossRef Poonthiyil V, Nagesh PT, Husain M et al (2015) Gold nanoparticles decorated with sialic acid terminated Bi-antennary N-glycans for the detection of influenza virus at nanomolar concentrations. ChemistryOpen 4:708–716CrossRef
54.
go back to reference Glunz PW, Hintermann S, Williams LJ et al (2000) Design and synthesis of Le y -bearing glycopeptides that mimic cell surface le y mucin glycoprotein architecture. J Am Chem Soc 122:7273–7279CrossRef Glunz PW, Hintermann S, Williams LJ et al (2000) Design and synthesis of Le y -bearing glycopeptides that mimic cell surface le y mucin glycoprotein architecture. J Am Chem Soc 122:7273–7279CrossRef
55.
go back to reference Yamamoto N, Tanabe Y, Okamoto R et al (2008) Chemical synthesis of a glycoprotein having an intact human complex-type sialyloligosaccharide under the boc and fmoc synthetic strategies. J Am Chem Soc 130:501–510CrossRef Yamamoto N, Tanabe Y, Okamoto R et al (2008) Chemical synthesis of a glycoprotein having an intact human complex-type sialyloligosaccharide under the boc and fmoc synthetic strategies. J Am Chem Soc 130:501–510CrossRef
56.
go back to reference Roy R, Tropper FD, Romanowska A (1992) New strategy in glycopolymer synthesis. Preparation of antigenic water-soluble poly(acrylamide-co-p-acrylamidophenyl beta-lactoside). Bioconjug Chem 3:256–261CrossRef Roy R, Tropper FD, Romanowska A (1992) New strategy in glycopolymer synthesis. Preparation of antigenic water-soluble poly(acrylamide-co-p-acrylamidophenyl beta-lactoside). Bioconjug Chem 3:256–261CrossRef
57.
go back to reference Fraser C, Grubbs RH (1995) Synthesis of glycopolymers of controlled molecular weight by ring-opening metathesis polymerization using well-defined functional group tolerant ruthenium carbene catalysts. Macromolecules 28:7248–7255CrossRef Fraser C, Grubbs RH (1995) Synthesis of glycopolymers of controlled molecular weight by ring-opening metathesis polymerization using well-defined functional group tolerant ruthenium carbene catalysts. Macromolecules 28:7248–7255CrossRef
58.
go back to reference Tanaka T, Inoue G, Shoda S-I, Kimura Y (2014) Protecting-group-free synthesis of glycopolymers bearing thioglycosides via one-pot monomer synthesis from free saccharides. J Polym Sci A 1(52):3513–3520 Tanaka T, Inoue G, Shoda S-I, Kimura Y (2014) Protecting-group-free synthesis of glycopolymers bearing thioglycosides via one-pot monomer synthesis from free saccharides. J Polym Sci A 1(52):3513–3520
59.
go back to reference Gamblin DP, Garnier P, van Kasteren S et al (2004) Glyco-SeS: selenenylsulfide-mediated protein glycoconjugation—a new strategy in post-translational modification. Angew Chem Int Ed 116:846–851CrossRef Gamblin DP, Garnier P, van Kasteren S et al (2004) Glyco-SeS: selenenylsulfide-mediated protein glycoconjugation—a new strategy in post-translational modification. Angew Chem Int Ed 116:846–851CrossRef
60.
go back to reference Bernardes GJL, Marston JP, Batsanov AS et al. (2007) A trisulfide-linked glycoprotein. Chem Commun 3145–3147 Bernardes GJL, Marston JP, Batsanov AS et al. (2007) A trisulfide-linked glycoprotein. Chem Commun 3145–3147
61.
go back to reference Brimble MA, Edwards PJ, Harris PWR et al (2015) Synthesis of the antimicrobial s-linked glycopeptide, glycocin F. Chem Eur J 21:3556–3561CrossRef Brimble MA, Edwards PJ, Harris PWR et al (2015) Synthesis of the antimicrobial s-linked glycopeptide, glycocin F. Chem Eur J 21:3556–3561CrossRef
62.
go back to reference Driguez H (2001) Thiooligosaccharides as tools for structural biology. ChemBioChem 2:311–318CrossRef Driguez H (2001) Thiooligosaccharides as tools for structural biology. ChemBioChem 2:311–318CrossRef
63.
go back to reference Levengood MR, van der Donk WA (2007) Dehydroalanine-containing peptides: preparation from phenylselenocysteine and utility in convergent ligation strategies. Nat Protoc 1:3001–3010CrossRef Levengood MR, van der Donk WA (2007) Dehydroalanine-containing peptides: preparation from phenylselenocysteine and utility in convergent ligation strategies. Nat Protoc 1:3001–3010CrossRef
64.
go back to reference Galonić DP, van der Donk WA, Gin DY (2003) Oligosaccharide-peptide ligation of glycosyl thiolates with dehydropeptides: synthesis of S-linked mucin-related glycopeptide conjugates. Chem Eur J 9:5997–6006CrossRef Galonić DP, van der Donk WA, Gin DY (2003) Oligosaccharide-peptide ligation of glycosyl thiolates with dehydropeptides: synthesis of S-linked mucin-related glycopeptide conjugates. Chem Eur J 9:5997–6006CrossRef
65.
go back to reference Thayer DA, Yu HN, Galan MC, Wong C-H (2005) A general strategy toward S-linked glycopeptides. Angew Chem Int Ed 44:4596–4599CrossRef Thayer DA, Yu HN, Galan MC, Wong C-H (2005) A general strategy toward S-linked glycopeptides. Angew Chem Int Ed 44:4596–4599CrossRef
66.
go back to reference Bernardes GJL, Grayson EJ, Thompson S et al (2008) From disulfide- to thioether-linked glycoproteins. Angew Chem Int Ed 47:2244–2247CrossRef Bernardes GJL, Grayson EJ, Thompson S et al (2008) From disulfide- to thioether-linked glycoproteins. Angew Chem Int Ed 47:2244–2247CrossRef
67.
go back to reference Dondoni A, Massi A, Nanni P, Roda A (2009) A new ligation strategy for peptide and protein glycosylation: photoinduced thiol-ene coupling. Chem Eur J 15:11444–11449CrossRef Dondoni A, Massi A, Nanni P, Roda A (2009) A new ligation strategy for peptide and protein glycosylation: photoinduced thiol-ene coupling. Chem Eur J 15:11444–11449CrossRef
68.
go back to reference Crich D, Yang F (2008) Synthesis of neoglycoconjugates by the desulfurative rearrangement of allylic disulfides. J Org Chem 73:7017–7027CrossRef Crich D, Yang F (2008) Synthesis of neoglycoconjugates by the desulfurative rearrangement of allylic disulfides. J Org Chem 73:7017–7027CrossRef
69.
go back to reference Zhu X, Dere RT, Jiang J et al (2011) Synthesis of α-glycosyl thiols by stereospecific ring-opening of 1,6-anhydrosugars. J Org Chem 76:10187–10197CrossRef Zhu X, Dere RT, Jiang J et al (2011) Synthesis of α-glycosyl thiols by stereospecific ring-opening of 1,6-anhydrosugars. J Org Chem 76:10187–10197CrossRef
70.
go back to reference Novoa A, Barluenga S, Serba C, Winssinger N (2013) Solid phase synthesis of glycopeptides using Shoda’s activation of unprotected carbohydrates. Chem Commun 49:7608–7610CrossRef Novoa A, Barluenga S, Serba C, Winssinger N (2013) Solid phase synthesis of glycopeptides using Shoda’s activation of unprotected carbohydrates. Chem Commun 49:7608–7610CrossRef
71.
go back to reference Györgydeák Z, Thiem J (2006) Synthesis and transformation of glycosyl azides. Adv Carbohydr Chem Biochem 60:103–182CrossRef Györgydeák Z, Thiem J (2006) Synthesis and transformation of glycosyl azides. Adv Carbohydr Chem Biochem 60:103–182CrossRef
72.
go back to reference Kitamura M, Tashiro N, Miyagawa S, Okauchi T (2011) 2-Azido-1,3-dimethylimidazolinium salts: Efficient diazo-transfer reagents for 1,3-dicarbonyl compounds. Synthesis 1037–1044 Kitamura M, Tashiro N, Miyagawa S, Okauchi T (2011) 2-Azido-1,3-dimethylimidazolinium salts: Efficient diazo-transfer reagents for 1,3-dicarbonyl compounds. Synthesis 1037–1044
73.
go back to reference Kitamura M, Kato S, Yano M et al (2014) A reagent for safe and efficient diazo-transfer to primary amines: 2-azido-1,3-dimethylimidazolinium hexafluorophosphate. Org Biomol Chem 12:4397–4406CrossRef Kitamura M, Kato S, Yano M et al (2014) A reagent for safe and efficient diazo-transfer to primary amines: 2-azido-1,3-dimethylimidazolinium hexafluorophosphate. Org Biomol Chem 12:4397–4406CrossRef
74.
go back to reference Kitamura M, Yano M, Tashiro N et al (2011) Direct synthesis of organic azides from primary amines with 2-Azido-1,3-dimethylimidazolinium hexafluorophosphate. Eur J Org Chem 2011:458–462CrossRef Kitamura M, Yano M, Tashiro N et al (2011) Direct synthesis of organic azides from primary amines with 2-Azido-1,3-dimethylimidazolinium hexafluorophosphate. Eur J Org Chem 2011:458–462CrossRef
75.
go back to reference Kitamura K, Shigeta M, Maezawa Y et al (2013) Preparation of L-vancosamine-related glycosyl donors. J Antibiot 66:131–139CrossRef Kitamura K, Shigeta M, Maezawa Y et al (2013) Preparation of L-vancosamine-related glycosyl donors. J Antibiot 66:131–139CrossRef
76.
go back to reference Kitamura M, Murakami K, Shiratake Y, Okauchi T (2013) Synthesis of α-arylcarboxylic acid amides from silyl enol ether via migratory amidation with 2-Azido-1,3-dimethylimidazolinium hexafluorophosphate. Chem Lett 42:691–693CrossRef Kitamura M, Murakami K, Shiratake Y, Okauchi T (2013) Synthesis of α-arylcarboxylic acid amides from silyl enol ether via migratory amidation with 2-Azido-1,3-dimethylimidazolinium hexafluorophosphate. Chem Lett 42:691–693CrossRef
77.
go back to reference Kitamura M, Miyagawa S, Okauchi T (2011) Synthesis of α, α-diarylacetamides from benzyl aryl ketones using 2-azido-1,3-dimethylimidazolinium hexafluorophosphate. Tetrahedron Lett 52:3158–3161CrossRef Kitamura M, Miyagawa S, Okauchi T (2011) Synthesis of α, α-diarylacetamides from benzyl aryl ketones using 2-azido-1,3-dimethylimidazolinium hexafluorophosphate. Tetrahedron Lett 52:3158–3161CrossRef
78.
go back to reference Kitamura M, Koga T, Yano M, Okauchi T (2012) Direct synthesis of organic azides from alcohols using 2-Azido-1,3-dimethyl-imidazolinium hexafluorophosphate. Synlett 23:1335–1338CrossRef Kitamura M, Koga T, Yano M, Okauchi T (2012) Direct synthesis of organic azides from alcohols using 2-Azido-1,3-dimethyl-imidazolinium hexafluorophosphate. Synlett 23:1335–1338CrossRef
79.
go back to reference Kitamura M (2015) Synthesis Of 2-Azido-1,3-dimethylimidazolinium hexafluorophosphate (ADMP). Org Synth 92:171–181CrossRef Kitamura M (2015) Synthesis Of 2-Azido-1,3-dimethylimidazolinium hexafluorophosphate (ADMP). Org Synth 92:171–181CrossRef
80.
go back to reference Lim D, Brimble MA, Kowalczyk R et al (2014) Protecting-group-free one-pot synthesis of glycoconjugates directly from reducing sugars. Angew Chem Int Ed 53:11907–11911CrossRef Lim D, Brimble MA, Kowalczyk R et al (2014) Protecting-group-free one-pot synthesis of glycoconjugates directly from reducing sugars. Angew Chem Int Ed 53:11907–11911CrossRef
81.
go back to reference Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064 Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064
82.
go back to reference Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599CrossRef Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599CrossRef
83.
go back to reference Dondoni A (2007) Triazole: the keystone in glycosylated molecular architectures constructed by a click reaction. Chem-Asian J 2:700–708CrossRef Dondoni A (2007) Triazole: the keystone in glycosylated molecular architectures constructed by a click reaction. Chem-Asian J 2:700–708CrossRef
84.
go back to reference Wilkinson BL, Long H, Sim E, Fairbanks AJ (2008) Synthesis of arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Bioorg Med Chem Lett 18:6265–6267CrossRef Wilkinson BL, Long H, Sim E, Fairbanks AJ (2008) Synthesis of arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Bioorg Med Chem Lett 18:6265–6267CrossRef
85.
go back to reference El Akri K, Bougrin K, Balzarini J et al (2007) Efficient synthesis and in vitro cytostatic activity of 4-substituted triazolyl-nucleosides. Bioorg Med Chem Lett 17:6656–6659CrossRef El Akri K, Bougrin K, Balzarini J et al (2007) Efficient synthesis and in vitro cytostatic activity of 4-substituted triazolyl-nucleosides. Bioorg Med Chem Lett 17:6656–6659CrossRef
86.
go back to reference Rossi LL, Basu A (2005) Glycosidase inhibition by 1-glycosyl-4-phenyl triazoles. Bioorg Med Chem Lett 15:3596–3599CrossRef Rossi LL, Basu A (2005) Glycosidase inhibition by 1-glycosyl-4-phenyl triazoles. Bioorg Med Chem Lett 15:3596–3599CrossRef
87.
go back to reference Wilkinson BL, Innocenti A, Vullo D et al (2008) Inhibition of carbonic anhydrases with glycosyltriazole benzene sulfonamides. J Med Chem 51:1945–1953CrossRef Wilkinson BL, Innocenti A, Vullo D et al (2008) Inhibition of carbonic anhydrases with glycosyltriazole benzene sulfonamides. J Med Chem 51:1945–1953CrossRef
88.
go back to reference Wilkinson BL, Bornaghi LF, Houston TA et al (2006) A novel class of carbonic anhydrase inhibitors: glycoconjugate benzene sulfonamides prepared by “click-tailing”. J Med Chem 49:6539–6548CrossRef Wilkinson BL, Bornaghi LF, Houston TA et al (2006) A novel class of carbonic anhydrase inhibitors: glycoconjugate benzene sulfonamides prepared by “click-tailing”. J Med Chem 49:6539–6548CrossRef
89.
go back to reference De las Heras FG, Alonso R, Alonso G (1979) Alkylating nucleosides. 1. Synthesis and cytostatic activity of N-glycosyl(halomethyl)-1,2,3-triazoles. A new type of alkylating agent. J Med Chem 22:496–501 De las Heras FG, Alonso R, Alonso G (1979) Alkylating nucleosides. 1. Synthesis and cytostatic activity of N-glycosyl(halomethyl)-1,2,3-triazoles. A new type of alkylating agent. J Med Chem 22:496–501
90.
go back to reference De las Heras FG, Camarasa M-J (1982) Synthesis of Alkylating 1-Glycosyl-5-substituted 1,2,4-Triazoles 1. Nucleos Nucleot 1:45–56 De las Heras FG, Camarasa M-J (1982) Synthesis of Alkylating 1-Glycosyl-5-substituted 1,2,4-Triazoles 1. Nucleos Nucleot 1:45–56
91.
go back to reference Yeoh KK, Butters TD, Wilkinson BL, Fairbanks AJ (2009) Probing replacement of pyrophosphate via click chemistry; synthesis of UDP-sugar analogues as potential glycosyl transferase inhibitors. Carbohydr Res 344:586–591CrossRef Yeoh KK, Butters TD, Wilkinson BL, Fairbanks AJ (2009) Probing replacement of pyrophosphate via click chemistry; synthesis of UDP-sugar analogues as potential glycosyl transferase inhibitors. Carbohydr Res 344:586–591CrossRef
92.
go back to reference Li H, Aneja R, Chaiken I (2013) Click chemistry in peptide-based drug design. Molecules 18:9797–9817CrossRef Li H, Aneja R, Chaiken I (2013) Click chemistry in peptide-based drug design. Molecules 18:9797–9817CrossRef
93.
go back to reference Tomabechi Y (2015) Synthesis of glycopeptides by click chemistry. Trends Glycosci Glycotechnol 27:63–65CrossRef Tomabechi Y (2015) Synthesis of glycopeptides by click chemistry. Trends Glycosci Glycotechnol 27:63–65CrossRef
94.
go back to reference Wang H, Huang W, Orwenyo J et al (2013) Design and synthesis of glycoprotein-based multivalent glyco-ligands for influenza hemagglutinin and human galectin-3. Bioorg Med Chem 21:2037–2044CrossRef Wang H, Huang W, Orwenyo J et al (2013) Design and synthesis of glycoprotein-based multivalent glyco-ligands for influenza hemagglutinin and human galectin-3. Bioorg Med Chem 21:2037–2044CrossRef
95.
go back to reference Hanisch F-G, Muller S (2000) MUC1: the polymorphic appearance of a human mucin. Glycobiology 10:439–449CrossRef Hanisch F-G, Muller S (2000) MUC1: the polymorphic appearance of a human mucin. Glycobiology 10:439–449CrossRef
96.
go back to reference Sherblom AP, Moody CE (1986) Cell surface sialomucin and resistance to natural cell-mediated cytotoxicity of rat mammary tumor ascites cells. Cancer Res 46:4543–4546 Sherblom AP, Moody CE (1986) Cell surface sialomucin and resistance to natural cell-mediated cytotoxicity of rat mammary tumor ascites cells. Cancer Res 46:4543–4546
97.
go back to reference Kaiser A, Gaidzik N, Westerlind U et al (2009) A synthetic vaccine consisting of a tumor-associated sialyl-T N-MUC1 tandem-repeat glycopeptide and tetanus toxoid: induction of a strong and highly selective immune response. Angew Chem Int Ed 48:7551–7555CrossRef Kaiser A, Gaidzik N, Westerlind U et al (2009) A synthetic vaccine consisting of a tumor-associated sialyl-T N-MUC1 tandem-repeat glycopeptide and tetanus toxoid: induction of a strong and highly selective immune response. Angew Chem Int Ed 48:7551–7555CrossRef
98.
go back to reference Lakshminarayanan V, Thompson P, Wolfert MA et al (2012) Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc Natl Acad Sci 109:261–266CrossRef Lakshminarayanan V, Thompson P, Wolfert MA et al (2012) Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc Natl Acad Sci 109:261–266CrossRef
99.
go back to reference Rising TWDF, Heidecke CD, Moir JWB et al (2008) Endohexosaminidase-catalysed glycosylation with oxazoline donors: fine tuning of catalytic efficiency and reversibility. Chem Eur J 14:6444–6464CrossRef Rising TWDF, Heidecke CD, Moir JWB et al (2008) Endohexosaminidase-catalysed glycosylation with oxazoline donors: fine tuning of catalytic efficiency and reversibility. Chem Eur J 14:6444–6464CrossRef
100.
go back to reference Seko A, Koketsu M, Nishizono M et al (1997) Occurrence of a sialylglycopeptide and free sialylglycans in hen’s egg yolk. Biochim Biophys Acta - Gen Subj 1335:23–32CrossRef Seko A, Koketsu M, Nishizono M et al (1997) Occurrence of a sialylglycopeptide and free sialylglycans in hen’s egg yolk. Biochim Biophys Acta - Gen Subj 1335:23–32CrossRef
Metadata
Title
Selective Transformations of the Anomeric Centre in Water Using DMC and Derivatives
Authors
David Lim
Antony J. Fairbanks
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-65587-1_5