Skip to main content
Top

2020 | OriginalPaper | Chapter

Self-supported Electrocatalysts

Authors : Paramita Karfa, Kartick Chandra Majhi, Rashmi Madhuri

Published in: Self-standing Substrates

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to depletion of fossil fuels, development of large-scale ground-breaking energy conversion technology like fuel cells, water splitting, air batteries etc. needs pertinent catalyst to ease the process of conversion of chemical energy to electrical energy with greater efficiency in low time consuming. In this chapter, we will discuss the role of self-supported catalyst, which are now trending the era of nanotechnology in electrocatalysis. Self-supported catalyst can be grown on soft substrate, hard substrate or can be free standing. Self-supported electrocatalyst does not needs binder for their attachment on the conductive surface of other electrodes like glassy carbon electrode, platinum electrode, graphite electrode. They have various unique properties like flexible electrode surface, large number of active sites, high electrical conductivity, better catalytic performances, and stability in any pH electrolytic solution. They render much hassle-free electrode synthesis procedure than the powdery electrode material. This chapter mainly focuses on the benefits of using self-supported electrodes in various energy application like water splitting, oxygen reduction reaction (ORR), CO2 reduction reaction, fuel cells. It has been observed that the self-supported electrocatalyst proves to be the superior electrocatalyst in the immense area of electrocatalysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahmadi, T.S., Wang, Z.L., Green, T.C., Henglein, A., El-Sayed, M.A.: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272(5270), 1924–1925 (1996)CrossRef Ahmadi, T.S., Wang, Z.L., Green, T.C., Henglein, A., El-Sayed, M.A.: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272(5270), 1924–1925 (1996)CrossRef
2.
go back to reference Ai, J., Jin, R., Liu, Z., Jiang, J., Yuan, S., Huang, G., Li, N., Li, X.: Three-dimensionally ordered macroporous FeP self-supported structure for high-efficiency hydrogen evolution reaction. Int. J. Hydrogen Energy 44(12), 5854–5862 (2019)CrossRef Ai, J., Jin, R., Liu, Z., Jiang, J., Yuan, S., Huang, G., Li, N., Li, X.: Three-dimensionally ordered macroporous FeP self-supported structure for high-efficiency hydrogen evolution reaction. Int. J. Hydrogen Energy 44(12), 5854–5862 (2019)CrossRef
3.
go back to reference Anantharaj, S., Ede, S.R., Karthick, K., Sankar, S.S., Sangeetha, K., Karthik, P.E., Kundu, S.: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ. Sci. 11(4), 744–771 (2018)CrossRef Anantharaj, S., Ede, S.R., Karthick, K., Sankar, S.S., Sangeetha, K., Karthik, P.E., Kundu, S.: Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ. Sci. 11(4), 744–771 (2018)CrossRef
4.
go back to reference Appel, A.M., Helm, M.L.: Determining the overpotential for a molecular electrocatalyst. 630–633 (2014) Appel, A.M., Helm, M.L.: Determining the overpotential for a molecular electrocatalyst. 630–633 (2014)
5.
go back to reference Arico, A.S., Srinivasan, S., Antonucci, V.: DMFCs: from fundamental aspects to technology development. Fuel cells 1(2), 133–161 (2001)CrossRef Arico, A.S., Srinivasan, S., Antonucci, V.: DMFCs: from fundamental aspects to technology development. Fuel cells 1(2), 133–161 (2001)CrossRef
6.
go back to reference Bandal, H.A., Jadhav, A.R., Tamboli, A.H., Kim, H.: Bimetallic iron cobalt oxide self-supported on Ni-Foam: an efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. Electrochim. Acta 249, 253–262 (2017)CrossRef Bandal, H.A., Jadhav, A.R., Tamboli, A.H., Kim, H.: Bimetallic iron cobalt oxide self-supported on Ni-Foam: an efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. Electrochim. Acta 249, 253–262 (2017)CrossRef
7.
go back to reference Cao, S., Wu, Z., Fu, B., Yu, H., Piao, L.: Polymerization pyrolysis derived self-supported Mo-Ni-O electrocatalyst for oxygen evolution. Catal. Today 330, 246–251 (2019)CrossRef Cao, S., Wu, Z., Fu, B., Yu, H., Piao, L.: Polymerization pyrolysis derived self-supported Mo-Ni-O electrocatalyst for oxygen evolution. Catal. Today 330, 246–251 (2019)CrossRef
8.
go back to reference Capellán-Pérez, I., Mediavilla, M., de Castro, C., Carpintero, Ó., Miguel, L.J.: Fossil fuel depletion and socio-economic scenarios: an integrated approach. Energy 77, 641–666 (2014)CrossRef Capellán-Pérez, I., Mediavilla, M., de Castro, C., Carpintero, Ó., Miguel, L.J.: Fossil fuel depletion and socio-economic scenarios: an integrated approach. Energy 77, 641–666 (2014)CrossRef
9.
go back to reference Chen, L., Zang, J., Liu, X., Zhang, Y., Jia, S., Tian, P., Wang, Y.: A self-supporting graphene supported cobalt hydroxide for enhanced oxygen evolution catalysis. Electrochim. Acta 281, 386–393 (2018)CrossRef Chen, L., Zang, J., Liu, X., Zhang, Y., Jia, S., Tian, P., Wang, Y.: A self-supporting graphene supported cobalt hydroxide for enhanced oxygen evolution catalysis. Electrochim. Acta 281, 386–393 (2018)CrossRef
10.
go back to reference Choi, J., Kim, J., Wagner, P., Gambhir, S., Jalili, R., Byun, S., Sayyar, S., Lee, Y.M., MacFarlane, D.R., Wallace, G.G., Officer, D.L.: Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. Energy Environ. Sci. 12(2), 747–755 (2019)CrossRef Choi, J., Kim, J., Wagner, P., Gambhir, S., Jalili, R., Byun, S., Sayyar, S., Lee, Y.M., MacFarlane, D.R., Wallace, G.G., Officer, D.L.: Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. Energy Environ. Sci. 12(2), 747–755 (2019)CrossRef
11.
go back to reference Choi, W.S., Jang, M.J., Park, Y.S., Lee, K.H., Lee, J.Y., Seo, M.H., Choi, S.M.: Three-dimensional honeycomb-like Cu0.81Co2.19O4 nanosheet arrays supported by Ni foam and their high efficiency as oxygen evolution electrodes. ACS Appl. Mater. Interfaces 10(45), 38663–38668 (2018)CrossRef Choi, W.S., Jang, M.J., Park, Y.S., Lee, K.H., Lee, J.Y., Seo, M.H., Choi, S.M.: Three-dimensional honeycomb-like Cu0.81Co2.19O4 nanosheet arrays supported by Ni foam and their high efficiency as oxygen evolution electrodes. ACS Appl. Mater. Interfaces 10(45), 38663–38668 (2018)CrossRef
12.
go back to reference Debe, M.K.: Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43 (2012)CrossRef Debe, M.K.: Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43 (2012)CrossRef
13.
go back to reference Dincer, I.: Renewable energy and sustainable development: a crucial review. Renew. Sustain. Energy Rev. 4(2), 157–175 (2000)CrossRef Dincer, I.: Renewable energy and sustainable development: a crucial review. Renew. Sustain. Energy Rev. 4(2), 157–175 (2000)CrossRef
14.
go back to reference Dong, X.C., Xu, H., Wang, X.W., Huang, Y.X., Chan-Park, M.B., Zhang, H., Wang, L.H., Huang, W., Chen, P.: 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4), 3206–3213 (2012)CrossRef Dong, X.C., Xu, H., Wang, X.W., Huang, Y.X., Chan-Park, M.B., Zhang, H., Wang, L.H., Huang, W., Chen, P.: 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4), 3206–3213 (2012)CrossRef
15.
go back to reference Edwards, P.P., Kuznetsov, V.L., David, W.I., Brandon, N.P.: Hydrogen and fuel cells: towards a sustainable energy future. Energy policy 36(12), 4356–4362 (2008)CrossRef Edwards, P.P., Kuznetsov, V.L., David, W.I., Brandon, N.P.: Hydrogen and fuel cells: towards a sustainable energy future. Energy policy 36(12), 4356–4362 (2008)CrossRef
16.
go back to reference Eftekhari, A.: Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 42(16), 11053–11077 (2017)CrossRef Eftekhari, A.: Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 42(16), 11053–11077 (2017)CrossRef
17.
go back to reference Ellis, B.L., Knauth, P., Djenizian, T.: Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 26(21), 3368–3397 (2014)CrossRef Ellis, B.L., Knauth, P., Djenizian, T.: Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 26(21), 3368–3397 (2014)CrossRef
18.
go back to reference Fletcher, S.: Tafel slopes from first principles. J. Solid State Electrochem. 13(4), 537–549 (2009)CrossRef Fletcher, S.: Tafel slopes from first principles. J. Solid State Electrochem. 13(4), 537–549 (2009)CrossRef
19.
go back to reference Fu, S., Zhu, C., Song, J., Engelhard, M.H., He, Y., Du, D., Wang, C., Lin, Y.: Three-dimensional PtNi hollow nanochains as an enhanced electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 4(22), 8755–8761 (2016)CrossRef Fu, S., Zhu, C., Song, J., Engelhard, M.H., He, Y., Du, D., Wang, C., Lin, Y.: Three-dimensional PtNi hollow nanochains as an enhanced electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 4(22), 8755–8761 (2016)CrossRef
20.
go back to reference Ge, K., Zeng, Y., Dong, G., Zhao, L., Wang, Z., Huang, M.: 3D self-standing grass-like cobalt phosphide vesicles-decorated nanocones grown on Ni-foam as an efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy (2019) Ge, K., Zeng, Y., Dong, G., Zhao, L., Wang, Z., Huang, M.: 3D self-standing grass-like cobalt phosphide vesicles-decorated nanocones grown on Ni-foam as an efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy (2019)
21.
go back to reference Godínez-Salomón, F., Albiter, L., Alia, S.M., Pivovar, B.S., Camacho-Forero, L.E., Balbuena, P.B., Mendoza-Cruz, R., Arellano-Jimenez, M.J., Rhodes, C.P.: Self-supported hydrous iridium–nickel oxide two-dimensional nanoframes for high activity oxygen evolution electrocatalysts. ACS Catal 8(11), 10498–10520 (2018)CrossRef Godínez-Salomón, F., Albiter, L., Alia, S.M., Pivovar, B.S., Camacho-Forero, L.E., Balbuena, P.B., Mendoza-Cruz, R., Arellano-Jimenez, M.J., Rhodes, C.P.: Self-supported hydrous iridium–nickel oxide two-dimensional nanoframes for high activity oxygen evolution electrocatalysts. ACS Catal 8(11), 10498–10520 (2018)CrossRef
22.
go back to reference Guo, M., Zhou, L., Li, Y., Zheng, Q., Xie, F., Lin, D.: Unique nanosheet-nanowire structured CoMnFe layered triple hydroxide arrays as self-supporting electrodes for high-efficiency oxygen evolution reaction. J. Mater. Chem. A (2019) Guo, M., Zhou, L., Li, Y., Zheng, Q., Xie, F., Lin, D.: Unique nanosheet-nanowire structured CoMnFe layered triple hydroxide arrays as self-supporting electrodes for high-efficiency oxygen evolution reaction. J. Mater. Chem. A (2019)
23.
go back to reference Guo, Y., Guo, D., Ye, F., Wang, K., Shi, Z., Chen, X., Zhao, C.: Self-supported NiSe2 nanowire arrays on carbon fiber paper as efficient and stable electrode for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6(9), 11884–11891 (2018)CrossRef Guo, Y., Guo, D., Ye, F., Wang, K., Shi, Z., Chen, X., Zhao, C.: Self-supported NiSe2 nanowire arrays on carbon fiber paper as efficient and stable electrode for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 6(9), 11884–11891 (2018)CrossRef
24.
go back to reference Hansen, J., Sato, M., Ruedy, R., Lacis, A., Oinas, V.: Global warming in the twenty-first century: an alternative scenario. Proc. Natl. Acad. Sci. 97(18), 9875–9880 (2000)CrossRef Hansen, J., Sato, M., Ruedy, R., Lacis, A., Oinas, V.: Global warming in the twenty-first century: an alternative scenario. Proc. Natl. Acad. Sci. 97(18), 9875–9880 (2000)CrossRef
25.
go back to reference He, G., Tang, H., Wang, H., Bian, Z.: Highly selective and active Pd-In/three-dimensional graphene with special structure for electroreduction CO2 to formate. Electroanalysis 30(1), 84–93 (2018)CrossRef He, G., Tang, H., Wang, H., Bian, Z.: Highly selective and active Pd-In/three-dimensional graphene with special structure for electroreduction CO2 to formate. Electroanalysis 30(1), 84–93 (2018)CrossRef
26.
go back to reference Hoel, M., Kverndokk, S.: Depletion of fossil fuels and the impacts of global warming. Resour. Energy Econ. 18(2), 115–136 (1996)CrossRef Hoel, M., Kverndokk, S.: Depletion of fossil fuels and the impacts of global warming. Resour. Energy Econ. 18(2), 115–136 (1996)CrossRef
27.
go back to reference Hong, W., Jian, C., Wang, G., He, X., Li, J., Cai, Q., Wen, Z., Liu, W.: Self-supported nanoporous cobalt phosphosulfate electrodes for efficient hydrogen evolution reaction. Appl. Catal. B Environ. (2019) Hong, W., Jian, C., Wang, G., He, X., Li, J., Cai, Q., Wen, Z., Liu, W.: Self-supported nanoporous cobalt phosphosulfate electrodes for efficient hydrogen evolution reaction. Appl. Catal. B Environ. (2019)
28.
go back to reference Höök, M., Tang, X.: Depletion of fossil fuels and anthropogenic climate change. A review. Energy Policy 52, 797–809 (2013)CrossRef Höök, M., Tang, X.: Depletion of fossil fuels and anthropogenic climate change. A review. Energy Policy 52, 797–809 (2013)CrossRef
29.
go back to reference Herranz, J., Durst, J., Fabbri, E., Patru, A., Cheng, X., Permyakova, A.A., Schmidt, T.J.: Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-) electrolyzer development. Nano Energy 29, 4–28 (2016)CrossRef Herranz, J., Durst, J., Fabbri, E., Patru, A., Cheng, X., Permyakova, A.A., Schmidt, T.J.: Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-) electrolyzer development. Nano Energy 29, 4–28 (2016)CrossRef
30.
go back to reference Iwasita, T.: Electrocatalysis of methanol oxidation. Electrochim. Acta 47(22–23), 3663–3674 (2002)CrossRef Iwasita, T.: Electrocatalysis of methanol oxidation. Electrochim. Acta 47(22–23), 3663–3674 (2002)CrossRef
31.
go back to reference Jadhav, H.S., Roy, A., Thorat, G.M., Chung, W.J., Seo, J.G.: Hierarchical free-standing networks of MnCo2S4 as efficient electrocatalyst for oxygen evolution reaction. J. Ind. Eng. Chem. 71, 452–459 (2019)CrossRef Jadhav, H.S., Roy, A., Thorat, G.M., Chung, W.J., Seo, J.G.: Hierarchical free-standing networks of MnCo2S4 as efficient electrocatalyst for oxygen evolution reaction. J. Ind. Eng. Chem. 71, 452–459 (2019)CrossRef
32.
go back to reference Ji, L., Zhu, L., Wang, J., Chen, Z.: Self-supported CuS nanowire array: an efficient hydrogen-evolving electrode in neutral media. Electrochim. Acta 252, 516–522 (2017)CrossRef Ji, L., Zhu, L., Wang, J., Chen, Z.: Self-supported CuS nanowire array: an efficient hydrogen-evolving electrode in neutral media. Electrochim. Acta 252, 516–522 (2017)CrossRef
34.
go back to reference Jiang, Y.F., Yuan, C.Z., Zhou, X., Liu, Y.N., Zhao, Z.W., Zhao, S.J., Xu, A.W.: Selenium phosphorus co-doped cobalt oxide nanosheets anchored on Co foil: a self-supported and stable bifunctional electrode for efficient electrochemical water splitting. Electrochim. Acta 292, 247–255 (2018)CrossRef Jiang, Y.F., Yuan, C.Z., Zhou, X., Liu, Y.N., Zhao, Z.W., Zhao, S.J., Xu, A.W.: Selenium phosphorus co-doped cobalt oxide nanosheets anchored on Co foil: a self-supported and stable bifunctional electrode for efficient electrochemical water splitting. Electrochim. Acta 292, 247–255 (2018)CrossRef
35.
go back to reference Jin, M., Zhang, H., Xie, Z., Xia, Y.: Palladium nanocrystals enclosed by 100 and 111 facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 5(4), 6352–6357 (2012)CrossRef Jin, M., Zhang, H., Xie, Z., Xia, Y.: Palladium nanocrystals enclosed by 100 and 111 facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 5(4), 6352–6357 (2012)CrossRef
36.
go back to reference Jones, J.P., Prakash, G.S., Olah, G.A.: Electrochemical CO2 reduction: recent advances and current trends. Isr. J. Chem. 54(10), 1451–1466 (2014)CrossRef Jones, J.P., Prakash, G.S., Olah, G.A.: Electrochemical CO2 reduction: recent advances and current trends. Isr. J. Chem. 54(10), 1451–1466 (2014)CrossRef
37.
go back to reference Kas, R., Hummadi, K.K., Kortlever, R., De Wit, P., Milbrat, A., Luiten-Olieman, M.W., Benes, N.E., Koper, M.T., Mul, G.: Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction. Nat. Commun. 7, 10748 (2016)CrossRef Kas, R., Hummadi, K.K., Kortlever, R., De Wit, P., Milbrat, A., Luiten-Olieman, M.W., Benes, N.E., Koper, M.T., Mul, G.: Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction. Nat. Commun. 7, 10748 (2016)CrossRef
38.
go back to reference Khatavkar, S.N., Ukale, D.U., Haram, S.K.: Development of self-supported 3D microporous solder alloy electrodes for scalable CO2 electroreduction to formate. New J. Chem. 43, 6587–6596 (2019)CrossRef Khatavkar, S.N., Ukale, D.U., Haram, S.K.: Development of self-supported 3D microporous solder alloy electrodes for scalable CO2 electroreduction to formate. New J. Chem. 43, 6587–6596 (2019)CrossRef
39.
go back to reference Kong, D., Cha, J.J., Wang, H., Lee, H.R., Cui, Y.: First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6(12), 3553–3558 (2013)CrossRef Kong, D., Cha, J.J., Wang, H., Lee, H.R., Cui, Y.: First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6(12), 3553–3558 (2013)CrossRef
40.
go back to reference Ledezma-Yanez, I., Wallace, W.D.Z., Sebastián-Pascual, P., Climent, V., Feliu, J.M., Koper, M.T.: Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2(4), 17031 (2017)CrossRef Ledezma-Yanez, I., Wallace, W.D.Z., Sebastián-Pascual, P., Climent, V., Feliu, J.M., Koper, M.T.: Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2(4), 17031 (2017)CrossRef
41.
go back to reference Lee, H., Kim, Y.J., Lee, D.J., Song, J., Lee, Y.M., Kim, H.T., Park, J.K.: Directly grown Co3O4 nanowire arrays on Ni-foam: structural effects of carbon-free and binder-free cathodes for lithium–oxygen batteries. J. Mater. Chem. A 2(30), 11891–11898 (2014)CrossRef Lee, H., Kim, Y.J., Lee, D.J., Song, J., Lee, Y.M., Kim, H.T., Park, J.K.: Directly grown Co3O4 nanowire arrays on Ni-foam: structural effects of carbon-free and binder-free cathodes for lithium–oxygen batteries. J. Mater. Chem. A 2(30), 11891–11898 (2014)CrossRef
42.
go back to reference Li, C., Tan, H., Lin, J., Luo, X., Wang, S., You, J., Kang, Y.M., Bando, Y., Yamauchi, Y., Kim, J.: Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today (2018) Li, C., Tan, H., Lin, J., Luo, X., Wang, S., You, J., Kang, Y.M., Bando, Y., Yamauchi, Y., Kim, J.: Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today (2018)
43.
go back to reference Li, W., Xiong, D., Gao, X., Song, W.G., Xia, F., Liu, L.: Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution. Catal. Today 287, 122–129 (2017)CrossRef Li, W., Xiong, D., Gao, X., Song, W.G., Xia, F., Liu, L.: Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution. Catal. Today 287, 122–129 (2017)CrossRef
44.
go back to reference Liang, H.P., Zhang, H.M., Hu, J.S., Guo, Y.G., Wan, L.J., Bai, C.L.: Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. Angew. Chem. Int. Ed. 43(12), 1540–1543 (2004)CrossRef Liang, H.P., Zhang, H.M., Hu, J.S., Guo, Y.G., Wan, L.J., Bai, C.L.: Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. Angew. Chem. Int. Ed. 43(12), 1540–1543 (2004)CrossRef
45.
go back to reference Lin, G., Ma, R., Zhou, Y., Hu, C., Yang, M., Liu, Q., Kaskel, S., Wang, J.: Three-dimensional interconnected nitrogen-doped mesoporous carbons as active electrode materials for application in electrocatalytic oxygen reduction and supercapacitors. J. Colloid Interface Sci. 527, 230–240 (2018)CrossRef Lin, G., Ma, R., Zhou, Y., Hu, C., Yang, M., Liu, Q., Kaskel, S., Wang, J.: Three-dimensional interconnected nitrogen-doped mesoporous carbons as active electrode materials for application in electrocatalytic oxygen reduction and supercapacitors. J. Colloid Interface Sci. 527, 230–240 (2018)CrossRef
46.
go back to reference Lipkowski, J., Ross, P.N. (eds.): Electrocatalysis (vol. 3). Wiley (1998) Lipkowski, J., Ross, P.N. (eds.): Electrocatalysis (vol. 3). Wiley (1998)
47.
go back to reference Liu, H., Ma, X., Rao, Y., Liu, Y., Liu, J., Wang, L., Wu, M.: Heteromorphic NiCo2S4/Ni3S2/Ni foam as a self-standing electrode for hydrogen evolution reaction in alkaline solution. ACS Appl. Mater. Interfaces 10(13), 10890–10897 (2018)CrossRef Liu, H., Ma, X., Rao, Y., Liu, Y., Liu, J., Wang, L., Wu, M.: Heteromorphic NiCo2S4/Ni3S2/Ni foam as a self-standing electrode for hydrogen evolution reaction in alkaline solution. ACS Appl. Mater. Interfaces 10(13), 10890–10897 (2018)CrossRef
48.
go back to reference Liu, J., Zhu, D., Zheng, Y., Vasileff, A., Qiao, S.Z.: Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 8(7), 6707–6732 (2018)CrossRef Liu, J., Zhu, D., Zheng, Y., Vasileff, A., Qiao, S.Z.: Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 8(7), 6707–6732 (2018)CrossRef
49.
go back to reference Liu, Z., Ling, X.Y., Su, X., Lee, J.Y.: Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J. Phys. Chem. B 108(24), 8234–8240 (2004)CrossRef Liu, Z., Ling, X.Y., Su, X., Lee, J.Y.: Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J. Phys. Chem. B 108(24), 8234–8240 (2004)CrossRef
50.
go back to reference Lu, Q., Jiao, F.: (b). Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29, 439–456 (2016)CrossRef Lu, Q., Jiao, F.: (b). Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29, 439–456 (2016)CrossRef
51.
go back to reference Lu, X., Zhao, C.: Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 6616 (2015)CrossRef Lu, X., Zhao, C.: Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 6616 (2015)CrossRef
52.
go back to reference Lu, Y., Du, S., Steinberger-Wilckens, R.: Three-dimensional catalyst electrodes based on PtPd nanodendrites for oxygen reduction reaction in PEFC applications. Appl. Catal. B 187, 108–114 (2016)CrossRef Lu, Y., Du, S., Steinberger-Wilckens, R.: Three-dimensional catalyst electrodes based on PtPd nanodendrites for oxygen reduction reaction in PEFC applications. Appl. Catal. B 187, 108–114 (2016)CrossRef
53.
go back to reference Lv, W., Zhang, R., Gao, P., Lei, L.: Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. J. Power Sources 253, 276–281 (2014)CrossRef Lv, W., Zhang, R., Gao, P., Lei, L.: Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. J. Power Sources 253, 276–281 (2014)CrossRef
54.
go back to reference Ma, S., Yuan, H., Cai, L., Wang, X., Long, H., Chai, Y., Tsang, Y.H.: One step synthesis of Fe4. 4Ni17. 6Se16 coupled NiSe foam as self-supported, highly efficient and durable oxygen evolution electrode. Mater. Today Chem. 9, 133–139 (2018)CrossRef Ma, S., Yuan, H., Cai, L., Wang, X., Long, H., Chai, Y., Tsang, Y.H.: One step synthesis of Fe4. 4Ni17. 6Se16 coupled NiSe foam as self-supported, highly efficient and durable oxygen evolution electrode. Mater. Today Chem. 9, 133–139 (2018)CrossRef
55.
go back to reference Ma, T.Y., Dai, S., Qiao, S.Z.: Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today 19(5), 265–273 (2016)CrossRef Ma, T.Y., Dai, S., Qiao, S.Z.: Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today 19(5), 265–273 (2016)CrossRef
56.
go back to reference Maiti, K., Balamurugan, J., Gautam, J., Kim, N.H., Lee, J.H.: Hierarchical flowerlike highly synergistic three-dimensional iron tungsten oxide nanostructure-anchored nitrogen-doped graphene as an efficient and durable electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 10(38), 32220–32232 (2018)CrossRef Maiti, K., Balamurugan, J., Gautam, J., Kim, N.H., Lee, J.H.: Hierarchical flowerlike highly synergistic three-dimensional iron tungsten oxide nanostructure-anchored nitrogen-doped graphene as an efficient and durable electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 10(38), 32220–32232 (2018)CrossRef
57.
go back to reference Murthy, A.P., Madhavan, J., Murugan, K.: Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. J. Power Sources 398, 9–26 (2018)CrossRef Murthy, A.P., Madhavan, J., Murugan, K.: Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. J. Power Sources 398, 9–26 (2018)CrossRef
58.
go back to reference Neyerlin, K.C., Gu, W., Jorne, J., Gasteiger, H.A.: Study of the exchange current density for the hydrogen oxidation and evolution reactions. J. Electrochem. Soc. 154(7), B631–B635 (2007)CrossRef Neyerlin, K.C., Gu, W., Jorne, J., Gasteiger, H.A.: Study of the exchange current density for the hydrogen oxidation and evolution reactions. J. Electrochem. Soc. 154(7), B631–B635 (2007)CrossRef
59.
go back to reference Panwar, N.L., Kaushik, S.C., Kothari, S.: Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15(3), 1513–1524 (2011)CrossRef Panwar, N.L., Kaushik, S.C., Kothari, S.: Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15(3), 1513–1524 (2011)CrossRef
60.
go back to reference Ren, H., Huang, Z.H., Yang, Z., Tang, S., Kang, F., Lv, R.: Facile synthesis of free-standing nickel chalcogenide electrodes for overall water splitting. J. Energy Chem. 26(6), 1217–1222 (2017)CrossRef Ren, H., Huang, Z.H., Yang, Z., Tang, S., Kang, F., Lv, R.: Facile synthesis of free-standing nickel chalcogenide electrodes for overall water splitting. J. Energy Chem. 26(6), 1217–1222 (2017)CrossRef
61.
go back to reference Ren, X., Wu, D., Ge, R., Sun, X., Ma, H., Yan, T., Zhang, Y., Du, B., Wei, Q., Chen, L.: Self-supported CoMoS4 nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH. Nano Res. 11(4), 2024–2033 (2018)CrossRef Ren, X., Wu, D., Ge, R., Sun, X., Ma, H., Yan, T., Zhang, Y., Du, B., Wei, Q., Chen, L.: Self-supported CoMoS4 nanosheet array as an efficient catalyst for hydrogen evolution reaction at neutral pH. Nano Res. 11(4), 2024–2033 (2018)CrossRef
62.
go back to reference Sawant, S., Han, T., Cho, M.: Metal-free carbon-based materials: promising electrocatalysts for oxygen reduction reaction in microbial fuel cells. Int. J. Mol. Sci. 18(1), 25 (2016)CrossRef Sawant, S., Han, T., Cho, M.: Metal-free carbon-based materials: promising electrocatalysts for oxygen reduction reaction in microbial fuel cells. Int. J. Mol. Sci. 18(1), 25 (2016)CrossRef
63.
go back to reference Shao, M., Odell, J.H., Choi, S.I., Xia, Y.: Electrochemical surface area measurements of platinum-and palladium-based nanoparticles. Electrochem. Commun. 31, 46–48 (2013)CrossRef Shao, M., Odell, J.H., Choi, S.I., Xia, Y.: Electrochemical surface area measurements of platinum-and palladium-based nanoparticles. Electrochem. Commun. 31, 46–48 (2013)CrossRef
64.
go back to reference Strmcnik, D., Lopes, P.P., Genorio, B., Stamenkovic, V.R., Markovic, N.M.: Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016)CrossRef Strmcnik, D., Lopes, P.P., Genorio, B., Stamenkovic, V.R., Markovic, N.M.: Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016)CrossRef
65.
go back to reference Su, F., Zhao, X.S., Wang, Y., Zeng, J., Zhou, Z., Lee, J.Y.: Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. J. Phys. Chem. B 109(43), 20200–20206 (2005)CrossRef Su, F., Zhao, X.S., Wang, Y., Zeng, J., Zhou, Z., Lee, J.Y.: Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. J. Phys. Chem. B 109(43), 20200–20206 (2005)CrossRef
66.
go back to reference Suen, N.T., Hung, S.F., Quan, Q., Zhang, N., Xu, Y.J., Chen, H.M.: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017)CrossRef Suen, N.T., Hung, S.F., Quan, Q., Zhang, N., Xu, Y.J., Chen, H.M.: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017)CrossRef
67.
go back to reference Sun, Y., Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176–2179 (2002)CrossRef Sun, Y., Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176–2179 (2002)CrossRef
68.
go back to reference Tang, Y., Cheng, W.: Key parameters governing metallic nanoparticle electrocatalysis. Nanoscale 7(39), 16151–16164 (2015)CrossRef Tang, Y., Cheng, W.: Key parameters governing metallic nanoparticle electrocatalysis. Nanoscale 7(39), 16151–16164 (2015)CrossRef
69.
go back to reference Tao, H., Sun, Z.: Oxygen electrochemistry on two-dimensional nanosheets. Nanotechnol. Res. J. 9(3), 361–388 (2016) Tao, H., Sun, Z.: Oxygen electrochemistry on two-dimensional nanosheets. Nanotechnol. Res. J. 9(3), 361–388 (2016)
70.
go back to reference Tao, H., Gao, Y., Talreja, N., Guo, F., Texter, J., Yan, C., Sun, Z.: Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. J. Mater. Chem. A 5(16), 7257–7284 (2017)CrossRef Tao, H., Gao, Y., Talreja, N., Guo, F., Texter, J., Yan, C., Sun, Z.: Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. J. Mater. Chem. A 5(16), 7257–7284 (2017)CrossRef
71.
go back to reference Thi, M.L.N., Tran, T.H., Anh, P.H., Nhac-Vu, H.T., Bui, Q.B.: Hierarchical zinc-nickel phosphides nanosheets on 3D nickel foam as self-support electrocatalysts for hydrogen evolution reaction. Polyhedron (2019) Thi, M.L.N., Tran, T.H., Anh, P.H., Nhac-Vu, H.T., Bui, Q.B.: Hierarchical zinc-nickel phosphides nanosheets on 3D nickel foam as self-support electrocatalysts for hydrogen evolution reaction. Polyhedron (2019)
72.
go back to reference Tolmachev, Y.V., Petrii, O.A.: Pt–Ru electrocatalysts for fuel cells: developments in the last decade. J. Solid State Electrochem. 21(3), 613–639 (2017)CrossRef Tolmachev, Y.V., Petrii, O.A.: Pt–Ru electrocatalysts for fuel cells: developments in the last decade. J. Solid State Electrochem. 21(3), 613–639 (2017)CrossRef
73.
go back to reference Tong, S., Xu, Y., Zhang, Z., Song, W.: Dendritic bimetallic nanostructures supported on self-assembled titanate films for sensor application. J. Phys. Chem. C 114(49), 20925–20931 (2010)CrossRef Tong, S., Xu, Y., Zhang, Z., Song, W.: Dendritic bimetallic nanostructures supported on self-assembled titanate films for sensor application. J. Phys. Chem. C 114(49), 20925–20931 (2010)CrossRef
74.
go back to reference Trasatti, S.: Electrocatalysis: understanding the success of DSA®. Electrochim. Acta 45(15–16), 2377–2385 (2000)CrossRef Trasatti, S.: Electrocatalysis: understanding the success of DSA®. Electrochim. Acta 45(15–16), 2377–2385 (2000)CrossRef
75.
go back to reference Vij, V., Sultan, S., Harzandi, A.M., Meena, A., Tiwari, J.N., Lee, W.G., Yoon, T., Kim, K.S.: Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 7(10), 7196–7225 (2017)CrossRef Vij, V., Sultan, S., Harzandi, A.M., Meena, A., Tiwari, J.N., Lee, W.G., Yoon, T., Kim, K.S.: Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 7(10), 7196–7225 (2017)CrossRef
76.
go back to reference Wang, J., Zhu, H., Chen, J., Zhang, B., Zhang, M., Wang, L., Du, M.: Small and well-dispersed Cu nanoparticles on carbon nanofibers: self-supported electrode materials for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 41(40), 18044–18049 (2016)CrossRef Wang, J., Zhu, H., Chen, J., Zhang, B., Zhang, M., Wang, L., Du, M.: Small and well-dispersed Cu nanoparticles on carbon nanofibers: self-supported electrode materials for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 41(40), 18044–18049 (2016)CrossRef
77.
go back to reference Wang, K., Chen, H., Hua, Y., Tong, Y., Wang, Y., Song, S.: Layer-stacking porous WCx nanoparticles on carbon cloth as self-supported integrated electrode for hydrogen evolution reaction. Mater. Today Energy 10, 343–351 (2018)CrossRef Wang, K., Chen, H., Hua, Y., Tong, Y., Wang, Y., Song, S.: Layer-stacking porous WCx nanoparticles on carbon cloth as self-supported integrated electrode for hydrogen evolution reaction. Mater. Today Energy 10, 343–351 (2018)CrossRef
78.
go back to reference Wang, L., Zhang, J., Jiang, W., Zhao, H., Liu, H.: Free-standing, flexible β-Ni (OH) 2/electrochemically-exfoliated graphene film electrode for efficient oxygen evolution. Appl. Surf. Sci. 433, 88–93 (2018)CrossRef Wang, L., Zhang, J., Jiang, W., Zhao, H., Liu, H.: Free-standing, flexible β-Ni (OH) 2/electrochemically-exfoliated graphene film electrode for efficient oxygen evolution. Appl. Surf. Sci. 433, 88–93 (2018)CrossRef
79.
go back to reference Wang, M., Ye, C., Xu, M., Bao, S.: MoP nanoparticles with a P-rich outermost atomic layer embedded in N-doped porous carbon nanofibers: self-supported electrodes for efficient hydrogen generation. Nano Res. 11(9), 4728–4734 (2018)CrossRef Wang, M., Ye, C., Xu, M., Bao, S.: MoP nanoparticles with a P-rich outermost atomic layer embedded in N-doped porous carbon nanofibers: self-supported electrodes for efficient hydrogen generation. Nano Res. 11(9), 4728–4734 (2018)CrossRef
80.
go back to reference Wu, B., Zheng, N.: Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8(2), 168–197 (2013)CrossRef Wu, B., Zheng, N.: Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8(2), 168–197 (2013)CrossRef
81.
go back to reference Wu, J., Liu, M., Sharma, P.P., Yadav, R.M., Ma, L., Yang, Y., Zou, X., Zhou, X.D., Vajtai, R., Yakobson, B.I., Lou, J.: Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 16(1), 466–470 (2015)CrossRef Wu, J., Liu, M., Sharma, P.P., Yadav, R.M., Ma, L., Yang, Y., Zou, X., Zhou, X.D., Vajtai, R., Yakobson, B.I., Lou, J.: Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 16(1), 466–470 (2015)CrossRef
82.
go back to reference Xia, B.Y., Ng, W.T., Wu, H.B., Wang, X., Lou, X.W.: Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew. Chem. Int. Ed. 51(29), 7213–7216 (2012)CrossRef Xia, B.Y., Ng, W.T., Wu, H.B., Wang, X., Lou, X.W.: Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew. Chem. Int. Ed. 51(29), 7213–7216 (2012)CrossRef
83.
go back to reference Xia, C., Jiang, Q., Zhao, C., Hedhili, M.N., Alshareef, H.N.: Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 28(1), 77–85 (2016)CrossRef Xia, C., Jiang, Q., Zhao, C., Hedhili, M.N., Alshareef, H.N.: Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 28(1), 77–85 (2016)CrossRef
84.
go back to reference Xia, H., Huang, Z., Lv, C., Zhang, C.: A self-supported porous hierarchical core-shell nanostructure of cobalt oxide for efficient oxygen evolution reaction. ACS Catal. 7(12), 8205–8213 (2017)CrossRef Xia, H., Huang, Z., Lv, C., Zhang, C.: A self-supported porous hierarchical core-shell nanostructure of cobalt oxide for efficient oxygen evolution reaction. ACS Catal. 7(12), 8205–8213 (2017)CrossRef
85.
go back to reference Xia, Z., Sun, H., He, X., Sun, Z., Lu, C., Li, J., Peng, Y., Kostecki, R., Dou, S., Sun, J., Liu, Z.: In situ construction of CoSe2@ vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy (2019) Xia, Z., Sun, H., He, X., Sun, Z., Lu, C., Li, J., Peng, Y., Kostecki, R., Dou, S., Sun, J., Liu, Z.: In situ construction of CoSe2@ vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy (2019)
86.
go back to reference Xiao, J., Zhang, Y., Zhang, Z., Lv, Q., Jing, F., Chi, K., Wang, S.: Self-supported biocarbon-fiber electrode decorated with molybdenum carbide nanoparticles for highly active hydrogen-evolution reaction. ACS Appl. Mater. Interfaces. 9(27), 22604–22611 (2017)CrossRef Xiao, J., Zhang, Y., Zhang, Z., Lv, Q., Jing, F., Chi, K., Wang, S.: Self-supported biocarbon-fiber electrode decorated with molybdenum carbide nanoparticles for highly active hydrogen-evolution reaction. ACS Appl. Mater. Interfaces. 9(27), 22604–22611 (2017)CrossRef
87.
go back to reference Xiong, X., Ji, Y., Xie, M., You, C., Yang, L., Liu, Z., Asiri, A.M., Sun, X.: MnO2-CoP3 nanowires array: an efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity. Electrochem. Commun. 86, 161–165 (2018)CrossRef Xiong, X., Ji, Y., Xie, M., You, C., Yang, L., Liu, Z., Asiri, A.M., Sun, X.: MnO2-CoP3 nanowires array: an efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity. Electrochem. Commun. 86, 161–165 (2018)CrossRef
88.
go back to reference Xu, Z., Liu, Y., Zhao, W., Li, B., Zhou, X., Shen, H.: Assembling mesoporous ZnxCO3-xO4 fibers with interconnected nanocrystals via a topotactic conversion route for enhanced performance Lithium-ion batteries. Electrochim. Acta 190, 894–902 (2016)CrossRef Xu, Z., Liu, Y., Zhao, W., Li, B., Zhou, X., Shen, H.: Assembling mesoporous ZnxCO3-xO4 fibers with interconnected nanocrystals via a topotactic conversion route for enhanced performance Lithium-ion batteries. Electrochim. Acta 190, 894–902 (2016)CrossRef
89.
go back to reference Yang, C., Gao, M.Y., Zhang, Q.B., Zeng, J.R., Li, X.T., Abbott, A.P.: In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent pH-universal electrocatalysts for hydrogen evolution reaction. Nano Energy 36, 85–94 (2017)CrossRef Yang, C., Gao, M.Y., Zhang, Q.B., Zeng, J.R., Li, X.T., Abbott, A.P.: In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent pH-universal electrocatalysts for hydrogen evolution reaction. Nano Energy 36, 85–94 (2017)CrossRef
90.
go back to reference Ye, Y.S., Rick, J., Hwang, B.J.: Water soluble polymers as proton exchange membranes for fuel cells. Polymers 4(2), 913–963 (2012)CrossRef Ye, Y.S., Rick, J., Hwang, B.J.: Water soluble polymers as proton exchange membranes for fuel cells. Polymers 4(2), 913–963 (2012)CrossRef
91.
go back to reference You, H., Yang, S., Ding, B., Yang, H.: Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 42(7), 2880–2904 (2013)CrossRef You, H., Yang, S., Ding, B., Yang, H.: Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 42(7), 2880–2904 (2013)CrossRef
92.
go back to reference Yu, H., Cao, S., Fu, B., Wu, Z., Liu, J., Piao, L.: Self-supported nanotubular MoP electrode for highly efficient hydrogen evolution via water splitting. Catal. Commun. (2019) Yu, H., Cao, S., Fu, B., Wu, Z., Liu, J., Piao, L.: Self-supported nanotubular MoP electrode for highly efficient hydrogen evolution via water splitting. Catal. Commun. (2019)
93.
go back to reference Yu, L., Yang, J.F., Guan, B.Y., Lu, Y., Lou, X.W.: Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution. Angew. Chem. Int. Ed. 57(1), 172–176 (2018)CrossRef Yu, L., Yang, J.F., Guan, B.Y., Lu, Y., Lou, X.W.: Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution. Angew. Chem. Int. Ed. 57(1), 172–176 (2018)CrossRef
94.
go back to reference Yuan, C., Wu, H.B., Xie, Y., Lou, X.W.: Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014)CrossRef Yuan, C., Wu, H.B., Xie, Y., Lou, X.W.: Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014)CrossRef
95.
go back to reference Zeng, M., Li, Y.: Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3(29), 14942–14962 (2015)CrossRef Zeng, M., Li, Y.: Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3(29), 14942–14962 (2015)CrossRef
96.
go back to reference Zhang, C., Pu, Z., Amiinu, I.S., Zhao, Y., Zhu, J., Tang, Y., Mu, S.: CO2P quantum dot embedded N, P dual-doped carbon self-supported electrodes with flexible and binder-free properties for efficient hydrogen evolution reactions. Nanoscale 10(6), 2902–2907 (2018)CrossRef Zhang, C., Pu, Z., Amiinu, I.S., Zhao, Y., Zhu, J., Tang, Y., Mu, S.: CO2P quantum dot embedded N, P dual-doped carbon self-supported electrodes with flexible and binder-free properties for efficient hydrogen evolution reactions. Nanoscale 10(6), 2902–2907 (2018)CrossRef
97.
go back to reference Zhang, J., Dong, C., Wang, Z., Zhang, C., Gao, H., Niu, J., Zhang, Z.: Flexible, self-supported hexagonal β-Co (OH)2 nanosheet arrays as integrated electrode catalyzing oxygen evolution reaction. Electrochim. Acta 284, 495–503 (2018)CrossRef Zhang, J., Dong, C., Wang, Z., Zhang, C., Gao, H., Niu, J., Zhang, Z.: Flexible, self-supported hexagonal β-Co (OH)2 nanosheet arrays as integrated electrode catalyzing oxygen evolution reaction. Electrochim. Acta 284, 495–503 (2018)CrossRef
98.
go back to reference Zhang, L., Chang, Q., Chen, H., Shao, M.: Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 29, 198–219 (2016)CrossRef Zhang, L., Chang, Q., Chen, H., Shao, M.: Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 29, 198–219 (2016)CrossRef
99.
go back to reference Zhao, S., Yin, H., Du, L., Yin, G., Tang, Z., Liu, S.: Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A 2(11), 3719–3724 (2014)CrossRef Zhao, S., Yin, H., Du, L., Yin, G., Tang, Z., Liu, S.: Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A 2(11), 3719–3724 (2014)CrossRef
100.
go back to reference Zhou, C., Mu, J., Qi, Y.F., Wang, Q., Zhao, X.J., Yang, E.C.: Iron-substituted Co-Ni phosphides immobilized on Ni foam as efficient self-supported 3D hierarchical electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy (2019) Zhou, C., Mu, J., Qi, Y.F., Wang, Q., Zhao, X.J., Yang, E.C.: Iron-substituted Co-Ni phosphides immobilized on Ni foam as efficient self-supported 3D hierarchical electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy (2019)
101.
go back to reference Zhou, W., Jia, J., Lu, J., Yang, L., Hou, D., Li, G., Chen, S.: Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28, 29–43 (2016)CrossRef Zhou, W., Jia, J., Lu, J., Yang, L., Hou, D., Li, G., Chen, S.: Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28, 29–43 (2016)CrossRef
102.
go back to reference Zhou, Y., Hu, X., Guo, S., Yu, C., Zhong, S., Liu, X.: Multi-functional graphene/carbon nanotube aerogels for its applications in supercapacitor and direct methanol fuel cell. Electrochim. Acta 264, 12–19 (2018)CrossRef Zhou, Y., Hu, X., Guo, S., Yu, C., Zhong, S., Liu, X.: Multi-functional graphene/carbon nanotube aerogels for its applications in supercapacitor and direct methanol fuel cell. Electrochim. Acta 264, 12–19 (2018)CrossRef
103.
go back to reference Zhu, W., Zhang, R., Qu, F., Asiri, A.M., Sun, X.: Design and application of foams for electrocatalysis. ChemCatChem 9(10), 1721–1743 (2017)CrossRef Zhu, W., Zhang, R., Qu, F., Asiri, A.M., Sun, X.: Design and application of foams for electrocatalysis. ChemCatChem 9(10), 1721–1743 (2017)CrossRef
104.
go back to reference Zhu, X., Mo, L., Wu, Y., Lai, F., Han, X., Ling, X.Y., Liu, T., Miao, Y.E.: Self-supported MoS2@ NHCF fiber-in-tube composites with tunable voids for efficient hydrogen evolution reaction. Compos. Commun. 9, 86–91 (2018)CrossRef Zhu, X., Mo, L., Wu, Y., Lai, F., Han, X., Ling, X.Y., Liu, T., Miao, Y.E.: Self-supported MoS2@ NHCF fiber-in-tube composites with tunable voids for efficient hydrogen evolution reaction. Compos. Commun. 9, 86–91 (2018)CrossRef
Metadata
Title
Self-supported Electrocatalysts
Authors
Paramita Karfa
Kartick Chandra Majhi
Rashmi Madhuri
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-29522-6_6

Premium Partners