Skip to main content
Top
Published in: Journal of Materials Science 14/2016

25-04-2016 | Original Paper

Self-supported ultrathin mesoporous CoFe2O4/CoO nanosheet arrays assembled from nanowires with enhanced lithium storage performance

Published in: Journal of Materials Science | Issue 14/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Self-supported two-dimensional metal oxide nanosheet arrays have attracted great attention in lithium-ion batteries (LIBs) due to their superior structure advantages such as large surface area, good structure stability, and high electronic conductivity compared to one dimensional (1D) nanowires. Herein, we design the self-supported mesoporous CoFe2O4/CoO nanosheet arrays assembled from the nanowires precursor based on the combination of hydrothermal and atomic layer deposition techniques. The assembled CoFe2O4/CoO nanosheets exhibit an ultra-high initial charge capacity of 1705 mAhg−1 and good cycling stability (1043 mAhg−1 after 50 cycles) when directly used as a binder-free anode of LIBs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef
2.
go back to reference Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
3.
go back to reference Poizot P, Laruelle S, Grugeon S, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef Poizot P, Laruelle S, Grugeon S, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef
4.
go back to reference Jiang J, Li YY, Huang XT, Yuan CZ, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 20:5166–5180CrossRef Jiang J, Li YY, Huang XT, Yuan CZ, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 20:5166–5180CrossRef
5.
go back to reference Peng C, Chen B, Qin Y, Yang J (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6:1074–1091CrossRef Peng C, Chen B, Qin Y, Yang J (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6:1074–1091CrossRef
6.
go back to reference Yu L, Zhang L, Wu HB, Zhang G, Lou XWD (2013) Controlled synthesis of hierarchical CoxMn3−xO4 array micro-nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries. Energy Environ Sci 6:2664–2671CrossRef Yu L, Zhang L, Wu HB, Zhang G, Lou XWD (2013) Controlled synthesis of hierarchical CoxMn3−xO4 array micro-nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries. Energy Environ Sci 6:2664–2671CrossRef
7.
go back to reference Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270CrossRef Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270CrossRef
8.
go back to reference Lou XW, Deng D, Archer LA (2007) Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater 20(2):258–262CrossRef Lou XW, Deng D, Archer LA (2007) Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater 20(2):258–262CrossRef
9.
go back to reference Du N, Zhang H, Tu JP (2007) Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: a highly efficient material For Li-battery applications. Adv Mater 19(24):4505–4509CrossRef Du N, Zhang H, Tu JP (2007) Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: a highly efficient material For Li-battery applications. Adv Mater 19(24):4505–4509CrossRef
10.
go back to reference Wu FD, Wang Y (2011) Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries. J Mater Chem 21(18):6636CrossRef Wu FD, Wang Y (2011) Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries. J Mater Chem 21(18):6636CrossRef
11.
go back to reference Li D, Ding L-X, Wang S, Cai D, Wang H (2014) Ultrathin and highly-ordered CoO nanosheet arrays for lithium-ion batteries with high cycle stability and rate capability. J Mater Chem A 2(16):5625CrossRef Li D, Ding L-X, Wang S, Cai D, Wang H (2014) Ultrathin and highly-ordered CoO nanosheet arrays for lithium-ion batteries with high cycle stability and rate capability. J Mater Chem A 2(16):5625CrossRef
12.
go back to reference Wu F, Ma X, Feng J, Qian Y, Xiong S (2014) 3D Co3O4 and CoO@C wall arrays: morphology control, formation mechanism, and lithium-storage properties. J Mater Chem A 2(30):11597CrossRef Wu F, Ma X, Feng J, Qian Y, Xiong S (2014) 3D Co3O4 and CoO@C wall arrays: morphology control, formation mechanism, and lithium-storage properties. J Mater Chem A 2(30):11597CrossRef
13.
go back to reference Liu Y, Jiao Y, Zhou H, Yu X, Qu F, Wu X (2014) Rational design of WO3 nanostructures as the anode materials for lithium-ion batteries with enhanced electrochemical performance. Nano-Micro Lett 7(1):12–16CrossRef Liu Y, Jiao Y, Zhou H, Yu X, Qu F, Wu X (2014) Rational design of WO3 nanostructures as the anode materials for lithium-ion batteries with enhanced electrochemical performance. Nano-Micro Lett 7(1):12–16CrossRef
14.
go back to reference Pan L, Zhao H, Shen W, Dong X, Xu J (2013) Surfactant-assisted synthesis of a Co3O4/reduced graphene oxide composite as a superior anode material for Li-ion batteries. J Mater Chem A 1(24):7159CrossRef Pan L, Zhao H, Shen W, Dong X, Xu J (2013) Surfactant-assisted synthesis of a Co3O4/reduced graphene oxide composite as a superior anode material for Li-ion batteries. J Mater Chem A 1(24):7159CrossRef
15.
go back to reference Sun J, Liu H, Chen X, Evans DG, Yang W (2013) An oil droplet template method for the synthesis of hierarchical structured Co3O4/C anodes for Li-ion batteries. Nanoscale 5(16):7564–7571CrossRef Sun J, Liu H, Chen X, Evans DG, Yang W (2013) An oil droplet template method for the synthesis of hierarchical structured Co3O4/C anodes for Li-ion batteries. Nanoscale 5(16):7564–7571CrossRef
16.
go back to reference Guan Q, Cheng J, Nie F (2014) Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl Mater Interfaces 6(10):7626–7632CrossRef Guan Q, Cheng J, Nie F (2014) Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl Mater Interfaces 6(10):7626–7632CrossRef
17.
go back to reference Wang H, Mao N, Wang X (2015) Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery. ACS Appl Mater Interfaces 7(4):2882–2890CrossRef Wang H, Mao N, Wang X (2015) Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery. ACS Appl Mater Interfaces 7(4):2882–2890CrossRef
18.
go back to reference Huang G, Zhang F, Wang L (2015) MOF route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium ion batteries. ACS Nano 9(2):1592–1599CrossRef Huang G, Zhang F, Wang L (2015) MOF route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium ion batteries. ACS Nano 9(2):1592–1599CrossRef
19.
go back to reference Luo J, Liu J, Zeng Z et al (2013) Three-dimensional graphene foam supported Fe(3)O(4) lithium battery anodes with long cycle life and high rate capability. Nano Lett 13(12):6136–6143CrossRef Luo J, Liu J, Zeng Z et al (2013) Three-dimensional graphene foam supported Fe(3)O(4) lithium battery anodes with long cycle life and high rate capability. Nano Lett 13(12):6136–6143CrossRef
20.
go back to reference Wang J, Zhang Q, Li X et al (2014) Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 6:19–26CrossRef Wang J, Zhang Q, Li X et al (2014) Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 6:19–26CrossRef
21.
go back to reference Wu H, Xu M, Wang Y, Zheng G (2013) Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res 6(3):167–173CrossRef Wu H, Xu M, Wang Y, Zheng G (2013) Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res 6(3):167–173CrossRef
22.
go back to reference Wu JB, Guo RQ, Huang XH, Lin Y (2014) Ternary core/shell structure of Co3O4/NiO/C nanowire arrays as high-performance anode material for Li-ion battery. J Power Sources 248:115–121CrossRef Wu JB, Guo RQ, Huang XH, Lin Y (2014) Ternary core/shell structure of Co3O4/NiO/C nanowire arrays as high-performance anode material for Li-ion battery. J Power Sources 248:115–121CrossRef
23.
go back to reference Cao KZ, Jiao LF, Yuan HT (2015) Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv Funct Mater 25(7):1082–1089CrossRef Cao KZ, Jiao LF, Yuan HT (2015) Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv Funct Mater 25(7):1082–1089CrossRef
24.
go back to reference Hong YJ, Son MY, Kang YC (2013) One-pot facile synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv Mater 25(16):2279–2283CrossRef Hong YJ, Son MY, Kang YC (2013) One-pot facile synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv Mater 25(16):2279–2283CrossRef
25.
go back to reference Cai Z, Xu L, Yan M et al (2015) Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. Nano Lett 15(1):738–744CrossRef Cai Z, Xu L, Yan M et al (2015) Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. Nano Lett 15(1):738–744CrossRef
26.
go back to reference Zhang H, Zhou L, Yu C (2014) Tailoring the void size of iron oxide@carbon yolk shell structure for optimized lithium strorage. Adv Funct Mater 24:4377–4382CrossRef Zhang H, Zhou L, Yu C (2014) Tailoring the void size of iron oxide@carbon yolk shell structure for optimized lithium strorage. Adv Funct Mater 24:4377–4382CrossRef
27.
go back to reference Wu R, Qian X, Zhou K (2014) Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8(6):6297–6303CrossRef Wu R, Qian X, Zhou K (2014) Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8(6):6297–6303CrossRef
28.
go back to reference Wang Z, Zhou L, Lou XWD (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24(14):1903–1911CrossRef Wang Z, Zhou L, Lou XWD (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24(14):1903–1911CrossRef
29.
go back to reference Wu R, Qian X, Rui X et al (2014) Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 10(10):1932–1938CrossRef Wu R, Qian X, Rui X et al (2014) Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 10(10):1932–1938CrossRef
30.
go back to reference Kim W-S, Hwa Y, Kim H-C, Choi J-H, Sohn H-J, Hong S-H (2014) SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res 7(8):1128–1136CrossRef Kim W-S, Hwa Y, Kim H-C, Choi J-H, Sohn H-J, Hong S-H (2014) SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res 7(8):1128–1136CrossRef
31.
go back to reference Cao FF, Deng JW, Xin S et al (2011) Cu–Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv Mater 23(38):4415–4420CrossRef Cao FF, Deng JW, Xin S et al (2011) Cu–Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv Mater 23(38):4415–4420CrossRef
32.
go back to reference Jung YS, Cavanagh AS, Riley LA et al (2010) Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv Mater 22(19):2172–2176CrossRef Jung YS, Cavanagh AS, Riley LA et al (2010) Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv Mater 22(19):2172–2176CrossRef
33.
go back to reference Kang E, Jung YS, Cavanagh AS et al (2011) Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv Funct Mater 21(13):2430–2438CrossRef Kang E, Jung YS, Cavanagh AS et al (2011) Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv Funct Mater 21(13):2430–2438CrossRef
34.
go back to reference Kohandehghan A, Kalisvaart P, Cui K, Kupsta M, Memarzadeh E, Mitlin D (2013) Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance. J Mater Chem A 1(41):12850CrossRef Kohandehghan A, Kalisvaart P, Cui K, Kupsta M, Memarzadeh E, Mitlin D (2013) Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance. J Mater Chem A 1(41):12850CrossRef
35.
go back to reference Lotfabad EM, Kalisvaart P, Kohandehghan A et al (2014) Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. J Mater Chem A 2(8):2504–2516CrossRef Lotfabad EM, Kalisvaart P, Kohandehghan A et al (2014) Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. J Mater Chem A 2(8):2504–2516CrossRef
36.
go back to reference Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou XWD (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Environ Eng Sci 5:7883–7887 Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou XWD (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Environ Eng Sci 5:7883–7887
37.
go back to reference Reddy MV, Prithvi G, Loh KP, Chowdari BVR (2014) Li storage and impedance spectroscopy studies on Co3O4, CoO and CoN for Li-Ion batteries. ACS Appl Mater Interfaces 6:680–690CrossRef Reddy MV, Prithvi G, Loh KP, Chowdari BVR (2014) Li storage and impedance spectroscopy studies on Co3O4, CoO and CoN for Li-Ion batteries. ACS Appl Mater Interfaces 6:680–690CrossRef
38.
go back to reference Jiang J, Liu JP, Ding RM et al (2010) Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes. J Phys Chem C 114:929–932CrossRef Jiang J, Liu JP, Ding RM et al (2010) Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes. J Phys Chem C 114:929–932CrossRef
39.
go back to reference Du D, Yue W, Ren Y, Yang X (2014) Fabrication of graphene-encapsulated CoO/CoFe2O4 composites derived from layered double hydroxides and their application as anode materials for lithium-ion batteries. J Mater Sci 49:8031–8039. doi:10.1007/s10853-014-8510-y CrossRef Du D, Yue W, Ren Y, Yang X (2014) Fabrication of graphene-encapsulated CoO/CoFe2O4 composites derived from layered double hydroxides and their application as anode materials for lithium-ion batteries. J Mater Sci 49:8031–8039. doi:10.​1007/​s10853-014-8510-y CrossRef
40.
go back to reference Zhang H, Liu J, Zhao G et al (2015) Probing the interfacial interaction in layered-carbon-stabilized iron oxide nanostructures: a soft x-ray spectroscopic study. ACS Appl Mater Interfaces 7(15):7863–7868CrossRef Zhang H, Liu J, Zhao G et al (2015) Probing the interfacial interaction in layered-carbon-stabilized iron oxide nanostructures: a soft x-ray spectroscopic study. ACS Appl Mater Interfaces 7(15):7863–7868CrossRef
41.
go back to reference Zhou S, Potzger K, Xu Q et al (2009) Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic, and magnetotransport properties. Phys Rev B 80(9):094409CrossRef Zhou S, Potzger K, Xu Q et al (2009) Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic, and magnetotransport properties. Phys Rev B 80(9):094409CrossRef
42.
go back to reference Li M, Yin Y, Li C et al (2011) Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium-ion batteries. Chem Commun 48:410–412CrossRef Li M, Yin Y, Li C et al (2011) Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium-ion batteries. Chem Commun 48:410–412CrossRef
43.
go back to reference Chen J, Xu L, Li W, Gao X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582–586CrossRef Chen J, Xu L, Li W, Gao X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582–586CrossRef
44.
go back to reference Wu ZS, Ren W, Wen L et al (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194CrossRef Wu ZS, Ren W, Wen L et al (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194CrossRef
45.
go back to reference Zheng T, Gozdz AS, Amatucci GG (1999) Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures. J Electrochem Soc 146:4014–4018CrossRef Zheng T, Gozdz AS, Amatucci GG (1999) Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures. J Electrochem Soc 146:4014–4018CrossRef
46.
go back to reference Hu YS, Demir-Cakan R, Titirici MM, Antonietti M, Maier J (2008) Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-Ion batteries. Angew Chem Int Ed 47:1645–1649CrossRef Hu YS, Demir-Cakan R, Titirici MM, Antonietti M, Maier J (2008) Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-Ion batteries. Angew Chem Int Ed 47:1645–1649CrossRef
47.
go back to reference Shen L, Che Q, Li H, Zhang X (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24:2630–2637CrossRef Shen L, Che Q, Li H, Zhang X (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24:2630–2637CrossRef
48.
go back to reference Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Ionics 5:895–904 Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Ionics 5:895–904
49.
go back to reference Laruelle S, Grugeon S, Poizot P, Dupont L, Tarascon JM (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:627–634CrossRef Laruelle S, Grugeon S, Poizot P, Dupont L, Tarascon JM (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:627–634CrossRef
50.
go back to reference Chen CH, Hwang BJ, Do JS et al (2010) An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery. Electrochem Commun 12:496–498CrossRef Chen CH, Hwang BJ, Do JS et al (2010) An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery. Electrochem Commun 12:496–498CrossRef
Metadata
Title
Self-supported ultrathin mesoporous CoFe2O4/CoO nanosheet arrays assembled from nanowires with enhanced lithium storage performance
Publication date
25-04-2016
Published in
Journal of Materials Science / Issue 14/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9902-y

Other articles of this Issue 14/2016

Journal of Materials Science 14/2016 Go to the issue

Premium Partners