Skip to main content
Top
Published in: Wireless Personal Communications 2/2021

28-11-2020

Semi-supervised and Unsupervised Privacy-Preserving Distributed Transfer Learning Approach in HAR Systems

Authors: Mina Hashemian, Farbod Razzazi, Houman Zarrabi, Mohammad Shahram Moin

Published in: Wireless Personal Communications | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the challenges faced by machine learning in human activity recognition systems is the different distributions of the training and test samples. Transfer learning constitutes a solution to this problem. On the other hand, to perform transfer learning, it is necessary to have access to the original dataset. However, access to the dataset to implement the transfer learning algorithms results in a privacy breach. To deal with this challenge, this paper presents semi-supervised and unsupervised scenarios for privacy-preserving transfer learning in centralized and distributed manner. In the proposed distributed algorithms, it is not necessary to share the original data among the clients to implement the transfer learning algorithms. Instead, the transfer learning process can be fulfilled without having the original datasets. PPSETR and PPUSTR algorithms transfer the knowledge while preserving the privacy of the datasets on the client side. In contrast, PPDSETR and PPDUSTR algorithms provide the privacy protection of the distributed data on both the client and server sides. The proposed semi-supervised algorithms reduce the recognition error rate by 20.58% and the unsupervised algorithms decrease the recognition error rate by about 15.97% while these algorithms considerably preserve the privacy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, Z., Meng, F., Yuan, G., Yan, Q., & Xia, S. (2019). An overview of human activity recognition based on smartphone. Sensing Reviews, 39(2), 288–306.CrossRef Wang, Z., Meng, F., Yuan, G., Yan, Q., & Xia, S. (2019). An overview of human activity recognition based on smartphone. Sensing Reviews, 39(2), 288–306.CrossRef
2.
go back to reference Uddin, M. Z. (2019). A wearable sensor-based activity prediction system to facilitate edge computing in smart healthcare system. Journal of Parallel and Distributed Computing, 123, 46–53.CrossRef Uddin, M. Z. (2019). A wearable sensor-based activity prediction system to facilitate edge computing in smart healthcare system. Journal of Parallel and Distributed Computing, 123, 46–53.CrossRef
3.
go back to reference Elbasiony, R., & Gomaa, W. (2019). A survey on human activity recognition based on temporal signals of portable inertial sensors (Vol. 921, pp. 734–745). Elbasiony, R., & Gomaa, W. (2019). A survey on human activity recognition based on temporal signals of portable inertial sensors (Vol. 921, pp. 734–745).
4.
go back to reference Prati, A., Shan, C., & Wang, K. I. K. (2019). Sensors, vision and networks: From video surveillance to activity recognition and health monitoring. Journal of Ambient Intelligence and Smart Environments, 11(1), 5–22. Prati, A., Shan, C., & Wang, K. I. K. (2019). Sensors, vision and networks: From video surveillance to activity recognition and health monitoring. Journal of Ambient Intelligence and Smart Environments, 11(1), 5–22.
5.
go back to reference Ahad, M. A. R., Antar, A. D., & Ahmed, M. (2019). IoT sensor-based activity recognition (Vol. 173). Berlin: Springer. Ahad, M. A. R., Antar, A. D., & Ahmed, M. (2019). IoT sensor-based activity recognition (Vol. 173). Berlin: Springer.
6.
go back to reference Dang, L. M., Min, K., Wang, H., Jalil Piran, M., Hee Lee, C., & Moon, H. (2020). Sensor-based and vision-based human activity recognition: A comprehensive survey. Pattern Recognition, 108, 107–561. Dang, L. M., Min, K., Wang, H., Jalil Piran, M., Hee Lee, C., & Moon, H. (2020). Sensor-based and vision-based human activity recognition: A comprehensive survey. Pattern Recognition, 108, 107–561.
7.
go back to reference Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., & Liu, Y. (2020). Deep learning for sensor-based human activity recognition: Overview. Challenges and Opportunities. arxiv:2001.07416. Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., & Liu, Y. (2020). Deep learning for sensor-based human activity recognition: Overview. Challenges and Opportunities. arxiv:​2001.​07416.
8.
go back to reference Morales, J., & Akopian, D. (2017). Physical activity recognition by smartphones, a survey. Biocybernetics and Biomedical Engineering, 37(3), 388–400.CrossRef Morales, J., & Akopian, D. (2017). Physical activity recognition by smartphones, a survey. Biocybernetics and Biomedical Engineering, 37(3), 388–400.CrossRef
9.
go back to reference Fu, B., Damer, N., Kirchbuchner, F., & Kuijper, A. (2020). Sensing technology for human activity recognition: A comprehensive survey. IEEE Access, 8, 83791–83820.CrossRef Fu, B., Damer, N., Kirchbuchner, F., & Kuijper, A. (2020). Sensing technology for human activity recognition: A comprehensive survey. IEEE Access, 8, 83791–83820.CrossRef
10.
go back to reference Bota, P., Silva, J., Folgado, D., & Gamboa, H. (2019). A semi-automatic annotation approach for human activity recognition. Sensor, 19, 501–524.CrossRef Bota, P., Silva, J., Folgado, D., & Gamboa, H. (2019). A semi-automatic annotation approach for human activity recognition. Sensor, 19, 501–524.CrossRef
11.
go back to reference Ye, J., Qi, G., Zhuang, N., Hu, H., & Hua, K. A. (2020). Learning compact features for human activity recognition via probabilistic first-take-all. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(1), 126–139.CrossRef Ye, J., Qi, G., Zhuang, N., Hu, H., & Hua, K. A. (2020). Learning compact features for human activity recognition via probabilistic first-take-all. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(1), 126–139.CrossRef
12.
go back to reference Shoaib, M., Bosch, S., Incel, O., Scholten, H., & Havinga, P. (2015). A survey of online activity recognition using mobile phones. Sensors, 15(1), 2059–2085.CrossRef Shoaib, M., Bosch, S., Incel, O., Scholten, H., & Havinga, P. (2015). A survey of online activity recognition using mobile phones. Sensors, 15(1), 2059–2085.CrossRef
13.
go back to reference Gong, Y., Fang, Y., Guo, Y., Member, S., Fang, Y., & Guo, Y. (2016). Private data analytics on biomedical sensing data via distributed computation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13(3), 431–444.CrossRef Gong, Y., Fang, Y., Guo, Y., Member, S., Fang, Y., & Guo, Y. (2016). Private data analytics on biomedical sensing data via distributed computation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13(3), 431–444.CrossRef
14.
go back to reference Cook, D., Feuz, K. D., & Krishnan, N. C. (2013). Transfer learning for activity recognition: A survey. Knowledge and Information Systems, 36(3), 537–556.CrossRef Cook, D., Feuz, K. D., & Krishnan, N. C. (2013). Transfer learning for activity recognition: A survey. Knowledge and Information Systems, 36(3), 537–556.CrossRef
15.
go back to reference Zhuang, F. et al. (2020). A comprehensive survey on transfer learning. In Proceedings of the IEEE (pp. 1–34). Zhuang, F. et al. (2020). A comprehensive survey on transfer learning. In Proceedings of the IEEE (pp. 1–34).
16.
go back to reference Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.CrossRef Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.CrossRef
17.
go back to reference Hachiya, H., Sugiyama, M., & Ueda, N. (2012). Importance-weighted least-squares probabilistic classifier for covariate shift adaptation with application to human activity recognition. Neurocomputing, 80, 93–101.CrossRef Hachiya, H., Sugiyama, M., & Ueda, N. (2012). Importance-weighted least-squares probabilistic classifier for covariate shift adaptation with application to human activity recognition. Neurocomputing, 80, 93–101.CrossRef
18.
go back to reference Van Kasteren, T. L. M., Englebienne, G., & Krose, B. J. A. (2008). Recognizing activities in multiple contexts using transfer learning. In AAAI fall symposium: AI in eldercare: new solutions to old problems (pp. 142–149). Van Kasteren, T. L. M., Englebienne, G., & Krose, B. J. A. (2008). Recognizing activities in multiple contexts using transfer learning. In AAAI fall symposium: AI in eldercare: new solutions to old problems (pp. 142–149).
19.
go back to reference Zhongtang, Z., Yiqiang, C., Junfa, L., & Mingjie, L. (2010). Cross-mobile ELM based activity recognition. International Journal of Engineering and Industries, 1(1), 30–40.CrossRef Zhongtang, Z., Yiqiang, C., Junfa, L., & Mingjie, L. (2010). Cross-mobile ELM based activity recognition. International Journal of Engineering and Industries, 1(1), 30–40.CrossRef
20.
go back to reference Zheng, V., & Hu, D. (2009). Cross-domain activity recognition. In UbiComp ’09: Proceedings of the 11th international conference on ubiquitous computing (pp. 61–70). Zheng, V., & Hu, D. (2009). Cross-domain activity recognition. In UbiComp ’09: Proceedings of the 11th international conference on ubiquitous computing (pp. 61–70).
21.
go back to reference Cornacchia, M., Ozcan, K., Zheng, Y., & Velipasalar, S. (2016). A survey on activity detection and classification using wearable sensors. IEEE Sensors Journal, 17(2), 386–403.CrossRef Cornacchia, M., Ozcan, K., Zheng, Y., & Velipasalar, S. (2016). A survey on activity detection and classification using wearable sensors. IEEE Sensors Journal, 17(2), 386–403.CrossRef
22.
go back to reference Wang, Y., Cang, S., & Yu, H. (2019). A survey on wearable sensor modality centred human activity recognition in health care. Expert Systems with Applications, 137, 167–190.CrossRef Wang, Y., Cang, S., & Yu, H. (2019). A survey on wearable sensor modality centred human activity recognition in health care. Expert Systems with Applications, 137, 167–190.CrossRef
23.
go back to reference Garcia-Ceja, E., & Brena, R. (2015). Building personalized activity recognition models with scarce labeled data based on class similarities. In International conference on ubiquitous computing and ambient intelligence (pp. 265–276). Garcia-Ceja, E., & Brena, R. (2015). Building personalized activity recognition models with scarce labeled data based on class similarities. In International conference on ubiquitous computing and ambient intelligence (pp. 265–276).
24.
go back to reference Sarakon , S., & Tamee, K. (2020). An individual model for human activity recognition using transfer deep learning. In Joint international conference on digital arts, media and technology with ECTI northern section conference on electrical, electronics, computer and telecommunications engineering (pp. 149–152). Sarakon , S., & Tamee, K. (2020). An individual model for human activity recognition using transfer deep learning. In Joint international conference on digital arts, media and technology with ECTI northern section conference on electrical, electronics, computer and telecommunications engineering (pp. 149–152).
25.
go back to reference Abdallah, Z. S., Gaber, M. M., Srinivasan, B., & Krishnaswamy, S. (2012). StreamAR: Incremental and active learning with evolving sensory data for activity recognition. In IEEE 24th international conference on tools with artificial intelligence (pp. 1163–1170). Abdallah, Z. S., Gaber, M. M., Srinivasan, B., & Krishnaswamy, S. (2012). StreamAR: Incremental and active learning with evolving sensory data for activity recognition. In IEEE 24th international conference on tools with artificial intelligence (pp. 1163–1170).
26.
go back to reference Fallahzadeh, R., Ghasemzadeh, H. (2017). Personalization without user interruption: Boosting activity recognition in new subjects using unlabeled data. In ICCPS ’17 proceedings of the 8th international conference on cyber-physical systems (pp. 293–302). Fallahzadeh, R., Ghasemzadeh, H. (2017). Personalization without user interruption: Boosting activity recognition in new subjects using unlabeled data. In ICCPS ’17 proceedings of the 8th international conference on cyber-physical systems (pp. 293–302).
27.
go back to reference Wang, J., Chen, Y., Zheng, V. W., & Huang, M. (2018). Deep transfer learning for cross-domain activity recognition. In Proceeding of the 3rd international conference on crowd science and engineering. Wang, J., Chen, Y., Zheng, V. W., & Huang, M. (2018). Deep transfer learning for cross-domain activity recognition. In Proceeding of the 3rd international conference on crowd science and engineering.
28.
go back to reference Hashemian, M., Razzazi, F., Zarrabi, H., & Moin, M. S. (2019). A privacy-preserving distributed transfer learning in activity recognition. Telecommunication Systems, 58(1), 1–11. Hashemian, M., Razzazi, F., Zarrabi, H., & Moin, M. S. (2019). A privacy-preserving distributed transfer learning in activity recognition. Telecommunication Systems, 58(1), 1–11.
29.
go back to reference Hernandez, N., Lundström, J., Favela, J., McChesney, I., & Arnrich, B. (2020). Literature review on transfer learning for human activity recognition using mobile and wearable devices with environmental technology. SN Computer Science, 1(2), 1–16.CrossRef Hernandez, N., Lundström, J., Favela, J., McChesney, I., & Arnrich, B. (2020). Literature review on transfer learning for human activity recognition using mobile and wearable devices with environmental technology. SN Computer Science, 1(2), 1–16.CrossRef
30.
go back to reference Qiang, J., Yang, B., Li, Q., & Jing, L. (2011). Privacy-preserving SVM of horizontally partitioned data for linear classification. In Proceedings—4th international congress on image and signal processing. CISP (Vol. 5, pp. 2771–2775). Qiang, J., Yang, B., Li, Q., & Jing, L. (2011). Privacy-preserving SVM of horizontally partitioned data for linear classification. In Proceedings—4th international congress on image and signal processing. CISP (Vol. 5, pp. 2771–2775).
31.
go back to reference Wu, T., Lin, C., & Weng, R. C. (2004). Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research, 5, 975–1005.MathSciNetMATH Wu, T., Lin, C., & Weng, R. C. (2004). Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research, 5, 975–1005.MathSciNetMATH
32.
go back to reference Zhang, X. Y., & Liu, C. L. (2013). Writer adaptation with style transfer mapping. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7), 1773–1787.CrossRef Zhang, X. Y., & Liu, C. L. (2013). Writer adaptation with style transfer mapping. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7), 1773–1787.CrossRef
33.
go back to reference Mangasarian, O. L., Wild, E. W., & Fung, G. M. (2007). Privacy-preserving classification of horizontally partitioned data via random kernels. Technical report, 07-03, Data Min. Institute, Computer Science Department, University of Wisconsin-Madison. Mangasarian, O. L., Wild, E. W., & Fung, G. M. (2007). Privacy-preserving classification of horizontally partitioned data via random kernels. Technical report, 07-03, Data Min. Institute, Computer Science Department, University of Wisconsin-Madison.
34.
go back to reference Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013). A public domain dataset for human activity recognition using smartphones. In European symposium on artificial neural networks, computational intelligence and machine learning (ESANN) (pp. 24–26). Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013). A public domain dataset for human activity recognition using smartphones. In European symposium on artificial neural networks, computational intelligence and machine learning (ESANN) (pp. 24–26).
Metadata
Title
Semi-supervised and Unsupervised Privacy-Preserving Distributed Transfer Learning Approach in HAR Systems
Authors
Mina Hashemian
Farbod Razzazi
Houman Zarrabi
Mohammad Shahram Moin
Publication date
28-11-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07891-1

Other articles of this Issue 2/2021

Wireless Personal Communications 2/2021 Go to the issue