Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 2/2017

15-02-2015 | Original Article

Semi-supervised clustering for gene-expression data in multiobjective optimization framework

Authors: Abhay Kumar Alok, Sriparna Saha, Asif Ekbal

Published in: International Journal of Machine Learning and Cybernetics | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Studying the patterns hidden in gene expression data helps to understand the functionality of genes. But due to the large volume of genes and the complexity of biological networks it is difficult to study the resulting mass of data which often consists of millions of measurements. In order to reveal natural structures and to identify interesting patterns from the given gene expression data set, clustering techniques are applied. Semi-supervised classification is a new direction of machine learning. It requires huge unlabeled data and a few labeled data. Semi-supervised classification in general performs better than unsupervised classification. But to the best of our knowledge there are no works for solving gene expression data clustering problem using semi-supervised classification techniques. In the current paper we have made an attempt to solve the gene expression data clustering problem using a multiobjective optimization based semi-supervised classification technique with the aim to attain good quality partitions by using few labeled data. In order to generate the labeled data, initially Fuzzy C-means clustering technique is applied. In order to automatically determine the partitioning, multiple cluster centers corresponding to a cluster are encoded in the form of a string. In order to compute the quality of the obtained partitioning, values of five objective functions are computed. The effectiveness of this proposed semi-supervised clustering technique is demonstrated on five publicly available benchmark gene expression data sets. Comparison results with the existing techniques for gene expression data clustering prove that the proposed method is the most effective one. Statistical and biological significance tests have also been carried out.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X et al (2000) Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511CrossRef Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X et al (2000) Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511CrossRef
2.
go back to reference Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceed National Acad Sci 96(12):6745–6750CrossRef Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceed National Acad Sci 96(12):6745–6750CrossRef
3.
go back to reference Altun Y, Belkin M, Mcallester DA (2005) Maximum margin semi-supervised learning for structured variables. In: Advances in neural information processing systems, pp 33–40 Altun Y, Belkin M, Mcallester DA (2005) Maximum margin semi-supervised learning for structured variables. In: Advances in neural information processing systems, pp 33–40
4.
go back to reference Bandyopadhyay S (2007) Analysis of biological data: a soft computing approach, World Scientific Bandyopadhyay S (2007) Analysis of biological data: a soft computing approach, World Scientific
5.
go back to reference Bandyopadhyay S, Saha S (2008) A point symmetry-based clustering technique for automatic evolution of clusters. Knowl Data Eng IEEE Trans 20(11):1441–1457CrossRef Bandyopadhyay S, Saha S (2008) A point symmetry-based clustering technique for automatic evolution of clusters. Knowl Data Eng IEEE Trans 20(11):1441–1457CrossRef
6.
go back to reference Bandyopadhyay S, Pal SK, Aruna B (2004) Multiobjective gas, quantitative indices, and pattern classification. Syst Man Cybern Part B Cybern IEEE Trans 34(5):2088–2099CrossRef Bandyopadhyay S, Pal SK, Aruna B (2004) Multiobjective gas, quantitative indices, and pattern classification. Syst Man Cybern Part B Cybern IEEE Trans 34(5):2088–2099CrossRef
7.
go back to reference Bandyopadhyay S, Mukhopadhyay A, Maulik U (2007) An improved algorithm for clustering gene expression data. Bioinformatics 23(21):2859–2865CrossRef Bandyopadhyay S, Mukhopadhyay A, Maulik U (2007) An improved algorithm for clustering gene expression data. Bioinformatics 23(21):2859–2865CrossRef
8.
go back to reference Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing-based multiobjective optimization algorithm: AMOSA. Evol Comput IEEE Trans 12(3):269–283CrossRef Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing-based multiobjective optimization algorithm: AMOSA. Evol Comput IEEE Trans 12(3):269–283CrossRef
9.
go back to reference Basu S, Banerjee A, Mooney RJ (2004) Active semi-supervision for pairwise constrained clustering Basu S, Banerjee A, Mooney RJ (2004) Active semi-supervision for pairwise constrained clustering
10.
go back to reference Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers
11.
go back to reference Bilenko M, Basu S, Mooney RJ (2004) Integrating constraints and metric learning in semi-supervised clustering. In: Proceedings of the twenty-first international conference on Machine learning, ACM, pp 81–88 Bilenko M, Basu S, Mooney RJ (2004) Integrating constraints and metric learning in semi-supervised clustering. In: Proceedings of the twenty-first international conference on Machine learning, ACM, pp 81–88
12.
go back to reference Brazma A, Vilo J (2000) Gene expression data analysis. FEBS lett 480(1):17–24CrossRef Brazma A, Vilo J (2000) Gene expression data analysis. FEBS lett 480(1):17–24CrossRef
13.
go back to reference Brunet JP, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proceed Natl Acad Sci 101(12):4164–4169CrossRef Brunet JP, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proceed Natl Acad Sci 101(12):4164–4169CrossRef
14.
go back to reference Chapelle O, Zien A (2004) Semi-supervised classification by low density separation. In AI STATS Chapelle O, Zien A (2004) Semi-supervised classification by low density separation. In AI STATS
15.
go back to reference Chapelle O, Schölkopf B, Zien A, et al. (2006) Semi-supervised learning, MIT press Cambridge Chapelle O, Schölkopf B, Zien A, et al. (2006) Semi-supervised learning, MIT press Cambridge
16.
go back to reference Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ et al (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol cell 2(1):65–73CrossRef Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ et al (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol cell 2(1):65–73CrossRef
17.
go back to reference Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I (1998) The transcriptional program of sporulation in budding yeast. Science 282(5389):699–705CrossRef Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I (1998) The transcriptional program of sporulation in budding yeast. Science 282(5389):699–705CrossRef
18.
go back to reference De Smet F, Mathys J, Marchal K, Thijs G, De Moor B, Moreau Y (2002) Adaptive quality-based clustering of gene expression profiles. Bioinformatics 18(5):735–746CrossRef De Smet F, Mathys J, Marchal K, Thijs G, De Moor B, Moreau Y (2002) Adaptive quality-based clustering of gene expression profiles. Bioinformatics 18(5):735–746CrossRef
19.
go back to reference Deb K, Pratap A, Agarwal S, Meyarivan T, Fast A (2002) Nsga-ii. IEEE Trans Evol Comput 6(2):182–197 Deb K, Pratap A, Agarwal S, Meyarivan T, Fast A (2002) Nsga-ii. IEEE Trans Evol Comput 6(2):182–197
20.
21.
go back to reference Dhaeseleer P, Wen X, Fuhrman S, Somogyi R (1998) Mining the gene expression matrix: Inferring gene relationships from large scale gene expression data. In: Information processing in cells and tissues, Springer, pp 203–212 Dhaeseleer P, Wen X, Fuhrman S, Somogyi R (1998) Mining the gene expression matrix: Inferring gene relationships from large scale gene expression data. In: Information processing in cells and tissues, Springer, pp 203–212
22.
go back to reference Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proceed Natl Acad Sci 95(25):14863–14868 Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proceed Natl Acad Sci 95(25):14863–14868
23.
go back to reference Everitt B (1974/1993) Cluster analysis. Halsted Press Everitt B (1974/1993) Cluster analysis. Halsted Press
24.
go back to reference Faceli K, de Souto MC, de Araújo DS, de Carvalho AC (2009) Multi-objective clustering ensemble for gene expression data analysis. Neurocomputing 72(13):2763–2774CrossRef Faceli K, de Souto MC, de Araújo DS, de Carvalho AC (2009) Multi-objective clustering ensemble for gene expression data analysis. Neurocomputing 72(13):2763–2774CrossRef
25.
go back to reference Fraley C, Raftery AE (1998) How many clusters? which clustering method? answers via model-based cluster analysis. Comput J 41(8):578–588CrossRefMATH Fraley C, Raftery AE (1998) How many clusters? which clustering method? answers via model-based cluster analysis. Comput J 41(8):578–588CrossRefMATH
26.
go back to reference Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. Patt Anal Mach Intell IEEE Trans 6:721–741CrossRefMATH Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. Patt Anal Mach Intell IEEE Trans 6:721–741CrossRefMATH
27.
go back to reference Ghosh D, Chinnaiyan AM (2002) Mixture modelling of gene expression data from microarray experiments. Bioinformatics 18(2):275–286CrossRef Ghosh D, Chinnaiyan AM (2002) Mixture modelling of gene expression data from microarray experiments. Bioinformatics 18(2):275–286CrossRef
28.
go back to reference Herwig R, Poustka AJ, Müller C, Bull C, Lehrach H, O’Brien J (1999) Large-scale clustering of cdna-fingerprinting data. Genome Res 9(11):1093–1105CrossRef Herwig R, Poustka AJ, Müller C, Bull C, Lehrach H, O’Brien J (1999) Large-scale clustering of cdna-fingerprinting data. Genome Res 9(11):1093–1105CrossRef
29.
go back to reference Heyer LJ, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9(11):1106–1115CrossRef Heyer LJ, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9(11):1106–1115CrossRef
30.
go back to reference Hu Q, Pan W, An S, Ma P, Wei J (2010) An efficient gene selection technique for cancer recognition based on neighborhood mutual information. Int J Mach Learn Cybern 1(1–4):63–74CrossRef Hu Q, Pan W, An S, Ma P, Wei J (2010) An efficient gene selection technique for cancer recognition based on neighborhood mutual information. Int J Mach Learn Cybern 1(1–4):63–74CrossRef
31.
go back to reference Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling. Syst Man Cybern Part C Appl Rev IEEE Trans 28(3):392–403CrossRef Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling. Syst Man Cybern Part C Appl Rev IEEE Trans 28(3):392–403CrossRef
32.
go back to reference Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC, Trent JM, Staudt LM, Hudson J, Boguski MS et al (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283(5398):83–87CrossRef Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC, Trent JM, Staudt LM, Hudson J, Boguski MS et al (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283(5398):83–87CrossRef
33.
go back to reference Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323CrossRef Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323CrossRef
34.
go back to reference Jiang D, Pei J, Zhang A (2003) Dhc: a density-based hierarchical clustering method for time series gene expression data. In: Proceedings of Bioinformatics and Bioengineering. Third IEEE Symposium, pp 393–400 Jiang D, Pei J, Zhang A (2003) Dhc: a density-based hierarchical clustering method for time series gene expression data. In: Proceedings of Bioinformatics and Bioengineering. Third IEEE Symposium, pp 393–400
35.
go back to reference Jiang D, Tang C, Zhang A (2004) Cluster analysis for gene expression data: a survey. Knowl Data Eng IEEE Trans 16(11):1370–1386CrossRef Jiang D, Tang C, Zhang A (2004) Cluster analysis for gene expression data: a survey. Knowl Data Eng IEEE Trans 16(11):1370–1386CrossRef
37.
go back to reference Liu L, Hawkins DM, Ghosh S, Young SS (2003) Robust singular value decomposition analysis of microarray data. Proceed Natl Acad Sci 100(23):13,167–13,172 Liu L, Hawkins DM, Ghosh S, Young SS (2003) Robust singular value decomposition analysis of microarray data. Proceed Natl Acad Sci 100(23):13,167–13,172
38.
go back to reference Lockhart D, Dong H, Byrne M, Follettie M, Gallo M, Chee M, Mittmann M, Wang C, Kobayashi M, Horton H et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotech 14(13):1675–1680CrossRef Lockhart D, Dong H, Byrne M, Follettie M, Gallo M, Chee M, Mittmann M, Wang C, Kobayashi M, Horton H et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotech 14(13):1675–1680CrossRef
39.
go back to reference Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and dna arrays. Nature 405(6788):827–836 Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and dna arrays. Nature 405(6788):827–836
40.
go back to reference Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indices. Patt Anal Mach Intell IEEE Trans 24(12):1650–1654CrossRef Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indices. Patt Anal Mach Intell IEEE Trans 24(12):1650–1654CrossRef
41.
go back to reference Maulik U, Bandyopadhyay S (2003) Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. Geosci Remote Sens IEEE Trans 41(5):1075–1081CrossRef Maulik U, Bandyopadhyay S (2003) Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. Geosci Remote Sens IEEE Trans 41(5):1075–1081CrossRef
42.
go back to reference Maulik U, Mukhopadhyay A, Bandyopadhyay S (2009) Combining pareto-optimal clusters using supervised learning for identifying co-expressed genes. BMC Bioinform 10(1):27CrossRef Maulik U, Mukhopadhyay A, Bandyopadhyay S (2009) Combining pareto-optimal clusters using supervised learning for identifying co-expressed genes. BMC Bioinform 10(1):27CrossRef
43.
go back to reference Mukhopadhyay A, Bandyopadhyay S, Maulik U (2010) Multi-class clustering of cancer subtypes through svm based ensemble of pareto-optimal solutions for gene marker identification. PloS one 5(11):e13803 Mukhopadhyay A, Bandyopadhyay S, Maulik U (2010) Multi-class clustering of cancer subtypes through svm based ensemble of pareto-optimal solutions for gene marker identification. PloS one 5(11):e13803
44.
go back to reference Mukhopadhyay A, Maulik U, Bandyopadhyay S (2013) An interactive approach to multiobjective clustering of gene expression patterns. Biomed Eng IEEE Trans 60(1):35–41CrossRef Mukhopadhyay A, Maulik U, Bandyopadhyay S (2013) An interactive approach to multiobjective clustering of gene expression patterns. Biomed Eng IEEE Trans 60(1):35–41CrossRef
45.
go back to reference Qin ZS (2006) Clustering microarray gene expression data using weighted chinese restaurant process. Bioinformatics 22(16):1988–1997CrossRef Qin ZS (2006) Clustering microarray gene expression data using weighted chinese restaurant process. Bioinformatics 22(16):1988–1997CrossRef
46.
go back to reference Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in arabidopsis. Plant Cell Online 12(5):707–719CrossRef Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in arabidopsis. Plant Cell Online 12(5):707–719CrossRef
47.
go back to reference Rose K (1998) Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. In: Proceedings of the IEEE 86(11):2210–2239 Rose K (1998) Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. In: Proceedings of the IEEE 86(11):2210–2239
48.
go back to reference Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65CrossRefMATH Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65CrossRefMATH
49.
go back to reference Saha S, Bandyopadhyay S (2013) A generalized automatic clustering algorithm in a multiobjective framework. Appl Soft Comput 13(1):89–108CrossRef Saha S, Bandyopadhyay S (2013) A generalized automatic clustering algorithm in a multiobjective framework. Appl Soft Comput 13(1):89–108CrossRef
50.
go back to reference Saha S, Ekbal A, Alok AK (2012) Semi-supervised clustering using multiobjective optimization. In: Hybrid Intelligent Systems (HIS), 12th International Conference, IEEE, pp 360–365 Saha S, Ekbal A, Alok AK (2012) Semi-supervised clustering using multiobjective optimization. In: Hybrid Intelligent Systems (HIS), 12th International Conference, IEEE, pp 360–365
51.
go back to reference Saha S, Ekbal A, Gupta K, Bandyopadhyay S (2013) Gene expression data clustering using a multiobjective symmetry based clustering technique. Comput Biol Med 43(11):1965–1977CrossRef Saha S, Ekbal A, Gupta K, Bandyopadhyay S (2013) Gene expression data clustering using a multiobjective symmetry based clustering technique. Comput Biol Med 43(11):1965–1977CrossRef
52.
go back to reference Santos JM, Embrechts M (2009) On the use of the adjusted rand index as a metric for evaluating supervised classification. In: Artificial Neural Networks-ICANN, Springer, pp 175–184 Santos JM, Embrechts M (2009) On the use of the adjusted rand index as a metric for evaluating supervised classification. In: Artificial Neural Networks-ICANN, Springer, pp 175–184
53.
go back to reference Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary dna microarray. Science 270(5235):467–470CrossRef Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary dna microarray. Science 270(5235):467–470CrossRef
54.
go back to reference Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. Tech Rep DTIC Doc Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. Tech Rep DTIC Doc
55.
go back to reference Sharan R, Shamir R (2000) Click: a clustering algorithm with applications to gene expression analysis. Proceed Int Conf Intell Syst Mol Biol 8:16 Sharan R, Shamir R (2000) Click: a clustering algorithm with applications to gene expression analysis. Proceed Int Conf Intell Syst Mol Biol 8:16
56.
go back to reference Sharma A, Imoto S, Miyano S, Sharma V (2012) Null space based feature selection method for gene expression data. Int J Mach Learn Cybern 3(4):269–276CrossRef Sharma A, Imoto S, Miyano S, Sharma V (2012) Null space based feature selection method for gene expression data. Int J Mach Learn Cybern 3(4):269–276CrossRef
57.
go back to reference Sherlock G (2000) Analysis of large-scale gene expression data. Curr Opin Immunol 12(2):201–205CrossRef Sherlock G (2000) Analysis of large-scale gene expression data. Curr Opin Immunol 12(2):201–205CrossRef
58.
go back to reference de Souto MC, Costa IG, de Araujo DS, Ludermir TB, Schliep A (2008) Clustering cancer gene expression data: a comparative study. BMC Bioinform 9(1):497CrossRef de Souto MC, Costa IG, de Araujo DS, Ludermir TB, Schliep A (2008) Clustering cancer gene expression data: a comparative study. BMC Bioinform 9(1):497CrossRef
59.
go back to reference Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proceed Natl Acad Sci 96(6):2907–2912CrossRef Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proceed Natl Acad Sci 96(6):2907–2912CrossRef
60.
go back to reference Tang VT, Yan H (2012) Noise reduction in microarray gene expression data based on spectral analysis. Int J Mach Learn Cybern 3(1):51–57CrossRef Tang VT, Yan H (2012) Noise reduction in microarray gene expression data based on spectral analysis. Int J Mach Learn Cybern 3(1):51–57CrossRef
61.
go back to reference Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination of genetic network architecture. Nature Genet 22(3):281–285CrossRef Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination of genetic network architecture. Nature Genet 22(3):281–285CrossRef
62.
go back to reference Tou JT GR (1974) Pattern recognition principles. Reading: Addison-Wesley Tou JT GR (1974) Pattern recognition principles. Reading: Addison-Wesley
63.
go back to reference Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB (2001) Missing value estimation methods for dna microarrays. Bioinformatics 17(6):520–525CrossRef Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB (2001) Missing value estimation methods for dna microarrays. Bioinformatics 17(6):520–525CrossRef
64.
go back to reference Wen X, Fuhrman S, Michaels GS, Carr DB, Smith S, Barker JL, Somogyi R (1998) Large-scale temporal gene expression mapping of central nervous system development. Proceed Natl Acad Sci 95(1):334–339CrossRef Wen X, Fuhrman S, Michaels GS, Carr DB, Smith S, Barker JL, Somogyi R (1998) Large-scale temporal gene expression mapping of central nervous system development. Proceed Natl Acad Sci 95(1):334–339CrossRef
65.
go back to reference Wilcoxon F, Katti S, Wilcox RA (1963) Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. American Cyanamid Comp Wilcoxon F, Katti S, Wilcox RA (1963) Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. American Cyanamid Comp
66.
go back to reference Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Patt Anal Mach Intell 13(8):841–847CrossRef Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Patt Anal Mach Intell 13(8):841–847CrossRef
67.
go back to reference Xu X (2013) Enhancing gene expression clustering analysis using tangent transformation. Int J Mach Learn Cybern 4(1):31–40CrossRef Xu X (2013) Enhancing gene expression clustering analysis using tangent transformation. Int J Mach Learn Cybern 4(1):31–40CrossRef
68.
go back to reference Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10):977–987CrossRef Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10):977–987CrossRef
69.
go back to reference Zitzler E, Laumanns M, Thiele L (2001) Spea 2: Improving the strength pareto evolutionary algorithm Zitzler E, Laumanns M, Thiele L (2001) Spea 2: Improving the strength pareto evolutionary algorithm
Metadata
Title
Semi-supervised clustering for gene-expression data in multiobjective optimization framework
Authors
Abhay Kumar Alok
Sriparna Saha
Asif Ekbal
Publication date
15-02-2015
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 2/2017
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-015-0335-8

Other articles of this Issue 2/2017

International Journal of Machine Learning and Cybernetics 2/2017 Go to the issue