Skip to main content
Top

2009 | OriginalPaper | Chapter

4. Semiconductor Lasers

Author : Mohammad Azadeh

Published in: Fiber Optics Engineering

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter we discuss the basic principles of operation of semiconductor lasers. These devices are by far the most common optical source in fiber optic communication. Properties such as high-speed modulation capability, high efficiency, wavelengths in the infrared communication band, small size, and high reliability make these devices an indispensable part of fiber optic links. This chapter starts with the theory of light amplifiers and oscillators. Next we discuss optical amplification in semiconductors, which is the basis of semiconductor lasers. We will also introduce the rate equations, which are an essential tool in understanding the behavior of semiconductor lasers. Next we will study various properties of these lasers, both in frequency and in time domains. Finally, we will review some of the practical semiconductor devices in use.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
This assumption is valid as long as the power is low enough for amplifier not to saturate.
 
2
Normally, we express power quantities by P. However, because in rate equations P is usually reserved for photon density, here we use L for output power. This choice is also consistent with the standard notation of denoting the current–light characteristic of the laser as LI curve.
 
Literature
[1]
go back to reference S. Boutami et al., “Vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Optics Express, Vol. 15, pp.12443–12449, 2007CrossRef S. Boutami et al., “Vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Optics Express, Vol. 15, pp.12443–12449, 2007CrossRef
[2]
go back to reference T. Steinmetz et al., “Stable fiber-based Fabry-Perot cavity” Applied Physics Letters, Vol. 89, Article Number 111110, 2006 T. Steinmetz et al., “Stable fiber-based Fabry-Perot cavity” Applied Physics Letters, Vol. 89, Article Number 111110, 2006
[3]
go back to reference Y. D. Jeong et al., “Tunable single-mode Fabry-Perot laser diode using a built-in external cavity and its modulation characteristics,” Optics Letters, Vol. 31, pp. 2586–2588, 2006CrossRefMathSciNet Y. D. Jeong et al., “Tunable single-mode Fabry-Perot laser diode using a built-in external cavity and its modulation characteristics,” Optics Letters, Vol. 31, pp. 2586–2588, 2006CrossRefMathSciNet
[4]
go back to reference B. G. Streetman, Solid State Electronic Devices , Prentice-Hall, Englewood Cliffs, NJ, 1990 B. G. Streetman, Solid State Electronic Devices , Prentice-Hall, Englewood Cliffs, NJ, 1990
[5]
go back to reference W. E. Lamb, “Theory of optical maser”, Physical Review A, Vol. 134, pp. 1429–1450, 1964CrossRef W. E. Lamb, “Theory of optical maser”, Physical Review A, Vol. 134, pp. 1429–1450, 1964CrossRef
[6]
go back to reference M. Scully and W. E. Lamb, “Quantum theory of an optical maser,” Physical Review Letters, Vol. 16, pp. 853–855, 1966CrossRef M. Scully and W. E. Lamb, “Quantum theory of an optical maser,” Physical Review Letters, Vol. 16, pp. 853–855, 1966CrossRef
[7]
go back to reference M. Scully and W. E. Lamb, “Quantum theory of an optical maser, 1. General theory,” Physical Review, Vol. 159, pp. 208–226, 1967CrossRef M. Scully and W. E. Lamb, “Quantum theory of an optical maser, 1. General theory,” Physical Review, Vol. 159, pp. 208–226, 1967CrossRef
[8]
go back to reference M. Scully and W. E. Lamb, “Quantum theory of an optical maser, 2. Spectral profile,” Physical Review, Vol. 166, pp. 246–249, 1968CrossRef M. Scully and W. E. Lamb, “Quantum theory of an optical maser, 2. Spectral profile,” Physical Review, Vol. 166, pp. 246–249, 1968CrossRef
[9]
go back to reference M. Johnsson et al., “Semiclassical limits to the linewidth of an atom laser,” Physical Review A, Vol. 75, Article Number 043618, 2007 M. Johnsson et al., “Semiclassical limits to the linewidth of an atom laser,” Physical Review A, Vol. 75, Article Number 043618, 2007
[10]
go back to reference A. Yariv, “Dynamic analysis of the semiconductor laser as a current-controlled oscillator in the optical phased-lock loop: applications,” Optics Letters, Vol. 30, pp. 2191–2193, 2005CrossRef A. Yariv, “Dynamic analysis of the semiconductor laser as a current-controlled oscillator in the optical phased-lock loop: applications,” Optics Letters, Vol. 30, pp. 2191–2193, 2005CrossRef
[11]
go back to reference S. Stenholm and W. E. Lamb, “Theory of a high intensity laser,” Physical Review, Vol. 181, pp. 618–635, 1969CrossRef S. Stenholm and W. E. Lamb, “Theory of a high intensity laser,” Physical Review, Vol. 181, pp. 618–635, 1969CrossRef
[12]
go back to reference M. Azadeh and L. W. Casperson, “Field solutions for bidirectional high-gain laser amplifiers and oscillators,” Journal of Applied Physics, Vol. 83, pp. 2399–2407, 1998CrossRef M. Azadeh and L. W. Casperson, “Field solutions for bidirectional high-gain laser amplifiers and oscillators,” Journal of Applied Physics, Vol. 83, pp. 2399–2407, 1998CrossRef
[13]
go back to reference P. Szczepanski, ”Semiclassical theory of multimode operation of a distributed feedback laser,” IEEE Journal of Quantum Electronics, Vol. 24, pp. 1248–1257, 1988CrossRef P. Szczepanski, ”Semiclassical theory of multimode operation of a distributed feedback laser,” IEEE Journal of Quantum Electronics, Vol. 24, pp. 1248–1257, 1988CrossRef
[14]
go back to reference L. W. Casperson, “Laser power calculations, sources of error,” Applied Optics, Vol. 19, pp. 422–434, 1980CrossRef L. W. Casperson, “Laser power calculations, sources of error,” Applied Optics, Vol. 19, pp. 422–434, 1980CrossRef
[15]
go back to reference S. Foster and A. Tikhomirov, “Experimental and theoretical characterization of the mode profile of single-mode DFB fiber lasers,” IEEE Journal of Quantum Electronics, Vol. 41, pp. 762–766, 2005CrossRef S. Foster and A. Tikhomirov, “Experimental and theoretical characterization of the mode profile of single-mode DFB fiber lasers,” IEEE Journal of Quantum Electronics, Vol. 41, pp. 762–766, 2005CrossRef
[16]
go back to reference C. Etrich, P. Mandel, N. B. Abraham, and H. Zeghlache, “Dynamics of a two-mode semiconductor laser,” IEEE Journal of Quantum Electronics, Vol. 28, pp. 811–821, 1992CrossRef C. Etrich, P. Mandel, N. B. Abraham, and H. Zeghlache, “Dynamics of a two-mode semiconductor laser,” IEEE Journal of Quantum Electronics, Vol. 28, pp. 811–821, 1992CrossRef
[17]
go back to reference L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits , John Wiley & Sons, New York, 1995 L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits , John Wiley & Sons, New York, 1995
[18]
go back to reference F. Habibullah and W. P. Huang, “A self-consistent analysis of semiconductor laser rate equations for system simulation purpose,” Optics Communications, Vol. 258, pp. 230–242, 2006CrossRef F. Habibullah and W. P. Huang, “A self-consistent analysis of semiconductor laser rate equations for system simulation purpose,” Optics Communications, Vol. 258, pp. 230–242, 2006CrossRef
[19]
go back to reference J. T. Verdeyen, Laser Electronics , 3rd Ed., Prentice Hall, Englewood Cliffs, NJ, 1995 J. T. Verdeyen, Laser Electronics , 3rd Ed., Prentice Hall, Englewood Cliffs, NJ, 1995
[20]
go back to reference P. V. Mena et al., “A comprehensive circuit-level model of vertical-cavity surface-emitting lasers,” Journal of Lightwave Technology, Vol. 17, pp. 2612–2632, 1999CrossRef P. V. Mena et al., “A comprehensive circuit-level model of vertical-cavity surface-emitting lasers,” Journal of Lightwave Technology, Vol. 17, pp. 2612–2632, 1999CrossRef
[21]
go back to reference N. Bewtra, et al., “Modeling of quantum-well lasers with electro-opto-thermal interaction,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 1, pp. 331–340, 1995CrossRef N. Bewtra, et al., “Modeling of quantum-well lasers with electro-opto-thermal interaction,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 1, pp. 331–340, 1995CrossRef
[22]
go back to reference A. Haug, “Theory of the temperature dependence of the threshold current of an InGaAsP laser,” IEEE Journal of Quantum Electronics, Vol. 21, pp. 716–718, 1985CrossRef A. Haug, “Theory of the temperature dependence of the threshold current of an InGaAsP laser,” IEEE Journal of Quantum Electronics, Vol. 21, pp. 716–718, 1985CrossRef
[23]
go back to reference A. Haug, “On the temperature dependence of InGaAsP semiconductor lasers,” Physica Status Solidi (B) Basic Solid State Physics, Vol. 194, pp. 195–198, 1996CrossRef A. Haug, “On the temperature dependence of InGaAsP semiconductor lasers,” Physica Status Solidi (B) Basic Solid State Physics, Vol. 194, pp. 195–198, 1996CrossRef
[24]
go back to reference M. Montes et al., “Analysis of the characteristic temperatures of (Ga,In)(N,As)/GaAs laser diodes,” Journal of Applied Physics D-Applied Physics, Vol. 41, Article Number 155102, 2008 M. Montes et al., “Analysis of the characteristic temperatures of (Ga,In)(N,As)/GaAs laser diodes,” Journal of Applied Physics D-Applied Physics, Vol. 41, Article Number 155102, 2008
[25]
go back to reference K. Lau and A. Yariv, “Ultra-high speed semiconductor lasers,” IEEE Journal of Quantum Electronics, Vol. 21, pp. 121–138, 1985CrossRef K. Lau and A. Yariv, “Ultra-high speed semiconductor lasers,” IEEE Journal of Quantum Electronics, Vol. 21, pp. 121–138, 1985CrossRef
[26]
go back to reference C. Y. Tsai et al., “A small-signal analysis of the modulation response of high-speed quantum-well lasers: effects of spectral hole burning, carrier heating, and carrier diffusion-capture-escape,” IEEE Journal of Quantum Electronics, Vol. 33, pp. 2084–2096, 1997CrossRef C. Y. Tsai et al., “A small-signal analysis of the modulation response of high-speed quantum-well lasers: effects of spectral hole burning, carrier heating, and carrier diffusion-capture-escape,” IEEE Journal of Quantum Electronics, Vol. 33, pp. 2084–2096, 1997CrossRef
[27]
go back to reference N. Dokhane and G. L. Lippi, “Improved direct modulation technique for faster switching of diode lasers,” IEE Proceedings Optoelectronics, Vol. 149, pp. 7–16, 2002CrossRef N. Dokhane and G. L. Lippi, “Improved direct modulation technique for faster switching of diode lasers,” IEE Proceedings Optoelectronics, Vol. 149, pp. 7–16, 2002CrossRef
[28]
go back to reference S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE Journal of Quantum Electronics,” Vol. 18, pp. 582–595, 1982CrossRef S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE Journal of Quantum Electronics,” Vol. 18, pp. 582–595, 1982CrossRef
[29]
go back to reference S. Odermatt and B. Witzigmann, “A microscopic model for the static and dynamic lineshape of semiconductor lasers,” IEEE Journal of Quantum Electronics, Vol. 42, pp. 538–551, 2006CrossRef S. Odermatt and B. Witzigmann, “A microscopic model for the static and dynamic lineshape of semiconductor lasers,” IEEE Journal of Quantum Electronics, Vol. 42, pp. 538–551, 2006CrossRef
[30]
go back to reference G. Agrawal, “Power spectrum of directly modulated single-mode semiconductor lasers: Chirp-induced fine structure,” IEEE Journal of Quantum Electronics, Vol. 21, pp. 680–686, 1985CrossRef G. Agrawal, “Power spectrum of directly modulated single-mode semiconductor lasers: Chirp-induced fine structure,” IEEE Journal of Quantum Electronics, Vol. 21, pp. 680–686, 1985CrossRef
[31]
go back to reference N. K. Dutta et al., “Frequency chirp under current modulation in InGaAsP injection lasers,” Journal of Applied Physics, Vol. 56, pp. 2167–2169, 1984CrossRef N. K. Dutta et al., “Frequency chirp under current modulation in InGaAsP injection lasers,” Journal of Applied Physics, Vol. 56, pp. 2167–2169, 1984CrossRef
[32]
go back to reference P. J. Corvini and T. L. Koch, “Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers,” Journal of Lightwave Technology, Vol. 5, pp. 1591–1595, 1987CrossRef P. J. Corvini and T. L. Koch, “Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers,” Journal of Lightwave Technology, Vol. 5, pp. 1591–1595, 1987CrossRef
[33]
go back to reference T. L. Koch and R. A. Linke, “RA effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Applied Physics Letters, Vol. 48, pp. 613–615, 1986CrossRef T. L. Koch and R. A. Linke, “RA effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Applied Physics Letters, Vol. 48, pp. 613–615, 1986CrossRef
[34]
go back to reference Y. Yoshida et al., “Analysis of characteristic temperature for InGaAsP BH lasers with p-n-p-n blocking layers using two-dimensional device simulator,” IEEE Journal of Quantum Electronics, Vol. 34, pp. 1257–1262, 1998CrossRef Y. Yoshida et al., “Analysis of characteristic temperature for InGaAsP BH lasers with p-n-p-n blocking layers using two-dimensional device simulator,” IEEE Journal of Quantum Electronics, Vol. 34, pp. 1257–1262, 1998CrossRef
[35]
go back to reference J. Jin, J. Shi, and D. Tian, “Study on high-temperature performances of 1.3-μm InGaAsP-InP strained multiquantum-well buried-heterostructure lasers,” IEEE Photonics Technology Letters, Vol. 17, pp. 276–278, 2005CrossRef J. Jin, J. Shi, and D. Tian, “Study on high-temperature performances of 1.3-μm InGaAsP-InP strained multiquantum-well buried-heterostructure lasers,” IEEE Photonics Technology Letters, Vol. 17, pp. 276–278, 2005CrossRef
[36]
go back to reference Y. Sakata et al., “All-selectively MOVPE 1.3-μm strained multi-quantum-well buried-heterostructure laser diodes,” IEEE Journal of Quantum Electronics, Vol. 35, pp. 368–376, 1999CrossRef Y. Sakata et al., “All-selectively MOVPE 1.3-μm strained multi-quantum-well buried-heterostructure laser diodes,” IEEE Journal of Quantum Electronics, Vol. 35, pp. 368–376, 1999CrossRef
[37]
go back to reference H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters , John Wiley and Sons, New York, 2003 H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters , John Wiley and Sons, New York, 2003
[38]
go back to reference E. Garmine, “Sources, modulators, and detectors for fiber optic communication systems” in Fiber Optics Handbook , edited by Michael Bass, McGraw-Hill, New York, 2002 E. Garmine, “Sources, modulators, and detectors for fiber optic communication systems” in Fiber Optics Handbook , edited by Michael Bass, McGraw-Hill, New York, 2002
[39]
go back to reference F. Koyama, “Recent advances of VCSEL photonics,” Journal of Lightwave Technology, Vol. 24, pp. 4502–4513, 2006CrossRef F. Koyama, “Recent advances of VCSEL photonics,” Journal of Lightwave Technology, Vol. 24, pp. 4502–4513, 2006CrossRef
[40]
go back to reference K. Iga, “Surface-emitting laser-Its birth and generation of new optoelectronics field,” IEEE Journal of Selected Topics in Quantum Electron, Vol. 6, pp. 1201–1215, 2000CrossRef K. Iga, “Surface-emitting laser-Its birth and generation of new optoelectronics field,” IEEE Journal of Selected Topics in Quantum Electron, Vol. 6, pp. 1201–1215, 2000CrossRef
Metadata
Title
Semiconductor Lasers
Author
Mohammad Azadeh
Copyright Year
2009
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0304-4_4