Skip to main content
Top

2018 | OriginalPaper | Chapter

10. Semiotic Structures and Meaningful Information in Biological Systems

Authors : Stephan Diekmann, Peter Dittrich, Bashar Ibrahim

Published in: Information- and Communication Theory in Molecular Biology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The project aims at the semantic aspect of biological information. We will develop novel methods to objectively identify and describe semiotic subsystems of living cells. The basic idea relies on the identification of organic codes (as recently reviewed by Barbieri, Naturwissenschaften 95, 577–599, 2008) and on how these codes are physically instantiated. First, we develop formal concepts and measures that allow to describe and quantify organic codes based on experimental observations. Second, for validation, we will apply this method to already known biological codes (e.g., the genetic code) and to an in-silico artificial chemistry, in which chemical information processing can appear spontaneously and can evolve. Third, we will apply these methods to concrete biological signaling systems, in which the codes are more difficult to identify. In particular we investigate (a) microbial communication systems (chemotactic signaling in social amoeba, quorum sensing) and (b) kinetochore proteins and their involvement in the control of mitosis (especially the spindle assembly checkpoint). As benefit this project will deliver a novel way to describe and understand biological systems from a semantic perspective. We will be able to compare and classify biological information processing at the molecular level. The semantic description may also enable us to explain the evolution of bacterial languages and to design novel cellular circuits in the context of synthetic biology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abendroth C et al (2015) The CENP-T C-Terminus is exclusively proximal to H3. 1 and not to H3. 2 or H3. 3. Int J Mol Sci 16(3):5839–5863 Abendroth C et al (2015) The CENP-T C-Terminus is exclusively proximal to H3. 1 and not to H3. 2 or H3. 3. Int J Mol Sci 16(3):5839–5863
go back to reference Bui M et al (2012) Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo. Cell 150(2):317–326CrossRef Bui M et al (2012) Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo. Cell 150(2):317–326CrossRef
go back to reference Caydasi AK et al (2012) A dynamical model of the spindle position checkpoint. Mol Syst Biol 8(2012):582 Caydasi AK et al (2012) A dynamical model of the spindle position checkpoint. Mol Syst Biol 8(2012):582
go back to reference Dambacher S et al (2012) CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus 3(1):101–110CrossRef Dambacher S et al (2012) CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus 3(1):101–110CrossRef
go back to reference Dornblut C et al (2014) A CENP-S/X complex assembles at the centromere in S and G2 phases of the human cell cycle. Open Biol 4(2):130229CrossRef Dornblut C et al (2014) A CENP-S/X complex assembles at the centromere in S and G2 phases of the human cell cycle. Open Biol 4(2):130229CrossRef
go back to reference Eskat A et al (2012) Step-wise assembly, maturation and dynamic behavior of the human CENP-P/O/R/Q/U kinetochore sub-complex. PLoS One 7(9):e44717CrossRef Eskat A et al (2012) Step-wise assembly, maturation and dynamic behavior of the human CENP-P/O/R/Q/U kinetochore sub-complex. PLoS One 7(9):e44717CrossRef
go back to reference Görlich D, Dittrich P (2013) Molecular codes in biological and chemical reaction networks. PLoS One 8(1): e54694 Görlich D, Dittrich P (2013) Molecular codes in biological and chemical reaction networks. PLoS One 8(1): e54694
go back to reference Görlich D et al (2014) Molecular codes in the human inner-kinetochore model: relating CENPs to function. Biosemiotics 7(2):223–247CrossRef Görlich D et al (2014) Molecular codes in the human inner-kinetochore model: relating CENPs to function. Biosemiotics 7(2):223–247CrossRef
go back to reference Hellwig D et al (2011) Dynamics of CENP-N kinetochore binding during the cell cycle. J Cell Sci 124(22):3871–3883CrossRef Hellwig D et al (2011) Dynamics of CENP-N kinetochore binding during the cell cycle. J Cell Sci 124(22):3871–3883CrossRef
go back to reference Henze R et al (2015) Structural analysis of in silico mutant experiments of human inner-kinetochore structure. Biosyst 127:47–59CrossRef Henze R et al (2015) Structural analysis of in silico mutant experiments of human inner-kinetochore structure. Biosyst 127:47–59CrossRef
go back to reference Ibrahim B et al (2013) Rule-based modeling in space for linking heterogeneous interaction data to large-scale dynamical molecular complexes. Cells 2(3):506–544CrossRef Ibrahim B et al (2013) Rule-based modeling in space for linking heterogeneous interaction data to large-scale dynamical molecular complexes. Cells 2(3):506–544CrossRef
go back to reference Kreyssig P et al (2012) Cycles and the qualitative evolution of chemical systems. PLoS One 7(10):e45772CrossRef Kreyssig P et al (2012) Cycles and the qualitative evolution of chemical systems. PLoS One 7(10):e45772CrossRef
go back to reference Kreyssig P et al (2014) Effects of small particle numbers on long-term behaviour in discrete biochemical systems. Bioinformatics 30(17):i475–i481CrossRef Kreyssig P et al (2014) Effects of small particle numbers on long-term behaviour in discrete biochemical systems. Bioinformatics 30(17):i475–i481CrossRef
go back to reference Prendergast L et al (2011) Premitotic assembly of human CENPs-T and -W switches centromeric chromatin to a mitotic state. PLoS Biol 9(6):e1001082 Prendergast L et al (2011) Premitotic assembly of human CENPs-T and -W switches centromeric chromatin to a mitotic state. PLoS Biol 9(6):e1001082
go back to reference Tschernyschkow S et al (2013) Rule-based modeling and simulations of the inner kinetochore structure. Prog Biophys Mol Biol 113(1):33–45 Tschernyschkow S et al (2013) Rule-based modeling and simulations of the inner kinetochore structure. Prog Biophys Mol Biol 113(1):33–45
Metadata
Title
Semiotic Structures and Meaningful Information in Biological Systems
Authors
Stephan Diekmann
Peter Dittrich
Bashar Ibrahim
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-54729-9_10