Skip to main content
Top
Published in: Journal of Nanoparticle Research 10/2015

01-10-2015 | Research Paper

Shape-control by microwave-assisted hydrothermal method for the synthesis of magnetite nanoparticles using organic additives

Authors: Antonino Rizzuti, Michele Dassisti, Piero Mastrorilli, Maria C. Sportelli, Nicola Cioffi, Rosaria A. Picca, Elisabetta Agostinelli, Gaspare Varvaro, Rocco Caliandro

Published in: Journal of Nanoparticle Research | Issue 10/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A simple and fast microwave-assisted hydrothermal method is proposed for the synthesis of magnetite nanoparticles. The addition of different surfactants (polyvinylpyrrolidone, oleic acid, or trisodium citrate) was studied to investigate the effect on size distribution, morphology, and functionalization of the magnetite nanoparticles. Microwave irradiation at 150 °C for 2 h of aqueous ferrous chloride and hydrazine without additives resulted in hexagonal magnetite nanoplatelets with a facet-to-facet distance of 116 nm and a thickness of 40 nm having a saturation magnetization of ~65 Am2 kg−1. The use of polyvinylpyrrolidone led to hexagonal nanoparticles with a facet-to-facet distance of 120 nm and a thickness of 53 nm with a saturation magnetization of ~54 Am2 kg−1. Additives such as oleic acid and trisodium citrate yielded quasi-spherical nanoparticles of 25 nm in size with a saturation magnetization of ~70 Am2 kg−1 and spheroidal nanoparticles of 60 nm in size with a saturation magnetization up to ~82 Am2 kg−1, respectively. A kinetic control of the crystal growth is believed to be responsible for the hexagonal habit of the nanoparticles obtained without additive. Conversely, a thermodynamic control of the crystal growth, leading to spheroidal nanoparticles, seems to occur when additives which strongly interact with the nanoparticle surface are used. A thorough characterization of the materials was performed. Magnetic properties were investigated by Superconducting Quantum Interference Device and Vibrating Sample magnetometers. Based on the observed magnetic properties, the magnetite obtained using citrate appears to be a promising support for magnetically transportable catalysts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abu-Reziq R, Alper H, Wang D, Post ML (2006) Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts. J Am Chem Soc 128:5279–5282. doi:10.1021/ja060140u CrossRef Abu-Reziq R, Alper H, Wang D, Post ML (2006) Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts. J Am Chem Soc 128:5279–5282. doi:10.​1021/​ja060140u CrossRef
go back to reference Arruebo M, Galán M, Navascués N et al (2006) Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications. Chem Mater 18:1911–1919. doi:10.1021/cm051646z CrossRef Arruebo M, Galán M, Navascués N et al (2006) Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications. Chem Mater 18:1911–1919. doi:10.​1021/​cm051646z CrossRef
go back to reference Cao S-W, Zhu Y-J, Ma M-Y et al (2008) Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and γ-Fe2O3: preparation and potential application in drug delivery. J Phys Chem C 112:1851–1856. doi:10.1021/jp077468+ CrossRef Cao S-W, Zhu Y-J, Ma M-Y et al (2008) Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and γ-Fe2O3: preparation and potential application in drug delivery. J Phys Chem C 112:1851–1856. doi:10.​1021/​jp077468+ CrossRef
go back to reference Daou TJ, Grenèche JM, Pourroy G et al (2008) Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles. Chem Mater 20:5869–5875. doi:10.1021/cm801405n CrossRef Daou TJ, Grenèche JM, Pourroy G et al (2008) Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles. Chem Mater 20:5869–5875. doi:10.​1021/​cm801405n CrossRef
go back to reference De Vidales JLM, López-Delgado A, Vila E, López FA (1999) The effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature. J Alloys Compd 287:276–283. doi:10.1016/S0925-8388(99)00069-9 CrossRef De Vidales JLM, López-Delgado A, Vila E, López FA (1999) The effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature. J Alloys Compd 287:276–283. doi:10.​1016/​S0925-8388(99)00069-9 CrossRef
go back to reference Gawande MB, Bonifácio VDB, Varma RS et al (2013) Magnetically recyclable magnetite–ceria (Nanocat-Fe-Ce) nanocatalyst—applications in multicomponent reactions under benign conditions. Green Chem 15:1226–1231. doi:10.1039/C3GC40375K CrossRef Gawande MB, Bonifácio VDB, Varma RS et al (2013) Magnetically recyclable magnetite–ceria (Nanocat-Fe-Ce) nanocatalyst—applications in multicomponent reactions under benign conditions. Green Chem 15:1226–1231. doi:10.​1039/​C3GC40375K CrossRef
go back to reference Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348. doi:10.1021/ar400309b CrossRef Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348. doi:10.​1021/​ar400309b CrossRef
go back to reference Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574. doi:10.1002/sia.1984 CrossRef Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574. doi:10.​1002/​sia.​1984 CrossRef
go back to reference Hu L, Percheron A, Chaumont D, Brachais C-H (2011) Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite. J Sol–Gel Sci Technol 60:198–205. doi:10.1007/s10971-011-2579-4 CrossRef Hu L, Percheron A, Chaumont D, Brachais C-H (2011) Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite. J Sol–Gel Sci Technol 60:198–205. doi:10.​1007/​s10971-011-2579-4 CrossRef
go back to reference Leonelli C, Lojkowski W (2007) Main development directions in the application of microwave irradiation to the synthesis of nanopowders. Chem Today 25:34–38 Leonelli C, Lojkowski W (2007) Main development directions in the application of microwave irradiation to the synthesis of nanopowders. Chem Today 25:34–38
go back to reference Li L, Yang Y, Ding J, Xue J (2010a) Synthesis of magnetite nanooctahedra and their magnetic field-induced two-/three-dimensional superstructure. Chem Mater 22:3183–3191. doi:10.1021/cm100289d CrossRef Li L, Yang Y, Ding J, Xue J (2010a) Synthesis of magnetite nanooctahedra and their magnetic field-induced two-/three-dimensional superstructure. Chem Mater 22:3183–3191. doi:10.​1021/​cm100289d CrossRef
go back to reference Li Z, Godsell JF, O’Byrne JP et al (2010b) Supercritical fluid synthesis of magnetic hexagonal nanoplatelets of magnetite. J Am Chem Soc 132:12540–12541. doi:10.1021/ja105079y CrossRef Li Z, Godsell JF, O’Byrne JP et al (2010b) Supercritical fluid synthesis of magnetic hexagonal nanoplatelets of magnetite. J Am Chem Soc 132:12540–12541. doi:10.​1021/​ja105079y CrossRef
go back to reference Liu G, Wang D, Zhou F, Liu W (2015) Electrostatic self-assembly of Au nanoparticles onto thermosensitive magnetic core-shell microgels for thermally tunable and magnetically recyclable catalysis. Small 11:2807–2816. doi:10.1002/smll.201403305 CrossRef Liu G, Wang D, Zhou F, Liu W (2015) Electrostatic self-assembly of Au nanoparticles onto thermosensitive magnetic core-shell microgels for thermally tunable and magnetically recyclable catalysis. Small 11:2807–2816. doi:10.​1002/​smll.​201403305 CrossRef
go back to reference Lu X, Niu M, Qiao R, Gao M (2008) Superdispersible PVP-coated Fe3O4 nanocrystals prepared by a “One-Pot” reaction. J Phys Chem B 112:14390–14394. doi:10.1021/jp8025072 CrossRef Lu X, Niu M, Qiao R, Gao M (2008) Superdispersible PVP-coated Fe3O4 nanocrystals prepared by a “One-Pot” reaction. J Phys Chem B 112:14390–14394. doi:10.​1021/​jp8025072 CrossRef
go back to reference Noh S, Na W, Jang J et al (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12:3716–3721. doi:10.1021/nl301499u CrossRef Noh S, Na W, Jang J et al (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12:3716–3721. doi:10.​1021/​nl301499u CrossRef
go back to reference Nyirő-Kósa I, Rečnik A, Pósfai M (2012) Novel methods for the synthesis of magnetite nanoparticles with special morphologies and textured assemblages. J Nanoparticle Res 14:1–10. doi:10.1007/s11051-012-1150-8 Nyirő-Kósa I, Rečnik A, Pósfai M (2012) Novel methods for the synthesis of magnetite nanoparticles with special morphologies and textured assemblages. J Nanoparticle Res 14:1–10. doi:10.​1007/​s11051-012-1150-8
go back to reference Peddis D, Cannas C, Musinu A et al (2013) Beyond the effect of particle size: influence of CoFe2O4 nanoparticle arrangements on magnetic properties. Chem Mater 25:2005–2013. doi:10.1021/cm303352r CrossRef Peddis D, Cannas C, Musinu A et al (2013) Beyond the effect of particle size: influence of CoFe2O4 nanoparticle arrangements on magnetic properties. Chem Mater 25:2005–2013. doi:10.​1021/​cm303352r CrossRef
go back to reference Pinna N, Grancharov S, Beato P et al (2005) Magnetite nanocrystals: nonaqueous synthesis, characterization, and solubility. Chem Mater 17:3044–3049. doi:10.1021/cm050060+ CrossRef Pinna N, Grancharov S, Beato P et al (2005) Magnetite nanocrystals: nonaqueous synthesis, characterization, and solubility. Chem Mater 17:3044–3049. doi:10.​1021/​cm050060+ CrossRef
go back to reference Richards V (2010) Nucleation control in size and dispersity in metallic nanoparticles: the prominent role of particle aggregation. All Theses and Dissertations (ETDs), paper 294, Washington University Richards V (2010) Nucleation control in size and dispersity in metallic nanoparticles: the prominent role of particle aggregation. All Theses and Dissertations (ETDs), paper 294, Washington University
go back to reference Rizzuti A, Corradi A, Leonelli C et al (2010) Microwave technique applied to the hydrothermal synthesis and sintering of calcia stabilized zirconia nanoparticles. J Nanoparticle Res 12:327–335. doi:10.1007/s11051-009-9619-9 CrossRef Rizzuti A, Corradi A, Leonelli C et al (2010) Microwave technique applied to the hydrothermal synthesis and sintering of calcia stabilized zirconia nanoparticles. J Nanoparticle Res 12:327–335. doi:10.​1007/​s11051-009-9619-9 CrossRef
go back to reference Russo P, Acierno D, Palomba M et al (2012) Ultrafine magnetite nanopowder: synthesis, characterization, and preliminary use as filler of polymethylmethacrylate nanocomposites. J Nanotechnol 2012:e728326. doi:10.1155/2012/728326 CrossRef Russo P, Acierno D, Palomba M et al (2012) Ultrafine magnetite nanopowder: synthesis, characterization, and preliminary use as filler of polymethylmethacrylate nanocomposites. J Nanotechnol 2012:e728326. doi:10.​1155/​2012/​728326 CrossRef
go back to reference Salafranca J, Gazquez J, Pérez N et al (2012) Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett 12:2499–2503. doi:10.1021/nl300665z CrossRef Salafranca J, Gazquez J, Pérez N et al (2012) Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett 12:2499–2503. doi:10.​1021/​nl300665z CrossRef
go back to reference Salazar-Alvarez G, Qin J, Šepelák V et al (2008) Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy. J Am Chem Soc 130:13234–13239. doi:10.1021/ja0768744 CrossRef Salazar-Alvarez G, Qin J, Šepelák V et al (2008) Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy. J Am Chem Soc 130:13234–13239. doi:10.​1021/​ja0768744 CrossRef
go back to reference Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels. Röntgenstrahlen. 1918:98–100 Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels. Röntgenstrahlen. 1918:98–100
go back to reference Shavel A, Rodríguez-González B, Pacifico J et al (2009) Shape control in iron oxide nanocrystal synthesis, induced by trioctylammonium ions. Chem Mater 21:1326–1332. doi:10.1021/cm803201p CrossRef Shavel A, Rodríguez-González B, Pacifico J et al (2009) Shape control in iron oxide nanocrystal synthesis, induced by trioctylammonium ions. Chem Mater 21:1326–1332. doi:10.​1021/​cm803201p CrossRef
go back to reference Shimizu K, Sasaki F, Watanabe Y, Yazawa M (2013) Magnetic pigments US2013257035 (A1) Shimizu K, Sasaki F, Watanabe Y, Yazawa M (2013) Magnetic pigments US2013257035 (A1)
go back to reference Sun H, Chen B, Jiao X et al (2012) Solvothermal synthesis of tunable electroactive magnetite nanorods by controlling the side reaction. J Phys Chem C 116:5476–5481. doi:10.1021/jp211986a CrossRef Sun H, Chen B, Jiao X et al (2012) Solvothermal synthesis of tunable electroactive magnetite nanorods by controlling the side reaction. J Phys Chem C 116:5476–5481. doi:10.​1021/​jp211986a CrossRef
go back to reference Wang B, Wei Q, Qu S (2013) Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods. Int J Electrochem Sci 8:3786–3793 Wang B, Wei Q, Qu S (2013) Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods. Int J Electrochem Sci 8:3786–3793
go back to reference Yu D, Sun X, Zou J et al (2006) Oriented Assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres. J Phys Chem B 110:21667–21671. doi:10.1021/jp0646933 CrossRef Yu D, Sun X, Zou J et al (2006) Oriented Assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres. J Phys Chem B 110:21667–21671. doi:10.​1021/​jp0646933 CrossRef
go back to reference Zhen G, Muir BW, Moffat BA et al (2011) Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles. J Phys Chem C 115:327–334. doi:10.1021/jp104953z CrossRef Zhen G, Muir BW, Moffat BA et al (2011) Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles. J Phys Chem C 115:327–334. doi:10.​1021/​jp104953z CrossRef
Metadata
Title
Shape-control by microwave-assisted hydrothermal method for the synthesis of magnetite nanoparticles using organic additives
Authors
Antonino Rizzuti
Michele Dassisti
Piero Mastrorilli
Maria C. Sportelli
Nicola Cioffi
Rosaria A. Picca
Elisabetta Agostinelli
Gaspare Varvaro
Rocco Caliandro
Publication date
01-10-2015
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 10/2015
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-015-3213-0

Other articles of this Issue 10/2015

Journal of Nanoparticle Research 10/2015 Go to the issue

Premium Partners