Skip to main content
Top

2018 | OriginalPaper | Chapter

Shared Deep Kernel Learning for Dimensionality Reduction

Authors : Xinwei Jiang, Junbin Gao, Xiaobo Liu, Zhihua Cai, Dongmei Zhang, Yuanxing Liu

Published in: Advances in Knowledge Discovery and Data Mining

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep Kernel Learning (DKL) has been proven to be an effective method to learn complex feature representation by combining the structural properties of deep learning with the nonparametric flexibility of kernel methods, which can be naturally used for supervised dimensionality reduction. However, if limited training data are available its performance could be compromised because parameters of the deep structure embedded into the model are large and difficult to be efficiently optimized. In order to address this issue, we propose the Shared Deep Kernel Learning model by combining DKL with shared Gaussian Process Latent Variable Model. The novel method could not only bring the improved performance without increasing model complexity but also learn the hierarchical features by sharing the deep kernel. The comparison with some supervised dimensionality reduction methods and deep learning approach verify the advantages of the proposed model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bilmes, J.A., Malkin, J., Li, X., Harada, S., Kilanski, K., Kirchhoff, K., Wright, R.: The vocal joystick. In: IEEE Conference on Acoustics, Speech and Signal Processing (2006) Bilmes, J.A., Malkin, J., Li, X., Harada, S., Kilanski, K., Kirchhoff, K., Wright, R.: The vocal joystick. In: IEEE Conference on Acoustics, Speech and Signal Processing (2006)
2.
go back to reference Damianou, A.C., Lawrence, N.D.: Deep Gaussian processes. In: Artificial Intelligence and Statistics (AISTATS) (2013) Damianou, A.C., Lawrence, N.D.: Deep Gaussian processes. In: Artificial Intelligence and Statistics (AISTATS) (2013)
3.
go back to reference Ek, C.H.: Shared Gaussian process latent variables models. Ph.D. thesis, Oxford Brookes University (2009) Ek, C.H.: Shared Gaussian process latent variables models. Ph.D. thesis, Oxford Brookes University (2009)
4.
go back to reference Eleftheriadis, S., Rudovic, O., Pantic, M.: Discriminative shared Gaussian processes for multiview and view-invariant facial expression recognition. IEEE Trans. Image Process. 24(1), 189–204 (2015)MathSciNetCrossRef Eleftheriadis, S., Rudovic, O., Pantic, M.: Discriminative shared Gaussian processes for multiview and view-invariant facial expression recognition. IEEE Trans. Image Process. 24(1), 189–204 (2015)MathSciNetCrossRef
5.
go back to reference Gao, J., Zhang, J., Tien, D.: Relevance units latent variable model and nonlinear dimensionality reduction. IEEE Trans. Neural Netw. 21, 123–135 (2010)CrossRef Gao, J., Zhang, J., Tien, D.: Relevance units latent variable model and nonlinear dimensionality reduction. IEEE Trans. Neural Netw. 21, 123–135 (2010)CrossRef
6.
go back to reference Gao, X., Wang, X., Tao, D., Li, X.: Supervised Gaussian process latent variable model for dimensionality reduction. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(99), 425–434 (2011) Gao, X., Wang, X., Tao, D., Li, X.: Supervised Gaussian process latent variable model for dimensionality reduction. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(99), 425–434 (2011)
7.
go back to reference He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)CrossRef He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)CrossRef
8.
go back to reference Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRef Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRef
9.
go back to reference Jiang, X., Fang, X., Chen, Z., Gao, J., Jiang, J., Cai, Z.: Supervised Gaussian process latent variable model for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 14(10), 1760–1764 (2017)CrossRef Jiang, X., Fang, X., Chen, Z., Gao, J., Jiang, J., Cai, Z.: Supervised Gaussian process latent variable model for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 14(10), 1760–1764 (2017)CrossRef
10.
go back to reference Jiang, X., Gao, J., Wang, T., Shi, D.: TPSLVM: a dimensionality reduction algorithm based on thin plate splines. IEEE Trans. Cybern. 44(10), 1795–1807 (2014)CrossRef Jiang, X., Gao, J., Wang, T., Shi, D.: TPSLVM: a dimensionality reduction algorithm based on thin plate splines. IEEE Trans. Cybern. 44(10), 1795–1807 (2014)CrossRef
11.
go back to reference Jiang, X., Gao, J., Wang, T., Zheng, L.: Supervised latent linear Gaussian process latent variable model for dimensionality reduction. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(6), 1620–1632 (2012)CrossRef Jiang, X., Gao, J., Wang, T., Zheng, L.: Supervised latent linear Gaussian process latent variable model for dimensionality reduction. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(6), 1620–1632 (2012)CrossRef
12.
go back to reference Kouropteva, O., Okun, O., Pietikäinen, M.: Supervised locally linear embedding algorithm for pattern recognition. Pattern Recogn. Image Anal. 2652, 386–394 (2003)CrossRef Kouropteva, O., Okun, O., Pietikäinen, M.: Supervised locally linear embedding algorithm for pattern recognition. Pattern Recogn. Image Anal. 2652, 386–394 (2003)CrossRef
13.
go back to reference Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)MathSciNetMATH Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)MathSciNetMATH
14.
go back to reference Li, J., Zhang, B., Zhang, D.: Shared autoencoder Gaussian process latent variable model for visual classificatio. IEEE Trans. Neural Netw. Learn. Syst. (2017, in Press) Li, J., Zhang, B., Zhang, D.: Shared autoencoder Gaussian process latent variable model for visual classificatio. IEEE Trans. Neural Netw. Learn. Syst. (2017, in Press)
15.
go back to reference Li, X., Shu, L.: Kernel based nonlinear dimensionality reduction for microarray gene expression data analysis. Expert Syst. Appl. 36, 7644–7650 (2009)CrossRef Li, X., Shu, L.: Kernel based nonlinear dimensionality reduction for microarray gene expression data analysis. Expert Syst. Appl. 36, 7644–7650 (2009)CrossRef
17.
go back to reference van der Maaten, L., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a comparative review. Technical report, Tilburg University (2008) van der Maaten, L., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a comparative review. Technical report, Tilburg University (2008)
18.
go back to reference Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)MATH Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)MATH
19.
go back to reference Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC, Boca Raton (2005)CrossRef Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC, Boca Raton (2005)CrossRef
20.
go back to reference Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)CrossRef Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)CrossRef
21.
go back to reference Snoek, J., Adams, R.P., Larochelle, H.: Nonparametric guidance of autoencoder representations using label information. J. Mach. Learn. Res. 13, 2567–2588 (2012)MathSciNetMATH Snoek, J., Adams, R.P., Larochelle, H.: Nonparametric guidance of autoencoder representations using label information. J. Mach. Learn. Res. 13, 2567–2588 (2012)MathSciNetMATH
22.
go back to reference Urtasun, R., Darrell, T.: Discriminative Gaussian process latent variable model for classification. In: International Conference on Machine learning (ICML), pp. 927–934. ACM (2007) Urtasun, R., Darrell, T.: Discriminative Gaussian process latent variable model for classification. In: International Conference on Machine learning (ICML), pp. 927–934. ACM (2007)
23.
go back to reference Wang, W., Huang, Y., Wang, Y., Wang, L.: Generalized autoencoder: a neural network framework for dimensionality reduction. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), pp. 496–503 (2014) Wang, W., Huang, Y., Wang, Y., Wang, L.: Generalized autoencoder: a neural network framework for dimensionality reduction. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), pp. 496–503 (2014)
24.
go back to reference Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P.: Deep kernel learning. In: The 19th International Conference on Artificial Intelligence and Statistics (AISTATS) (2016) Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P.: Deep kernel learning. In: The 19th International Conference on Artificial Intelligence and Statistics (AISTATS) (2016)
25.
go back to reference Wilson, A.G., Nickisch, H.: Kernel interpolation for scalable structured Gaussian processes (KISS-GP). In: International Conference on Machine Learning (2015) Wilson, A.G., Nickisch, H.: Kernel interpolation for scalable structured Gaussian processes (KISS-GP). In: International Conference on Machine Learning (2015)
26.
go back to reference Yang, J., Jin, Z., Yang, J.Y., Zhang, D., Frangi, A.F.: Essence of kernel fisher discriminant: KPCA plus LDA. Pattern Recogn. 37, 2097–2100 (2004)CrossRef Yang, J., Jin, Z., Yang, J.Y., Zhang, D., Frangi, A.F.: Essence of kernel fisher discriminant: KPCA plus LDA. Pattern Recogn. 37, 2097–2100 (2004)CrossRef
27.
go back to reference Yu, S., Yu, K., Tresp, V., Kriegel, H.P., Wu, M.: Supervised probabilistic principal component analysis. In: International Conference on Knowledge Discovery and Data Mining (KDD), pp. 464–473. ACM Press (2006) Yu, S., Yu, K., Tresp, V., Kriegel, H.P., Wu, M.: Supervised probabilistic principal component analysis. In: International Conference on Knowledge Discovery and Data Mining (KDD), pp. 464–473. ACM Press (2006)
Metadata
Title
Shared Deep Kernel Learning for Dimensionality Reduction
Authors
Xinwei Jiang
Junbin Gao
Xiaobo Liu
Zhihua Cai
Dongmei Zhang
Yuanxing Liu
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-93040-4_24

Premium Partner