Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Sharp Smith’s bounds for the gamma function

Authors: Xi-Qiao Li, Zhi-Ming Liu, Zhen-Hang Yang, Shen-Zhou Zheng

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

Among various approximation formulas for the gamma function, Smith showed that
$$ \Gamma \biggl( x+\frac{1}{2} \biggr) \thicksim S ( x ) =\sqrt{2 \pi } \biggl( \frac{x}{e} \biggr) ^{x} \biggl( 2x\tanh \frac{1}{2x} \biggr) ^{x/2}, \quad x\rightarrow \infty , $$
which is a little-known but accurate and simple one. In this note, we prove that the function \(x\mapsto \ln \Gamma ( x+1/2 ) - \ln S ( x ) \) is strictly increasing and concave on \(( 0,\infty ) \), which shows that Smith’s approximation is just an upper one.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

The Stirling formula
$$ n!\thicksim \sqrt{2\pi n}n^{n}e^{-n} $$
(1.1)
has many important applications in statistical physics, probability theory and number theory. Due to its practical importance, it has attracted much interest of many mathematicians and has also motivated a large number of research papers concerning various generalizations and improvements; see for example, Burnside’s [1], Gosper [2], Batir [3], Mortici [4].
The gamma function \(\Gamma ( x ) =\int_{0}^{\infty }t^{x-1}e ^{-t}\,dt \) for \(x>0\) is closely related to the Stirling formula, since \(\Gamma (n+1)=n!\) for all \(n\in \mathbb{N}\). This inspired some authors to also pay attention to find various better approximations for the gamma function; see, for instance, Ramanujan [5, p. 339], Windschitl (see Nemes [6, Corollary 4.1]), Yang and Chu [7], Chen [8].
More results involving the approximation formulas for the factorial or gamma function can be found in [923] and the references cited therein.
In this note, we are interested in Smith’s approximation formula (see [24, equation (42)]):
$$ \Gamma \biggl( x+\frac{1}{2} \biggr) \thicksim \sqrt{2\pi } \biggl( \frac{x}{e} \biggr) ^{x} \biggl( 2x\tanh \frac{1}{2x} \biggr) ^{x/2}:=S ( x ), \quad \text{as }x\rightarrow \infty . $$
(1.2)
It is easy to check that
$$ \Gamma \biggl( x+\frac{1}{2} \biggr) =\sqrt{2\pi } \biggl( \frac{x}{e} \biggr) ^{x} \biggl( 2x\tanh \frac{1}{2x} \biggr) ^{x/2} \biggl( 1+O \biggl( \frac{1}{x^{5}} \biggr) \biggr) , $$
which shows that the rate of \(S ( x ) \) converging to \(\Gamma ( x+1/2 ) \) as \(x\rightarrow \infty \) is like \(x^{-5}\). According to the comment in [8, (3.5)–(3.10)], it is well known that Smith’s approximation is an accurate but simple one for gamma function.
The aim of this short note is to further prove the Smith approximation \(S ( x ) \) is an upper one. Our main result is stated as follows.
Theorem 1
The function
$$ f ( x ) =\ln \Gamma \biggl( x+\frac{1}{2} \biggr) -\ln \sqrt{2 \pi }-x\ln x+x-\frac{x}{2}\ln \biggl( 2x\tanh \frac{1}{2x} \biggr) $$
is strictly increasing and concave from \(( 0,\infty ) \) onto \(( -\ln \sqrt{2},0 ) \).

2 Proof of Theorem 1

To prove Theorem 1 we need the following two lemmas.
Lemma 1
The inequality
$$ \psi^{\prime } \biggl( x+\frac{1}{2} \biggr) < \frac{4}{3} \frac{15x^{2}+4}{x ( 20x^{2}+7 ) } $$
(2.1)
holds for all \(x>0\).
Proof
Let
$$ f_{1} ( x ) =\psi^{\prime } \biggl( x+\frac{1}{2} \biggr) - \frac{4}{3}\frac{15x^{2}+4}{x ( 20x^{2}+7 ) }. $$
(2.2)
Using the recurrence formula [25, pp. 258–260]:
$$ \psi^{ ( n ) }(x+1)-\psi^{ ( n ) }(x)=\frac{ ( -1 ) ^{n}n!}{x^{n+1}}, $$
we have
$$\begin{aligned} f_{1} ( x+1 ) -f_{1} ( x ) =&\psi^{\prime } \biggl( x+ \frac{3}{2} \biggr) -\frac{4}{3 ( x+1 ) }\frac{15x^{2}+30x+19}{20x ^{2}+40x+27} \\ &{}-\psi^{\prime } \biggl( x+\frac{1}{2} \biggr) +\frac{4}{3} \frac{15x ^{2}+4}{x ( 20x^{2}+7 ) } \\ &{}-\frac{1}{ ( x+1/2 ) ^{2}}-\frac{4}{3 ( x+1 ) }\frac{15x ^{2}+30x+19}{20x^{2}+40x+27}+\frac{4}{3} \frac{15x^{2}+4}{x ( 20x ^{2}+7 ) } \\ =&\frac{144}{x ( x+1 ) ( 2x+1 ) ^{2} ( 20x ^{2}+7 ) ( 20x^{2}+40x+27 ) }>0. \end{aligned}$$
It then follows that
$$ f_{1} ( x ) < f_{1} ( x+1 ) < \cdots < \lim _{n\rightarrow \infty }f_{1} ( x+n ) =0, $$
which proves the desired inequality (2.1). □
Lemma 2
The inequality
$$ \frac{\sinh^{2}t}{\cosh t}>\frac{t^{2} ( 21t^{2}+60 ) }{31t ^{2}+60} $$
(2.3)
holds for all \(t>0\).
Proof
It is obvious that the inequality what we consider is equivalent to
$$ f_{2} ( t ) = \bigl( 31t^{2}+60 \bigr) ( \sinh t ) ^{2}-t^{2} \bigl( 21t^{2}+60 \bigr) \cosh t>0. $$
Simplifying and expanding it in power series lead us to
$$\begin{aligned} 2f_{2} ( t ) =&60\cosh 2t+31t^{2}\cosh 2t-120t^{2}\cosh t-42t ^{4}\cosh t-31t^{2}-60 \\ =&60\sum_{n=0}^{\infty }\frac{2^{2n}}{ ( 2n ) !}t^{2n}+31 \sum_{n=1}^{\infty }\frac{2^{2n-2}}{ ( 2n-2 ) !}t^{2n} \\ &{}-120\sum_{n=1}^{\infty }\frac{1}{ ( 2n-2 ) !}t^{2n}-42 \sum_{n=2}^{\infty }\frac{1}{ ( 2n-4 ) !}t^{2n}-31t^{2}-60 \\ :=&\sum_{n=2}^{\infty }\frac{a_{n}}{ ( 2n ) !}t^{2n}, \end{aligned}$$
where
$$ a_{n}= \bigl( 62n^{2}-31n+120 \bigr) 2^{2n-1}-24n ( 2n-1 ) \bigl( 14n^{2}-35n+31 \bigr) . $$
It is easy to check that \(a_{2}=a_{3}=0\) and \(a_{4}=49\,184>0\). It remains to prove \(a_{n}>0\) for \(n\geq 5\).
To this end, it suffices to prove \(b_{n}=2^{2n-1}-6n ( 2n-1 ) >0\) for \(n\geq 5\), because the inequality
$$ \bigl( 62n^{2}-31n+120 \bigr) >4 \bigl( 14n^{2}-35n+31 \bigr) $$
is clearly valid for \(n\geq 5\). We easily obtain
$$ b_{n+1}-4b_{n}=6 \bigl( 6n^{2}-7n-1 \bigr) >0 $$
for \(n\geq 5\), which in combination with \(b_{5}=242>0\) yields \(b_{n}>0\) for \(n\geq 5\). This completes the proof. □
Now we are in a position to prove Theorem 1.
Theorem 1
Differentiating and simplifying yields
$$\begin{aligned}& f^{\prime } ( x ) = \psi \biggl( x+\frac{1}{2} \biggr) - \ln x- \frac{1}{2}\ln \biggl( 2x\tanh \frac{1}{2x} \biggr) + \frac{1}{2x \sinh ( 1/x ) }-\frac{1}{2}, \\& f^{\prime \prime } ( x ) = \psi^{\prime } \biggl( x+ \frac{1}{2} \biggr) +\frac{1}{2x^{3}}\frac{\cosh ( 1/x ) }{ \sinh^{2} ( 1/x ) }-\frac{3}{2x}. \end{aligned}$$
As an application of inequalities (2.1) and (2.3) it gives
$$\begin{aligned}& \begin{aligned} f^{\prime \prime } ( x ) &< \frac{4}{3}\frac{15x^{2}+4}{x ( 20x^{2}+7 ) }+\frac{1}{2x^{3}} \frac{\cosh ( 1/x ) }{\sinh^{2} ( 1/x ) }-\frac{3}{2x} \\ &=\frac{1}{2x^{3}}\frac{\cosh ( 1/x ) }{\sinh^{2} ( 1/x ) }-\frac{1}{6}\frac{60x^{2}+31}{x ( 20x^{2}+7 ) } \\ & \mathop{=}^{x=1/t}\frac{t^{3}}{2} \biggl( \frac{\cosh t}{ \sinh^{2}t}- \frac{31t^{2}+60}{t^{2} ( 21t^{2}+60 ) } \biggr) < 0. \end{aligned} \end{aligned}$$
Then it is deduced that
$$ f^{\prime } ( x ) >\lim_{x\rightarrow \infty }f^{\prime } ( x ) =0, $$
which in turn implies that
$$ -\frac{1}{2}\ln 2=\lim_{x\rightarrow 0^{+}}f ( x ) < f ( x ) < \lim _{x\rightarrow \infty }f ( x ) =0. $$
This completes the proof. □

3 Corollaries and remarks

Using the increasing property of \(f ( x+1/2 ) \) given in Theorem 1 and noting that
$$ f \biggl( \frac{1}{2} \biggr) =\ln \frac{\sqrt{e}}{\sqrt{\pi } ( \tanh 1 ) ^{1/4}}\quad \text{and}\quad f \biggl( \frac{3}{2} \biggr) = \ln \biggl( \frac{2e\sqrt{e}3^{3/4}}{27\sqrt{\pi }\tanh^{3/4} ( 1/3 ) } \biggr) , $$
we have the corollaries.
Corollary 1
The double inequality
$$ \alpha_{1}< \frac{e^{x+1/2}\Gamma ( x+1 ) }{\sqrt{2\pi } ( x+1/2 ) ^{x+1/2} [ ( 2x+1 ) \tanh ( 1/ ( 2x+1 ) ) ] ^{ ( 2x+1 ) /4}}< 1 $$
holds for all \(x>0\) with the best constants 1 and \(\alpha_{1}=\sqrt{e/ \pi }/ ( \tanh 1 ) ^{1/4}\approx 0.99573\).
Corollary 2
The double inequality
$$ \alpha_{2}< \frac{n!}{\sqrt{2\pi } ( ( n+1/2 ) /e ) ^{n+1/2} [ ( 2n+1 ) \tanh ( 1/ ( 2n+1 ) ) ] ^{ ( 2n+1 ) /4}}< 1 $$
holds for all \(n\in \mathbb{N}\) with the best constants 1 and
$$ \alpha_{2}=\frac{2e\sqrt{e}3^{3/4}}{27\sqrt{\pi }\tanh^{3/4} ( 1/3 ) }\approx 0.99994. $$
By the decreasing property of \(f^{\prime } ( x+1/2 ) \) given in Theorem 1 and the facts that
$$\begin{aligned}& f^{\prime } \biggl( \frac{1}{2} \biggr) =\frac{1}{\sinh 2}- \frac{1}{2} \ln ( \tanh 1 ) +\ln 2-\frac{1}{2}-\gamma \approx 0.027823, \\& f^{\prime } \biggl( \frac{3}{2} \biggr) =\frac{1}{3\sinh ( 2/3 ) }- \frac{1}{2}\ln \biggl( 3\tanh \frac{1}{3} \biggr) -\ln \frac{3}{2}+\psi ( 1 ) +\frac{1}{2}\approx 0.00016946, \end{aligned}$$
the following corollaries are immediate.
Corollary 3
For \(x>0\), the inequalities
$$\begin{aligned}& \frac{1}{2}+\frac{1}{2}\ln \biggl( ( 2x+1 ) \tanh \frac{1}{2x+1} \biggr) -\frac{1}{ ( 2x+1 ) \sinh ( 2/ ( 2x+1 ) ) } \\& \quad < \psi ( x+1 ) -\ln \biggl( x+\frac{1}{2} \biggr) \\& \quad < \beta_{1}+\frac{1}{2}\ln \biggl( ( 2x+1 ) \tanh \frac{1}{2x+1} \biggr) -\frac{1}{ ( 2x+1 ) \sinh ( 2/ ( 2x+1 ) ) } \end{aligned}$$
hold, where the constants \(1/2\) and
$$ \beta_{1}=\ln 2-\frac{1}{2}\ln ( \tanh 1 ) +\frac{1}{\sinh 2}- \gamma \approx 0.52782 $$
are the best possible.
Corollary 4
Let \(H_{n}=\sum_{k=1}^{n}\) for \(n\in \mathbb{N}\). The inequalities
$$\begin{aligned}& \biggl( \frac{1}{2}+\gamma \biggr) +\frac{1}{2}\ln \biggl( ( 2n+1 ) \tanh \frac{1}{2n+1} \biggr) -\frac{1}{ ( 2n+1 ) \sinh ( 2/ ( 2x+1 ) ) } \\& \quad < H_{n}-\ln \biggl( n+\frac{1}{2} \biggr) \\& \quad < \beta_{2}+\frac{1}{2}\ln \biggl( ( 2n+1 ) \tanh \frac{1}{2n+1} \biggr) -\frac{1}{ ( 2n+1 ) \sinh ( 2/ ( 2n+1 ) ) } \end{aligned}$$
hold, where \(1/2+\gamma \approx 1.0772\) and
$$ \beta_{2}=\frac{1}{3\sinh ( 2/3 ) }-\frac{1}{2}\ln \biggl( 3 \tanh \frac{1}{3} \biggr) -\ln \frac{3}{2}+1\approx 1.0774 $$
are the best possible constants.
Finally, as a by-product of Lemma 1, we draw the following conclusion.
Theorem 2
Let g be defined on \(( 0,\infty ) \) by
$$ g ( x ) =\ln \Gamma \biggl( x+\frac{1}{2} \biggr) - \biggl[ \frac{1}{2}\ln 2\pi +\frac{16}{21}x\ln x+\frac{5x}{42}\ln \biggl( x ^{2}+\frac{7}{20} \biggr) -x-\frac{\sqrt{35}}{42} \operatorname{arccot} \biggl( \sqrt{\frac{20}{7}}x \biggr) \biggr] . $$
Then g is strictly increasing and concave on \(( 0,\infty ) \).
Proof
Differentiation yields
$$\begin{aligned}& g^{\prime } ( x ) =\psi \biggl( x+\frac{1}{2} \biggr) - \biggl[ \frac{5}{42}\ln \biggl( x^{2}+\frac{7}{20} \biggr) + \frac{16}{21}\ln x \biggr] , \\& g^{\prime \prime } ( x ) =\psi^{\prime } \biggl( x+ \frac{1}{2} \biggr) -\frac{4}{3}\frac{15x^{2}+4}{x ( 20x^{2}+7 ) }=f_{1} ( x ) < 0, \end{aligned}$$
where the inequality holds due to Lemma 1. This completes the proof. □
Remark 1
Theorem 2 gives a new approximation for the gamma function
$$ \Gamma \biggl( x+\frac{1}{2} \biggr) \thicksim \sqrt{2\pi }x^{26x/21} \biggl( x^{2}+\frac{7}{20} \biggr) ^{5x/42}\exp \biggl[ -x-\frac{ \sqrt{35}}{42}\operatorname{arccot} \biggl( \sqrt{\frac{20}{7}}x \biggr) \biggr] , $$
as \(x\rightarrow \infty \), which satisfies
$$ \Gamma \biggl( x+\frac{1}{2} \biggr) =\sqrt{2\pi }x^{26x/21} \biggl( x ^{2}+\frac{7}{20} \biggr) ^{5x/42}\exp \biggl[ -x- \frac{\sqrt{35}}{42}\operatorname{arccot} \biggl( \sqrt{\frac{20}{7}}x \biggr) \biggr] \bigl( 1+O \bigl( x^{-5} \bigr) \bigr) . $$
Remark 2
Theorem 2 also offers an asymptotic formula for the psi function
$$ \psi \biggl( x+\frac{1}{2} \biggr) \thicksim \frac{5}{42}\ln \biggl( x ^{2}+\frac{7}{20} \biggr) +\frac{16}{21}\ln x\quad \text{as }x \rightarrow \infty . $$
Furthermore, by replacing x with \(x+1/2\), we have the following sharp inequalities:
$$\begin{aligned}& \frac{5}{42}\ln \biggl( x^{2}+x+\frac{3}{5} \biggr) + \frac{16}{21} \ln \biggl( x+\frac{1}{2} \biggr) \\& \quad < \psi ( x+1 ) < \lambda_{0}+\frac{5}{42}\ln \biggl( x^{2}+x+ \frac{3}{5} \biggr) +\frac{16}{21}\ln \biggl( x+ \frac{1}{2} \biggr) \end{aligned}$$
(3.1)
for \(x>0\) with the best constant
$$\begin{aligned}& \lambda_{0}=\frac{16}{21}\ln 2-\frac{5}{42}\ln \frac{3}{5}-\gamma \approx 0.011709; \\& \gamma +\frac{5}{42}\ln \biggl( n^{2}+n+\frac{3}{5} \biggr) + \frac{16}{21}\ln \biggl( n+\frac{1}{2} \biggr) \\& \quad < H_{n}< \lambda_{0}+\gamma +\frac{5}{42}\ln \biggl( n^{2}+n+ \frac{3}{5} \biggr) +\frac{16}{21}\ln \biggl( n+ \frac{1}{2} \biggr) \end{aligned}$$
for \(n\in \mathbb{N}\) with the best constant
$$ \lambda_{1}=1-\frac{16}{21}\ln \frac{3}{2}- \frac{5}{42}\ln \frac{13}{5}-\gamma \approx 0.00010718. $$
Inequalities (3.1) first appeared in [26, Corollary 3.4].

4 Conclusions

In this note, we mainly presented an upper bound of Smith’s approximation in accordance with the fact that the function \(x\mapsto \ln \Gamma ( x+1/2 ) - \ln S ( x ) \) is strictly increasing and concave on \(( 0,\infty ) \). As a consequence, we get some new sharp estimates to various classical inequalities concerning the gamma function and hyperbolic functions.

Acknowledgements

This paper is supported by the National Science Foundation of China grant No. 11371050.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Burnside, W.: A rapidly convergent series for \(\log N!\). Messenger Math. 46, 157–159 (1917) Burnside, W.: A rapidly convergent series for \(\log N!\). Messenger Math. 46, 157–159 (1917)
4.
5.
go back to reference Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Springer, Berlin (1988) MATH Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Springer, Berlin (1988) MATH
7.
go back to reference Yang, Z.H., Chu, Y.M.: Asymptotic formulas for gamma function with applications. Appl. Math. Comput. 270, 665–680 (2015) MathSciNet Yang, Z.H., Chu, Y.M.: Asymptotic formulas for gamma function with applications. Appl. Math. Comput. 270, 665–680 (2015) MathSciNet
9.
10.
go back to reference Guo, B.N., Zhang, Y.J., Qi, F.: Refinements and sharpenings of some double inequalities for bounding the gamma function. J. Inequal. Pure Appl. Math. 9(1), Article ID 17 (2008) MathSciNetMATH Guo, B.N., Zhang, Y.J., Qi, F.: Refinements and sharpenings of some double inequalities for bounding the gamma function. J. Inequal. Pure Appl. Math. 9(1), Article ID 17 (2008) MathSciNetMATH
12.
go back to reference Mortici, C.: An ultimate extremely accurate formula for approximation of the factorial function. Arch. Math. 93(1), 37–45 (2009) MathSciNetCrossRefMATH Mortici, C.: An ultimate extremely accurate formula for approximation of the factorial function. Arch. Math. 93(1), 37–45 (2009) MathSciNetCrossRefMATH
13.
go back to reference Mortici, C.: New sharp inequalities for approximating the factorial function and the digamma functions. Miskolc Math. Notes 11(1), 79–86 (2010) MathSciNetMATH Mortici, C.: New sharp inequalities for approximating the factorial function and the digamma functions. Miskolc Math. Notes 11(1), 79–86 (2010) MathSciNetMATH
15.
go back to reference Zhao, J.L., Guo, B.N., Qi, F.: A refinement of a double inequality for the gamma function. Publ. Math. (Debr.) 80(3–4), 333–342 (2012) MathSciNetCrossRefMATH Zhao, J.L., Guo, B.N., Qi, F.: A refinement of a double inequality for the gamma function. Publ. Math. (Debr.) 80(3–4), 333–342 (2012) MathSciNetCrossRefMATH
16.
go back to reference Mortici, C.: Further improvements of some double inequalities for bounding the gamma function. Math. Comput. Model. 57, 1360–1363 (2013) MathSciNetCrossRef Mortici, C.: Further improvements of some double inequalities for bounding the gamma function. Math. Comput. Model. 57, 1360–1363 (2013) MathSciNetCrossRef
18.
go back to reference Qi, F.: Integral representations and complete monotonicity related to the remainder of Burnside’s formula for the gamma function. J. Comput. Appl. Math. 268, 155–167 (2014) MathSciNetCrossRefMATH Qi, F.: Integral representations and complete monotonicity related to the remainder of Burnside’s formula for the gamma function. J. Comput. Appl. Math. 268, 155–167 (2014) MathSciNetCrossRefMATH
19.
20.
23.
go back to reference Yang, Z.H.: Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function. J. Math. Anal. Appl. 441, 549–564 (2016) MathSciNetCrossRefMATH Yang, Z.H.: Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function. J. Math. Anal. Appl. 441, 549–564 (2016) MathSciNetCrossRefMATH
25.
go back to reference Abramowttz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1972) Abramowttz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1972)
26.
go back to reference Zhao, T.H., Yang, Z.H., Chu, Y.M.: Monotonicity properties of a function involving the psi function with applications. J. Inequal. Appl. 2015, Article ID 193 (2015) MathSciNetCrossRefMATH Zhao, T.H., Yang, Z.H., Chu, Y.M.: Monotonicity properties of a function involving the psi function with applications. J. Inequal. Appl. 2015, Article ID 193 (2015) MathSciNetCrossRefMATH
Metadata
Title
Sharp Smith’s bounds for the gamma function
Authors
Xi-Qiao Li
Zhi-Ming Liu
Zhen-Hang Yang
Shen-Zhou Zheng
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1620-3

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner