Skip to main content
Top
Published in: Acta Mechanica 6/2023

25-02-2023 | Original Paper

Shock wave diffraction in micro-shock tubes with sudden expansion

Authors: Aswin Suresh, Rajat Raj, Arun Kumar Rajagopal

Published in: Acta Mechanica | Issue 6/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study investigates the shock wave propagation and diffraction characteristics in a micro-shock tube with sudden expansion and compares with the well-established classical shock wave diffraction in macro-length scale sudden expansions using computational techniques. The Knudsen number for the present micro-shock tube falls in the slip regime and therefore the fluid flow is simulated using the continuum-based Navier–Stokes equation with Maxwell’s slip jump boundary condition. It is found that the shock wave attenuates rapidly in micro-shock tube compared to the shock wave propagation in macro-shock tube. The shock wave diffraction in micro-steps shows similar characteristics compared to macro-steps, such as reflection of the diffracted shock wave from the outer wall and the subsequent transition from regular reflection to Mach reflection, the vortex formation at the step corner, Mach reflection shock structure in the shock-processed gas exiting from the shock tube. However, the secondary shock wave formed due to the interaction of the reflected shock wave with the corner vortex is not seen for the micro-step case compared to the macro-step case. This can be attributed to the reduction in shock strength produced by the thick boundary layer in micro-shock tubes. Different step sizes have been compared for the micro-shock tube with sudden expansion ranging from the step size 1.5 to 3. Also, a detailed comparison has been done between micro- and macro-shock tube with sudden expansion. It is also found that the use of slip velocity increases the shock wave propagation speed compared to the no-slip boundary condition.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wing, T., Lifshitz, A.: Shock tube techniques in chemical kinetics. Annu. Rev. Phys. Chem. 41, 559–599 (1990)CrossRef Wing, T., Lifshitz, A.: Shock tube techniques in chemical kinetics. Annu. Rev. Phys. Chem. 41, 559–599 (1990)CrossRef
2.
go back to reference Glass, I.I., Hall, J.G.: Handbook of supersonic aerodynamics. Section 18. Shock tubes. Bureau Of Naval Weapons Washington DC pp 451–498 (1959) Glass, I.I., Hall, J.G.: Handbook of supersonic aerodynamics. Section 18. Shock tubes. Bureau Of Naval Weapons Washington DC pp 451–498 (1959)
3.
go back to reference Jagadeesh, G., Takayama, K.: Novel applications of micro-shock waves in biological sciences. J. Indian Inst. Sci. 82(1), 49–57 (2002) Jagadeesh, G., Takayama, K.: Novel applications of micro-shock waves in biological sciences. J. Indian Inst. Sci. 82(1), 49–57 (2002)
4.
go back to reference Yasunaga, K., Takahiro Mikajiri, S., Sarathy, M., Koike, T., Gillespie, F., Nagy, T., Simmie, J.M., Curran, H.J.: A shock tube and chemical kinetic modeling study of the pyrolysis and oxidation of butanols. Combust. Flame 159(6), 2009–2027 (2012)CrossRef Yasunaga, K., Takahiro Mikajiri, S., Sarathy, M., Koike, T., Gillespie, F., Nagy, T., Simmie, J.M., Curran, H.J.: A shock tube and chemical kinetic modeling study of the pyrolysis and oxidation of butanols. Combust. Flame 159(6), 2009–2027 (2012)CrossRef
5.
go back to reference Kuwahara, M., Ioritani, N., Kambe, K., Orikasa, S., Takayama, K.: Anti-miss-shot control device for selective stone disintegration in extracorporeal shock wave lithotripsy. Shock Waves 1, 145–148 (1991)CrossRef Kuwahara, M., Ioritani, N., Kambe, K., Orikasa, S., Takayama, K.: Anti-miss-shot control device for selective stone disintegration in extracorporeal shock wave lithotripsy. Shock Waves 1, 145–148 (1991)CrossRef
6.
go back to reference Rakesh, S.G., Gnanadhas, D.P., Allam, U.S., Nataraja, K.N., Barhai, P.K., Jagadeesh, G., Chakravortty, D.: Development of micro-shock wave assisted dry particle and fluid jet delivery system. Appl. Microbiol. Biotechnol. 96, 647–662 (2012)CrossRef Rakesh, S.G., Gnanadhas, D.P., Allam, U.S., Nataraja, K.N., Barhai, P.K., Jagadeesh, G., Chakravortty, D.: Development of micro-shock wave assisted dry particle and fluid jet delivery system. Appl. Microbiol. Biotechnol. 96, 647–662 (2012)CrossRef
7.
go back to reference Subburaj, J., Datey, A., Gopalan, J., Chakravortty, D.: Insights into the mechanism of a novel shockwave-assisted needle-free drug delivery device driven by in situ-generated oxyhydrogen mixture which provides efficient protection against mycobacterial infections. J. Biol. Eng. 11(1), 1–13 (2017)CrossRef Subburaj, J., Datey, A., Gopalan, J., Chakravortty, D.: Insights into the mechanism of a novel shockwave-assisted needle-free drug delivery device driven by in situ-generated oxyhydrogen mixture which provides efficient protection against mycobacterial infections. J. Biol. Eng. 11(1), 1–13 (2017)CrossRef
8.
go back to reference Datey, A., Subburaj, J., Gopalan, J., Chakravortty, D.: Mechanism of transformation in Mycobacteria using a novel shockwave assisted technique driven by in-situ generated oxyhydrogen. Sci. Rep. 7(1), 1–11 (2017)CrossRef Datey, A., Subburaj, J., Gopalan, J., Chakravortty, D.: Mechanism of transformation in Mycobacteria using a novel shockwave assisted technique driven by in-situ generated oxyhydrogen. Sci. Rep. 7(1), 1–11 (2017)CrossRef
9.
go back to reference Delius, N.I.: Medical applications and bioeffects of extracorporeal shock waves. Shock Waves 4, 55–72 (1994)CrossRef Delius, N.I.: Medical applications and bioeffects of extracorporeal shock waves. Shock Waves 4, 55–72 (1994)CrossRef
10.
go back to reference Lynch, P.T., Troy, T.P., Ahmed, M., Tranter, R.S.: Probing combustion chemistry in a miniature shock tube with synchrotron VUV photo ionization mass spectrometry. Anal. Chem. 87(4), 2345–2352 (2015)CrossRef Lynch, P.T., Troy, T.P., Ahmed, M., Tranter, R.S.: Probing combustion chemistry in a miniature shock tube with synchrotron VUV photo ionization mass spectrometry. Anal. Chem. 87(4), 2345–2352 (2015)CrossRef
11.
go back to reference Tranter, R.S., Lynch, P.T.: A miniature high repetition rate shock tube. Rev. Sci. Instrum. 84(9), 094102 (2013)CrossRef Tranter, R.S., Lynch, P.T.: A miniature high repetition rate shock tube. Rev. Sci. Instrum. 84(9), 094102 (2013)CrossRef
12.
go back to reference Bisht, A., Kumar, L., Subburaj, J., Jagadeesh, G., Suwas, S.: Effect of stacking fault energy on the evolution of microstructure and texture during blast assisted deformation of FCC materials. J. Mater. Process. Technol. 271, 568–583 (2019)CrossRef Bisht, A., Kumar, L., Subburaj, J., Jagadeesh, G., Suwas, S.: Effect of stacking fault energy on the evolution of microstructure and texture during blast assisted deformation of FCC materials. J. Mater. Process. Technol. 271, 568–583 (2019)CrossRef
13.
go back to reference Ramachandran, R.C., Raman, G., Janardhanraj, S., G. Jagadeesh, G.: Miniature shock tube actuators for flow control applications. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p 1259 (2010) Ramachandran, R.C., Raman, G., Janardhanraj, S., G. Jagadeesh, G.: Miniature shock tube actuators for flow control applications. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p 1259 (2010)
14.
go back to reference Arun Kumar, R., Kim, H.D.: Computational study of the unsteady flow characteristics of a micro shock tube. J. Mech. Sci. Technol. 27(2), 451–459 (2013)CrossRef Arun Kumar, R., Kim, H.D.: Computational study of the unsteady flow characteristics of a micro shock tube. J. Mech. Sci. Technol. 27(2), 451–459 (2013)CrossRef
15.
go back to reference Singh, S.K., Arun Kumar, R.: A parametric study on the fluid dynamics and performance characteristic of micro nozzle flows. J. Fluids Eng. 144(3), 031208 (2022)CrossRef Singh, S.K., Arun Kumar, R.: A parametric study on the fluid dynamics and performance characteristic of micro nozzle flows. J. Fluids Eng. 144(3), 031208 (2022)CrossRef
16.
go back to reference Mirshekari, G., Brouillette, M.: One-dimensional model for microscale shock tube flow. Shock Waves 19(1), 25–38 (2009)CrossRefMATH Mirshekari, G., Brouillette, M.: One-dimensional model for microscale shock tube flow. Shock Waves 19(1), 25–38 (2009)CrossRefMATH
17.
18.
go back to reference Mirshekari, G., Brouillette, M.: Microscale shock tube. J. Microelectromech. Syst. 21(3), 739–748 (2012)CrossRefMATH Mirshekari, G., Brouillette, M.: Microscale shock tube. J. Microelectromech. Syst. 21(3), 739–748 (2012)CrossRefMATH
19.
go back to reference Zeitoun, D.E., Burtschell, Y.: Navier–Stokes computations in micro shock tubes. Shock Waves 15, 241–246 (2006)CrossRefMATH Zeitoun, D.E., Burtschell, Y.: Navier–Stokes computations in micro shock tubes. Shock Waves 15, 241–246 (2006)CrossRefMATH
20.
go back to reference Zeitoun, D.E., Burtschell, Y., Graur, I.A., Ivanov, M.S., Kudryavtsev, A.N., Bondar, Y.A.: Numerical simulation of shock wave propagation in microchannels using continuum and kinetic approaches. Shock Waves 19, 307–316 (2009)CrossRefMATH Zeitoun, D.E., Burtschell, Y., Graur, I.A., Ivanov, M.S., Kudryavtsev, A.N., Bondar, Y.A.: Numerical simulation of shock wave propagation in microchannels using continuum and kinetic approaches. Shock Waves 19, 307–316 (2009)CrossRefMATH
21.
go back to reference Arun Kumar, R., Kim, H.D., Setoguchi, T.: Computational analysis of the wave motions in micro-shock tube flow. J. Aerosp. Eng. 228(4), 594–610 (2014) Arun Kumar, R., Kim, H.D., Setoguchi, T.: Computational analysis of the wave motions in micro-shock tube flow. J. Aerosp. Eng. 228(4), 594–610 (2014)
22.
go back to reference Arun Kumar, R., Kim, H.D., Setoguchi, T.: Effect of finite diaphragm rupture process on micro shock tube flows. J. Fluids Eng. 135(8), 081203 (2013)CrossRef Arun Kumar, R., Kim, H.D., Setoguchi, T.: Effect of finite diaphragm rupture process on micro shock tube flows. J. Fluids Eng. 135(8), 081203 (2013)CrossRef
23.
go back to reference Oh, C.K., Oran, E.S., Sinkovits, R.S.: Computations of high-speed high Knudsen number microchannels flows. J. Thermophys. Heat Transfer 11, 497–505 (1997)CrossRef Oh, C.K., Oran, E.S., Sinkovits, R.S.: Computations of high-speed high Knudsen number microchannels flows. J. Thermophys. Heat Transfer 11, 497–505 (1997)CrossRef
24.
go back to reference Skews, B.W.: The shape of a diffracting shock wave. J. Fluid Mech. 29(2), 297–304 (1967)CrossRef Skews, B.W.: The shape of a diffracting shock wave. J. Fluid Mech. 29(2), 297–304 (1967)CrossRef
25.
go back to reference Skews, B.W.: The perturbed region behind a diffracting shock wave. J. Fluid Mech. 29(4), 705–719 (1967)CrossRef Skews, B.W.: The perturbed region behind a diffracting shock wave. J. Fluid Mech. 29(4), 705–719 (1967)CrossRef
26.
go back to reference Kim, H.D., Setoguchi, T.: Study of the discharge of weak shocks from an open end of a duct. Journal of Sound Vibration. 226(5), 1011–1028 (1999)CrossRef Kim, H.D., Setoguchi, T.: Study of the discharge of weak shocks from an open end of a duct. Journal of Sound Vibration. 226(5), 1011–1028 (1999)CrossRef
27.
go back to reference Abe, A., Takayama, K.: Numerical simulation and density measurement of a shock wave discharged from the open end of a shock tube. Jpn. Soc. Mech. Eng. Int. J. 33, 216 (1990) Abe, A., Takayama, K.: Numerical simulation and density measurement of a shock wave discharged from the open end of a shock tube. Jpn. Soc. Mech. Eng. Int. J. 33, 216 (1990)
28.
go back to reference Chang, K.S., Kim, J.K.: Numerical investigation of inviscid wave dynamics in an expansion tube. Shock Wave. 5, 33–45 (1995)CrossRefMATH Chang, K.S., Kim, J.K.: Numerical investigation of inviscid wave dynamics in an expansion tube. Shock Wave. 5, 33–45 (1995)CrossRefMATH
29.
go back to reference Jiang, Z., Takayama, K., Babinsky, H., Meguro, T.: Transient shock wave flows in tubes with a sudden change in cross section. Shock Waves 7, 151–162 (1997)CrossRef Jiang, Z., Takayama, K., Babinsky, H., Meguro, T.: Transient shock wave flows in tubes with a sudden change in cross section. Shock Waves 7, 151–162 (1997)CrossRef
30.
go back to reference BeskokAluru, K.: Microflows and Nanoflows-Fundamentals and Simulation. Springer, New York (2005) BeskokAluru, K.: Microflows and Nanoflows-Fundamentals and Simulation. Springer, New York (2005)
31.
go back to reference Janardhanraj, S., Abhishek, K., Jagadeesh, G.: Insights into the shockwave attenuation in miniature shock tubes. J. Fluid Mech. 910, A3 (2021)MathSciNetCrossRefMATH Janardhanraj, S., Abhishek, K., Jagadeesh, G.: Insights into the shockwave attenuation in miniature shock tubes. J. Fluid Mech. 910, A3 (2021)MathSciNetCrossRefMATH
Metadata
Title
Shock wave diffraction in micro-shock tubes with sudden expansion
Authors
Aswin Suresh
Rajat Raj
Arun Kumar Rajagopal
Publication date
25-02-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 6/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03518-1

Other articles of this Issue 6/2023

Acta Mechanica 6/2023 Go to the issue

Premium Partners