Skip to main content
Top
Published in: Cluster Computing 5/2019

06-02-2018

Short-term load forecasting based on multivariate time series prediction and weighted neural network with random weights and kernels

Authors: Kun Lang, Mingyuan Zhang, Yongbo Yuan, Xijian Yue

Published in: Cluster Computing | Special Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Forecasting short-term load is a basic but indispensable problem for power system operations. This paper treats the forecasting problem as a multivariate time series forecasting problem. The electricity load and the corresponding temperature data are analyzed as correlative time series, and are reconstructed to the multivariate phase space. A neural network with random weights and kernels, which combines the advantages of the neural network and support vector machine including simple training and good generalization performance, is used as the forecasting model. Then, in order to further improve the forecasting performance, different weights are applied to the input data in the phase space according to the predictive value, and the resulting model is called weighted neural network with random weights and kernels. Simulation results based on the real world data set from the EUNITE competition show the effectiveness of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gross, G., Galiana, F.D.: Short-term load forecasting. Proc. IEEE 75(12), 1558–1573 (1987)CrossRef Gross, G., Galiana, F.D.: Short-term load forecasting. Proc. IEEE 75(12), 1558–1573 (1987)CrossRef
2.
go back to reference Papalexopoulos, A.D., Hesterberg, T.C.: A regression-based approach to short-term system load forecasting. IEEE Trans. Power Syst. 5(4), 1535–1547 (1990)CrossRef Papalexopoulos, A.D., Hesterberg, T.C.: A regression-based approach to short-term system load forecasting. IEEE Trans. Power Syst. 5(4), 1535–1547 (1990)CrossRef
3.
go back to reference Chen, B.-J., Chang, M.-W., Lin, C.-J.: Load forecasting using support vector machines: a study on EUNITE competition 2001. IEEE Trans. Power Syst. 19(4), 1821–1830 (2004)CrossRef Chen, B.-J., Chang, M.-W., Lin, C.-J.: Load forecasting using support vector machines: a study on EUNITE competition 2001. IEEE Trans. Power Syst. 19(4), 1821–1830 (2004)CrossRef
4.
go back to reference Park, D.C., et al.: Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst. 6(2), 442–449 (1991)CrossRef Park, D.C., et al.: Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst. 6(2), 442–449 (1991)CrossRef
5.
go back to reference Lertpalangsunti, N., Chan, C.: An architectural framework for the construction of hybrid intelligent forecasting systems: application for electricity demand prediction. Eng. Appl. Artif. Intell. 11(4), 549–565 (1998)CrossRef Lertpalangsunti, N., Chan, C.: An architectural framework for the construction of hybrid intelligent forecasting systems: application for electricity demand prediction. Eng. Appl. Artif. Intell. 11(4), 549–565 (1998)CrossRef
6.
go back to reference Pino, R., et al.: Forecasting next-day price of electricity in the Spanish energy market using artificial neural networks. Eng. Appl. Artif. Intell. 21(1), 53–62 (2008)CrossRef Pino, R., et al.: Forecasting next-day price of electricity in the Spanish energy market using artificial neural networks. Eng. Appl. Artif. Intell. 21(1), 53–62 (2008)CrossRef
7.
go back to reference Elattar, E.E., Goulermas, J., Wu, Q.H.: Electric load forecasting based on locally weighted support vector regression. Syst. Man Cybern. Part C 40(4), 438–447 (2010)CrossRef Elattar, E.E., Goulermas, J., Wu, Q.H.: Electric load forecasting based on locally weighted support vector regression. Syst. Man Cybern. Part C 40(4), 438–447 (2010)CrossRef
8.
go back to reference Dash, P., et al.: Fuzzy and neuro-fuzzy computing models for electric load forecasting. Eng. Appl. Artif. Intell. 8(4), 423–433 (1995)CrossRef Dash, P., et al.: Fuzzy and neuro-fuzzy computing models for electric load forecasting. Eng. Appl. Artif. Intell. 8(4), 423–433 (1995)CrossRef
9.
go back to reference Lou, C.W., Dong, M.C.: Modeling data uncertainty on electric load forecasting based on Type-2 fuzzy logic set theory. Eng. Appl. Artif. Intell. 25(8), 1567–1576 (2012)CrossRef Lou, C.W., Dong, M.C.: Modeling data uncertainty on electric load forecasting based on Type-2 fuzzy logic set theory. Eng. Appl. Artif. Intell. 25(8), 1567–1576 (2012)CrossRef
10.
go back to reference Kodogiannis, V., Anagnostakis, E.: A study of advanced learning algorithms for short-term load forecasting. Eng. Appl. Artif. Intell. 12(2), 159–173 (1999)CrossRef Kodogiannis, V., Anagnostakis, E.: A study of advanced learning algorithms for short-term load forecasting. Eng. Appl. Artif. Intell. 12(2), 159–173 (1999)CrossRef
11.
go back to reference Wan, C., et al.: Probabilistic forecasting of wind power generation using extreme learning machine. IEEE Trans. Power Syst. 29(3), 1033–1044 (2014)CrossRef Wan, C., et al.: Probabilistic forecasting of wind power generation using extreme learning machine. IEEE Trans. Power Syst. 29(3), 1033–1044 (2014)CrossRef
12.
go back to reference Wan, C., et al.: A hybrid approach for probabilistic forecasting of electricity price. IEEE Trans. Smart Grid 5(1), 463–470 (2014)CrossRef Wan, C., et al.: A hybrid approach for probabilistic forecasting of electricity price. IEEE Trans. Smart Grid 5(1), 463–470 (2014)CrossRef
13.
go back to reference Sapankevych, N., Sankar, R.: Time series prediction using support vector machines: a survey. Comput. Intell. Mag. IEEE 4(2), 24–38 (2009)CrossRef Sapankevych, N., Sankar, R.: Time series prediction using support vector machines: a survey. Comput. Intell. Mag. IEEE 4(2), 24–38 (2009)CrossRef
14.
go back to reference Luo, L., Chen, X.: Integrating piecewise linear representation and weighted support vector machine for stock trading signal prediction. Appl. Soft Comput. 13(2), 806–816 (2013)CrossRef Luo, L., Chen, X.: Integrating piecewise linear representation and weighted support vector machine for stock trading signal prediction. Appl. Soft Comput. 13(2), 806–816 (2013)CrossRef
15.
go back to reference Chakraborty, K., et al.: Forecasting the behavior of multivariate time series using neural networks. Neural Netw. 5(6), 961–970 (1992)CrossRef Chakraborty, K., et al.: Forecasting the behavior of multivariate time series using neural networks. Neural Netw. 5(6), 961–970 (1992)CrossRef
16.
go back to reference Aneirosc-Pérez, G., Cao, R., Vilarc-Fernández, J.M.: Functional methods for time series prediction: a nonparametric approach. J. Forecast. 30(4), 377–392 (2011)MathSciNetCrossRef Aneirosc-Pérez, G., Cao, R., Vilarc-Fernández, J.M.: Functional methods for time series prediction: a nonparametric approach. J. Forecast. 30(4), 377–392 (2011)MathSciNetCrossRef
17.
go back to reference Popescu, F.: Robust statistics for describing causality in multivariate time series. NIPS Mini-Symposium on Causality in Time Series 8(8), 78–82 (2011) Popescu, F.: Robust statistics for describing causality in multivariate time series. NIPS Mini-Symposium on Causality in Time Series 8(8), 78–82 (2011)
18.
go back to reference Slavakis, K., Bouboulis, P., Theodoridis, S.: Adaptive multiregression in reproducing kernel hilbert spaces: the multiaccess mimo channel case. IEEE Trans. Neural Netw Learn. Syst. 23(2), 260–276 (2012)CrossRef Slavakis, K., Bouboulis, P., Theodoridis, S.: Adaptive multiregression in reproducing kernel hilbert spaces: the multiaccess mimo channel case. IEEE Trans. Neural Netw Learn. Syst. 23(2), 260–276 (2012)CrossRef
19.
go back to reference Richard, C., Bermudez, J.C.M., Honeine, P.: Online prediction of time series data with kernels. IEEE Trans. Signal Process. 57(3), 1058–1067 (2009)MathSciNetMATHCrossRef Richard, C., Bermudez, J.C.M., Honeine, P.: Online prediction of time series data with kernels. IEEE Trans. Signal Process. 57(3), 1058–1067 (2009)MathSciNetMATHCrossRef
20.
go back to reference Han, M., et al.: Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Signal Process. 52(12), 3409–3416 (2004)MathSciNetMATHCrossRef Han, M., et al.: Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Signal Process. 52(12), 3409–3416 (2004)MathSciNetMATHCrossRef
21.
go back to reference Yee, P., Haykin, S.: A dynamic regularized radial basis function network for nonlinear, nonstationary time series prediction. IEEE Trans. Signal Process. 47(9), 2503–2521 (1999)MathSciNetMATHCrossRef Yee, P., Haykin, S.: A dynamic regularized radial basis function network for nonlinear, nonstationary time series prediction. IEEE Trans. Signal Process. 47(9), 2503–2521 (1999)MathSciNetMATHCrossRef
22.
go back to reference Bach, F.R., Jordan, M.: Learning graphical models for stationary time series. IEEE Trans. Signal Process. 52(8), 2189–2199 (2004)MathSciNetMATHCrossRef Bach, F.R., Jordan, M.: Learning graphical models for stationary time series. IEEE Trans. Signal Process. 52(8), 2189–2199 (2004)MathSciNetMATHCrossRef
23.
go back to reference Han, H.-G., Qiao, J.-F.: Adaptive computation algorithm for RBF neural network. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 342–347 (2012)CrossRef Han, H.-G., Qiao, J.-F.: Adaptive computation algorithm for RBF neural network. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 342–347 (2012)CrossRef
24.
go back to reference Li, D., Han, M., Wang, J.: Chaotic time series prediction based on a novel robust echo state network. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 787–799 (2012)CrossRef Li, D., Han, M., Wang, J.: Chaotic time series prediction based on a novel robust echo state network. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 787–799 (2012)CrossRef
25.
go back to reference Vairappan, C., et al.: Batch type local search-based adaptive neuro-fuzzy inference system (ANFIS) with self-feedbacks for time-series prediction. Neurocomputing 72(7), 1870–1877 (2009)CrossRef Vairappan, C., et al.: Batch type local search-based adaptive neuro-fuzzy inference system (ANFIS) with self-feedbacks for time-series prediction. Neurocomputing 72(7), 1870–1877 (2009)CrossRef
26.
go back to reference Matsumoto, T., et al.: Reconstructions and predictions of nonlinear dynamical systems: a hierarchical Bayesian approach. IEEE Trans. Signal Process. 49(9), 2138–2155 (2001)MathSciNetMATHCrossRef Matsumoto, T., et al.: Reconstructions and predictions of nonlinear dynamical systems: a hierarchical Bayesian approach. IEEE Trans. Signal Process. 49(9), 2138–2155 (2001)MathSciNetMATHCrossRef
27.
go back to reference Engel, Y., Mannor, S., Meir, R.: The kernel recursive least-squares algorithm. IEEE Trans. Signal Process. 52(8), 2275–2285 (2004)MathSciNetMATHCrossRef Engel, Y., Mannor, S., Meir, R.: The kernel recursive least-squares algorithm. IEEE Trans. Signal Process. 52(8), 2275–2285 (2004)MathSciNetMATHCrossRef
28.
29.
go back to reference Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)CrossRef Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)CrossRef
30.
go back to reference Wilamowski, B.M., Yu, H.: Neural network learning without backpropagation. IEEE Trans. Neural Netw. 21(11), 1793–1803 (2010)CrossRef Wilamowski, B.M., Yu, H.: Neural network learning without backpropagation. IEEE Trans. Neural Netw. 21(11), 1793–1803 (2010)CrossRef
31.
go back to reference Schmidt, W.F., Kraaijveld, M., Duin, R.P.: Feedforward neural networks with random weights. In: Pattern Recognition, 1992. Vol. 2. Conference B: Pattern Recognition Methodology and Systems, Proceedings., 11th IAPR International Conference on IEEE. 1992 Schmidt, W.F., Kraaijveld, M., Duin, R.P.: Feedforward neural networks with random weights. In: Pattern Recognition, 1992. Vol. 2. Conference B: Pattern Recognition Methodology and Systems, Proceedings., 11th IAPR International Conference on IEEE. 1992
32.
go back to reference Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)CrossRef Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)CrossRef
33.
go back to reference Pouzols, F.M., Lendasse, A.: Evolving fuzzy optimally pruned extreme learning machine for regression problems. Evol. Syst. 1(1), 43–58 (2010)CrossRef Pouzols, F.M., Lendasse, A.: Evolving fuzzy optimally pruned extreme learning machine for regression problems. Evol. Syst. 1(1), 43–58 (2010)CrossRef
34.
go back to reference Van Heeswijk, M., et al.: Adaptive ensemble models of extreme learning machines for time series prediction. Artif. Neural Netw. ICANN 3(8), 305–314 (2009) Van Heeswijk, M., et al.: Adaptive ensemble models of extreme learning machines for time series prediction. Artif. Neural Netw. ICANN 3(8), 305–314 (2009)
35.
go back to reference Nizar, A., Dong, Z., Wang, Y.: Power utility nontechnical loss analysis with extreme learning machine method. IEEE Trans. Power Syst. 23(3), 946–955 (2008)CrossRef Nizar, A., Dong, Z., Wang, Y.: Power utility nontechnical loss analysis with extreme learning machine method. IEEE Trans. Power Syst. 23(3), 946–955 (2008)CrossRef
36.
go back to reference Mohammed, A.A., et al.: Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognit 44(10), 2588–2597 (2011)MATHCrossRef Mohammed, A.A., et al.: Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognit 44(10), 2588–2597 (2011)MATHCrossRef
37.
go back to reference Miche, Y., et al.: OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010)CrossRef Miche, Y., et al.: OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010)CrossRef
38.
go back to reference Soria-Olivas, E., et al.: BELM: Bayesian extreme learning machine. IEEE Trans. Neural Netw. 22(3), 505–509 (2011)CrossRef Soria-Olivas, E., et al.: BELM: Bayesian extreme learning machine. IEEE Trans. Neural Netw. 22(3), 505–509 (2011)CrossRef
39.
go back to reference Yang, H., et al.: Localized support vector regression for time series prediction. Neurocomputing 72(10), 2659–2669 (2009)CrossRef Yang, H., et al.: Localized support vector regression for time series prediction. Neurocomputing 72(10), 2659–2669 (2009)CrossRef
40.
go back to reference Zhao, P., Xing, L., Yu, J.: Chaotic time series prediction: from one to another. Phys. Lett. A 373(25), 2174–2177 (2009)MATHCrossRef Zhao, P., Xing, L., Yu, J.: Chaotic time series prediction: from one to another. Phys. Lett. A 373(25), 2174–2177 (2009)MATHCrossRef
41.
go back to reference Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybern. 2(2), 107–122 (2011)CrossRef Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybern. 2(2), 107–122 (2011)CrossRef
Metadata
Title
Short-term load forecasting based on multivariate time series prediction and weighted neural network with random weights and kernels
Authors
Kun Lang
Mingyuan Zhang
Yongbo Yuan
Xijian Yue
Publication date
06-02-2018
Publisher
Springer US
Published in
Cluster Computing / Issue Special Issue 5/2019
Print ISSN: 1386-7857
Electronic ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-017-1685-7

Other articles of this Special Issue 5/2019

Cluster Computing 5/2019 Go to the issue

Premium Partner