Skip to main content
Top
Published in: Journal of Materials Science 18/2020

19-03-2020 | Ceramics

Silica aerogels as hosting matrices for WS2 nanotubes and their optical characterization

Authors: Anastasiya Sedova, Bojana Višić, Victor Vega-Mayoral, Daniele Vella, Christoph Gadermaier, Hanna Dodiuk, Samuel Kenig, Reshef Tenne, Raz Gvishi, Galit Bar

Published in: Journal of Materials Science | Issue 18/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to their high porosity, aerogels can be efficiently used as host matrices for functional materials. The solid matrix is advantageous over liquid suspensions because it maintains the nanoparticles static and inhibits agglomeration and precipitation. The current paper reports on the controlled addition of less than 0.1 wt% of WS2 nanotubes (WS2 NTs) to aerogels, retaining the aerogel’s mesoporous structure, and demonstrates how increasing nanotubes’ concentration influences the optical properties of the composite aerogel. The absorption spectrum of WS2 NTs consists of two peaks, attributed to the direct gap transition and referred to as excitons A and B and is preserved in the aerogel. WS2 NTs’ extinction spectrum, on the other hand, is dominated by exciton–polaritons and is modified in the aerogel, with respect to the NTs dispersed in liquid. This occurs due to scattering effects, resulting in broadening with increased NT content, washing out the excitonic transitions. Furthermore, femtosecond optical pump–probe measurements carried out on NTs dispersed in both ethanol and the silica aerogel suggest that the electronic processes underlying the overall optical behaviour of the nanotubes, and hence also their optoelectronic and photochemical properties are preserved in the aerogel matrix. These findings make the obtained nanocomposites interesting for use in modern optical and optoelectronic devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Brinker CJ, Scherer GW (2013) Sol–gel science: the physics and chemistry of sol-gel processing. Academic press, Cambridge Brinker CJ, Scherer GW (2013) Sol–gel science: the physics and chemistry of sol-gel processing. Academic press, Cambridge
2.
3.
go back to reference Aegerter MA, Leventis N, Koebel M (2011) Aerogels handbook. Springer, BerlinCrossRef Aegerter MA, Leventis N, Koebel M (2011) Aerogels handbook. Springer, BerlinCrossRef
4.
go back to reference PR Coronado (1999) Method for making monolithic metal oxide aerogels. U.S. Patent No. 5,958,363. US Patent and Trademark Office, Washington, DC PR Coronado (1999) Method for making monolithic metal oxide aerogels. U.S. Patent No. 5,958,363. US Patent and Trademark Office, Washington, DC
5.
go back to reference Lu X, Arduini-Schuster M (1992) Thermal conductivity of monolithic organic aerogels. Science 255:971–972CrossRef Lu X, Arduini-Schuster M (1992) Thermal conductivity of monolithic organic aerogels. Science 255:971–972CrossRef
6.
go back to reference Ślosarczyk A (2017) Recent advances in research on the synthetic fiber based silica aerogel nanocomposites. Nanomaterials 7(44):1–15 Ślosarczyk A (2017) Recent advances in research on the synthetic fiber based silica aerogel nanocomposites. Nanomaterials 7(44):1–15
7.
go back to reference Brinker C, Keefer K, Schaefer D, Ashley C (1982) Sol-gel transition in simple silicates. J Non-Cryst Solids 48:47–64CrossRef Brinker C, Keefer K, Schaefer D, Ashley C (1982) Sol-gel transition in simple silicates. J Non-Cryst Solids 48:47–64CrossRef
8.
go back to reference Tillotson T, Hrubesh L (1992) Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process. J Non-Cryst Solids 145:44–50CrossRef Tillotson T, Hrubesh L (1992) Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process. J Non-Cryst Solids 145:44–50CrossRef
9.
go back to reference Gronauer M, Kadur A, Fricke J (1986) Mechanical and acoustic properties of silica aerogel Aerogels. Springer, Berlin, pp 167–173 Gronauer M, Kadur A, Fricke J (1986) Mechanical and acoustic properties of silica aerogel Aerogels. Springer, Berlin, pp 167–173
10.
go back to reference Caps R, Döll G, Fricke J, Heinemann U, Hetfleisch J (1989) Thermal transport in monolithic silica aerogel. J Phys Colloq 50:C4-113–C4-118 Caps R, Döll G, Fricke J, Heinemann U, Hetfleisch J (1989) Thermal transport in monolithic silica aerogel. J Phys Colloq 50:C4-113–C4-118
11.
go back to reference Hrubesh LW, Poco JF (1995) Thin aerogel films for optical, thermal, acoustic and electronic applications. J Non-Cryst Solids 188:46–53CrossRef Hrubesh LW, Poco JF (1995) Thin aerogel films for optical, thermal, acoustic and electronic applications. J Non-Cryst Solids 188:46–53CrossRef
12.
go back to reference GA Sprehn, LW Hrubesh, JF Poco, PH Sandler (1997) US Patent No. 5,684,907. US Patent and Trademark Office, Washington, DC GA Sprehn, LW Hrubesh, JF Poco, PH Sandler (1997) US Patent No. 5,684,907. US Patent and Trademark Office, Washington, DC
13.
go back to reference Kim Y, Baek S, Gupta P et al (2019) Air-like plasmonics with ultralow-refractive-index silica aerogels. Sci Rep 9(1):1–9CrossRef Kim Y, Baek S, Gupta P et al (2019) Air-like plasmonics with ultralow-refractive-index silica aerogels. Sci Rep 9(1):1–9CrossRef
14.
go back to reference Asner D, Butler F, Dominick J et al (1996) Experimental study of aerogel Cherenkov detectors for particle identification. Nucl Instrum Methods Phys Res Sect A 374:286–292CrossRef Asner D, Butler F, Dominick J et al (1996) Experimental study of aerogel Cherenkov detectors for particle identification. Nucl Instrum Methods Phys Res Sect A 374:286–292CrossRef
15.
go back to reference Sumiyoshi T, Adachi I, Enomoto R et al (1999) Silica aerogel Cherenkov counter for the KEK B-factory experiment. Nucl Instrum Methods Phys Res Sect A 433:385–391CrossRef Sumiyoshi T, Adachi I, Enomoto R et al (1999) Silica aerogel Cherenkov counter for the KEK B-factory experiment. Nucl Instrum Methods Phys Res Sect A 433:385–391CrossRef
16.
go back to reference Günay AA, Kim H, Nagarajan N et al (2018) Optically transparent thermally insulating silica aerogels for solar thermal insulation. ACS Appl Mater 10:12603–12611CrossRef Günay AA, Kim H, Nagarajan N et al (2018) Optically transparent thermally insulating silica aerogels for solar thermal insulation. ACS Appl Mater 10:12603–12611CrossRef
17.
go back to reference Rao AV, Pajonk G (2001) Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels. J Non-Cryst Solids 285:202–209CrossRef Rao AV, Pajonk G (2001) Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels. J Non-Cryst Solids 285:202–209CrossRef
18.
go back to reference Emmerling A, Petricevic R, Beck A, Wang P, Scheller H, Fricke J (1995) Relationship between optical transparency and nanostructural features of silica aerogels. J Non-Cryst Solids 185:240–248CrossRef Emmerling A, Petricevic R, Beck A, Wang P, Scheller H, Fricke J (1995) Relationship between optical transparency and nanostructural features of silica aerogels. J Non-Cryst Solids 185:240–248CrossRef
19.
go back to reference Reim M, Reichenauer G, Körner W et al (2004) Silica-aerogel granulate–structural, optical and thermal properties. J Non-Cryst Solids 350:358–363CrossRef Reim M, Reichenauer G, Körner W et al (2004) Silica-aerogel granulate–structural, optical and thermal properties. J Non-Cryst Solids 350:358–363CrossRef
20.
go back to reference Duer K, Svendsen S (1998) Monolithic silica aerogel in superinsulating glazings. Sol Energy 63:259–267CrossRef Duer K, Svendsen S (1998) Monolithic silica aerogel in superinsulating glazings. Sol Energy 63:259–267CrossRef
21.
go back to reference Thomas S, Sakthikumar D, Joy P, Yoshida Y, Anantharaman M (2006) Optically transparent magnetic nanocomposites based on encapsulated Fe3O4 nanoparticles in a sol–gel silica network. Nanotechnology 17:5565–5572CrossRef Thomas S, Sakthikumar D, Joy P, Yoshida Y, Anantharaman M (2006) Optically transparent magnetic nanocomposites based on encapsulated Fe3O4 nanoparticles in a sol–gel silica network. Nanotechnology 17:5565–5572CrossRef
22.
go back to reference Hund J, Bertino M, Zhang G, Sotiriou-Leventis C, Leventis N (2004) Synthesis of homogeneous alloy metal nanoparticles in silica aerogels. J Non-Cryst Solids 350:9–13CrossRef Hund J, Bertino M, Zhang G, Sotiriou-Leventis C, Leventis N (2004) Synthesis of homogeneous alloy metal nanoparticles in silica aerogels. J Non-Cryst Solids 350:9–13CrossRef
23.
go back to reference Martínez S, Vallribera A, Cotet CL et al (2005) Nanosized metallic particles embedded in silica and carbon aerogels as catalysts in the Mizoroki-Heck coupling reaction. New J Chem 29:1342–1345CrossRef Martínez S, Vallribera A, Cotet CL et al (2005) Nanosized metallic particles embedded in silica and carbon aerogels as catalysts in the Mizoroki-Heck coupling reaction. New J Chem 29:1342–1345CrossRef
24.
go back to reference Liu H, Chu P, Li H, Zhang H, Li J (2016) Novel three-dimensional halloysite nanotubes/silica composite aerogels with enhanced mechanical strength and low thermal conductivity prepared at ambient pressure. JSST 80:651–659 Liu H, Chu P, Li H, Zhang H, Li J (2016) Novel three-dimensional halloysite nanotubes/silica composite aerogels with enhanced mechanical strength and low thermal conductivity prepared at ambient pressure. JSST 80:651–659
25.
go back to reference Lamy-Mendes A, Silva RF, Durães L (2018) Advances in carbon nanostructure–silica aerogel composites: a review. J Mater Chem A 6:1340–1369CrossRef Lamy-Mendes A, Silva RF, Durães L (2018) Advances in carbon nanostructure–silica aerogel composites: a review. J Mater Chem A 6:1340–1369CrossRef
26.
go back to reference Chernov AI, Predein AY, Danilyuk AF, Kuznetsov VL, Larina TV, Obraztsova ED (2016) Optical properties of silica aerogels with embedded multiwalled carbon nanotubes. Phys Status Solidi (b) 253:2440–2445CrossRef Chernov AI, Predein AY, Danilyuk AF, Kuznetsov VL, Larina TV, Obraztsova ED (2016) Optical properties of silica aerogels with embedded multiwalled carbon nanotubes. Phys Status Solidi (b) 253:2440–2445CrossRef
27.
go back to reference Sedova A, Bar G, Goldbart O et al (2015) Reinforcing silica aerogels with tungsten disulfide nanotubes. J Supercrit Fluid 106:9–15CrossRef Sedova A, Bar G, Goldbart O et al (2015) Reinforcing silica aerogels with tungsten disulfide nanotubes. J Supercrit Fluid 106:9–15CrossRef
28.
go back to reference Wang C-T, Wu C-L, Chen I-C, Huang Y-H (2005) Humidity sensors based on silica nanoparticle aerogel thin films. Sens Actuators B Chem 107:402–410CrossRef Wang C-T, Wu C-L, Chen I-C, Huang Y-H (2005) Humidity sensors based on silica nanoparticle aerogel thin films. Sens Actuators B Chem 107:402–410CrossRef
29.
go back to reference Bromley R, Murray R, Yoffe A (1972) The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials. J Phys C Solid State Phys 5:759–778CrossRef Bromley R, Murray R, Yoffe A (1972) The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials. J Phys C Solid State Phys 5:759–778CrossRef
30.
go back to reference Višić B (2015) Properties of two-dimensional graphene-like materials. Nanomater Energy 4:18–29CrossRef Višić B (2015) Properties of two-dimensional graphene-like materials. Nanomater Energy 4:18–29CrossRef
31.
go back to reference Li X, Zhu H (2015) Two-dimensional MoS 2: properties, preparation, and applications. J Materiomics 1:33–44CrossRef Li X, Zhu H (2015) Two-dimensional MoS 2: properties, preparation, and applications. J Materiomics 1:33–44CrossRef
32.
go back to reference Worsley MA, Shin SJ, Merrill MD et al (2015) Ultralow density, monolithic WS2, MoS2, and MoS2/graphene aerogels. ACS Nano 9:4698–4705CrossRef Worsley MA, Shin SJ, Merrill MD et al (2015) Ultralow density, monolithic WS2, MoS2, and MoS2/graphene aerogels. ACS Nano 9:4698–4705CrossRef
33.
go back to reference Tenne R, Margulis L, Mea G, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulphide. Nature 360:444–446CrossRef Tenne R, Margulis L, Mea G, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulphide. Nature 360:444–446CrossRef
34.
go back to reference Margulis L, Salitra G, Tenne R, Tallanker M (1993) Nested fullerene-like structures. Nature 365:113–114CrossRef Margulis L, Salitra G, Tenne R, Tallanker M (1993) Nested fullerene-like structures. Nature 365:113–114CrossRef
35.
go back to reference Kaplan-Ashiri I, Cohen SR, Gartsman K et al (2006) On the mechanical behavior of WS2 nanotubes under axial tension and compression. PNAS 103:523–528CrossRef Kaplan-Ashiri I, Cohen SR, Gartsman K et al (2006) On the mechanical behavior of WS2 nanotubes under axial tension and compression. PNAS 103:523–528CrossRef
36.
go back to reference Goldbart O, Sedova A, Yadgarov L et al (2014) Lubricating medical devices with fullerene-like nanoparticles. Trib Lett 55:103–109CrossRef Goldbart O, Sedova A, Yadgarov L et al (2014) Lubricating medical devices with fullerene-like nanoparticles. Trib Lett 55:103–109CrossRef
37.
go back to reference Levi R, Garel J, Teich D, Seifert G, Tenne R, Joselevich E (2015) Nanotube electromechanics beyond carbon: the case of WS2. ACS Nano 9:12224–12232CrossRef Levi R, Garel J, Teich D, Seifert G, Tenne R, Joselevich E (2015) Nanotube electromechanics beyond carbon: the case of WS2. ACS Nano 9:12224–12232CrossRef
38.
go back to reference Višić B, Panchakarla LS, Tenne R (2017) Inorganic nanotubes and fullerene-like nanoparticles at the crossroads between solid-state chemistry and nanotechnology. JACS 139:12865–12878CrossRef Višić B, Panchakarla LS, Tenne R (2017) Inorganic nanotubes and fullerene-like nanoparticles at the crossroads between solid-state chemistry and nanotechnology. JACS 139:12865–12878CrossRef
39.
go back to reference Rapoport L, Nepomnyashchy O, Lapsker I et al (2005) Behavior of fullerene-like WS2 nanoparticles under severe contact conditions. Wear 259:703–707CrossRef Rapoport L, Nepomnyashchy O, Lapsker I et al (2005) Behavior of fullerene-like WS2 nanoparticles under severe contact conditions. Wear 259:703–707CrossRef
40.
go back to reference Yadgarov L, Choi CL, Sedova A et al (2014) Dependence of the absorption and optical surface plasmon scattering of MoS2 nanoparticles on aspect ratio, size, and media. ACS Nano 8:3575–3583CrossRef Yadgarov L, Choi CL, Sedova A et al (2014) Dependence of the absorption and optical surface plasmon scattering of MoS2 nanoparticles on aspect ratio, size, and media. ACS Nano 8:3575–3583CrossRef
41.
go back to reference Višić B, Yadgarov L, Pogna EA et al (2019) Ultrafast nonequilibrium dynamics of strongly coupled resonances in the intrinsic cavity of W S 2 nanotubes. Phys Rev Res 1:033046CrossRef Višić B, Yadgarov L, Pogna EA et al (2019) Ultrafast nonequilibrium dynamics of strongly coupled resonances in the intrinsic cavity of W S 2 nanotubes. Phys Rev Res 1:033046CrossRef
42.
go back to reference Yadgarov L, Višić B, Abir T et al (2018) Strong light–matter interaction in tungsten disulfide nanotubes. Phys Chem Chem Phys 20:20812–20820CrossRef Yadgarov L, Višić B, Abir T et al (2018) Strong light–matter interaction in tungsten disulfide nanotubes. Phys Chem Chem Phys 20:20812–20820CrossRef
43.
go back to reference Yomogida Y, Liu Z, Ichinose Y, Yanagi K (2018) Sorting transition-metal dichalcogenide nanotubes by centrifugation. ACS Omega 3:8932–8936CrossRef Yomogida Y, Liu Z, Ichinose Y, Yanagi K (2018) Sorting transition-metal dichalcogenide nanotubes by centrifugation. ACS Omega 3:8932–8936CrossRef
44.
go back to reference Sinha SS, Zak A, Rosentsveig R, Pinkas I, Tenne R, Yadgarov L (2019) Size-dependent control of exciton-polariton interactions in WS2 nanotubes. Small 16(4):1904390CrossRef Sinha SS, Zak A, Rosentsveig R, Pinkas I, Tenne R, Yadgarov L (2019) Size-dependent control of exciton-polariton interactions in WS2 nanotubes. Small 16(4):1904390CrossRef
45.
go back to reference Kazanov D, Poshakinskiy A, Davydov VY et al (2018) Multiwall MoS2 tubes as optical resonators. Appl Phys Lett 113:101106CrossRef Kazanov D, Poshakinskiy A, Davydov VY et al (2018) Multiwall MoS2 tubes as optical resonators. Appl Phys Lett 113:101106CrossRef
46.
go back to reference Krause M, Mücklich A, Zak A, Seifert G, Gemming S (2011) High resolution TEM study of WS2 nanotubes. Phys Status Solidi (b) 248:2716–2719CrossRef Krause M, Mücklich A, Zak A, Seifert G, Gemming S (2011) High resolution TEM study of WS2 nanotubes. Phys Status Solidi (b) 248:2716–2719CrossRef
47.
go back to reference Zak A, Ecker LS, Efrati R, Drangai L, Fleischer N, Tenne R (2011) Large-scale synthesis of WS2 multiwall nanotubes and their dispersion, an update. Sens Transducers 12:1–10CrossRef Zak A, Ecker LS, Efrati R, Drangai L, Fleischer N, Tenne R (2011) Large-scale synthesis of WS2 multiwall nanotubes and their dispersion, an update. Sens Transducers 12:1–10CrossRef
48.
go back to reference Strickland D, Mourou G (1985) Compression of amplified chirped optical pulses. Opt Commun 55:447–449CrossRef Strickland D, Mourou G (1985) Compression of amplified chirped optical pulses. Opt Commun 55:447–449CrossRef
49.
go back to reference Thommes M (2004) Physical adsorption characterization of ordered and amorphous mesoporous materials. Nanoporous Mater Sci Eng 11:317CrossRef Thommes M (2004) Physical adsorption characterization of ordered and amorphous mesoporous materials. Nanoporous Mater Sci Eng 11:317CrossRef
50.
go back to reference Ślosarczyk A, Barełkowski M, Niemier S, Jakubowska P (2015) Synthesis and characterisation of silica aerogel/carbon microfibers nanocomposites dried in supercritical and ambient pressure conditions. JSST 76:227–232 Ślosarczyk A, Barełkowski M, Niemier S, Jakubowska P (2015) Synthesis and characterisation of silica aerogel/carbon microfibers nanocomposites dried in supercritical and ambient pressure conditions. JSST 76:227–232
51.
go back to reference Frey GL, Elani S, Homyonfer M, Feldman Y, Tenne R (1998) Optical-absorption spectra of inorganic fullerenelike MS2 (M = Mo, W). Phys Rev B 57:6666–6671CrossRef Frey GL, Elani S, Homyonfer M, Feldman Y, Tenne R (1998) Optical-absorption spectra of inorganic fullerenelike MS2 (M = Mo, W). Phys Rev B 57:6666–6671CrossRef
52.
go back to reference Melită L, Croitoru C (2019) Aerogel, a high performance material for thermal insulation-a brief overview of the building applications. E3S web of conferences. Vol. 111. EDP Sciences Melită L, Croitoru C (2019) Aerogel, a high performance material for thermal insulation-a brief overview of the building applications. E3S web of conferences. Vol. 111. EDP Sciences
53.
go back to reference Vega-Mayoral V, Vella D, Borzda T et al (2016) Exciton and charge carrier dynamics in few-layer WS2. Nanoscale 8:5428–5434CrossRef Vega-Mayoral V, Vella D, Borzda T et al (2016) Exciton and charge carrier dynamics in few-layer WS2. Nanoscale 8:5428–5434CrossRef
54.
go back to reference Pogna EA, Marsili M, De Fazio D et al (2016) Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2. ACS Nano 10:1182–1188CrossRef Pogna EA, Marsili M, De Fazio D et al (2016) Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2. ACS Nano 10:1182–1188CrossRef
55.
go back to reference Borzda T, Gadermaier C, Vujicic N et al (2015) Charge photogeneration in few-layer MoS2. Adv Funct Mater 25:3351–3358CrossRef Borzda T, Gadermaier C, Vujicic N et al (2015) Charge photogeneration in few-layer MoS2. Adv Funct Mater 25:3351–3358CrossRef
56.
go back to reference Vega-Mayoral V, Borzda T, Vella D et al (2017) Charge trapping and coalescence dynamics in few layer MoS2. 2D Mater 5:015011CrossRef Vega-Mayoral V, Borzda T, Vella D et al (2017) Charge trapping and coalescence dynamics in few layer MoS2. 2D Mater 5:015011CrossRef
Metadata
Title
Silica aerogels as hosting matrices for WS2 nanotubes and their optical characterization
Authors
Anastasiya Sedova
Bojana Višić
Victor Vega-Mayoral
Daniele Vella
Christoph Gadermaier
Hanna Dodiuk
Samuel Kenig
Reshef Tenne
Raz Gvishi
Galit Bar
Publication date
19-03-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04562-1

Other articles of this Issue 18/2020

Journal of Materials Science 18/2020 Go to the issue

Premium Partners