Skip to main content
Top
Published in: Strength of Materials 4/2022

21-11-2022

Simple Approach to Model the Strength of Solid-Solution High Entropy Alloys in Co-Cr-Fe-Mn-Ni System

Author: A. Shafiei

Published in: Strength of Materials | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A simple fitting approach is introduced for modeling the strength (hardness) of quaternary and quinary face-centered cubic (fcc) solid solution high entropy alloys (HEAs) in the Co-Cr-Fe-Mn-Ni system. The strength of solid solution HEAs could be modeled by a polynomial equation where experimental data are used to find the polynomial coefficients. It is observed that the proposed polynomial could model the strength of solid solution HEAs very well. Effects of constituent elements on the hardness of quinary Co-Cr-Fe-Mn-Ni alloys are investigated; the results indicate that alloys’ strength decreases with the Fe content. The softening effect of Fe is explained by considering its impact on reducing the shear modulus of alloys. Furthermore, the effects of parameters enthalpy of mixing and valence electron concentration on the strength of HEAs are investigated. The results show that the enthalpy of mixing has a noticeable impact on the hardness of quinary Co-Cr-Fe-Mn-Ni alloys, and the strength increases with decreasing the enthalpy of mixing. Furthermore, the results show that quinary Co-Cr-Fe-Mn-Ni alloys’ hardness increases with the parameter valence electron concentration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. P. George, D. Raabe, and R. O. Ritchie, “High-entropy alloys,” Nature Reviews Materials, 4, 515-534 (2019).CrossRef E. P. George, D. Raabe, and R. O. Ritchie, “High-entropy alloys,” Nature Reviews Materials, 4, 515-534 (2019).CrossRef
2.
go back to reference D. B. Miracle, “High entropy alloys as a bold step forward in alloy development,” Nature Communications, 10, 1805 (2019).CrossRef D. B. Miracle, “High entropy alloys as a bold step forward in alloy development,” Nature Communications, 10, 1805 (2019).CrossRef
3.
go back to reference D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Materialia, 122, 448-511 (2017).CrossRef D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Materialia, 122, 448-511 (2017).CrossRef
4.
go back to reference Y. F. Ye, Q. Wang, J. Lu, et al., “High-entropy alloy: challenges and prospects,” Materials Today, 19 (6), 349-362 (2016).CrossRef Y. F. Ye, Q. Wang, J. Lu, et al., “High-entropy alloy: challenges and prospects,” Materials Today, 19 (6), 349-362 (2016).CrossRef
5.
go back to reference C. Zhang, F. Zhang, S. Chen, and W. Cao, “Computational thermodynamics aided high-entropy alloy design,” JOM, 64, 839-845 (2012).CrossRef C. Zhang, F. Zhang, S. Chen, and W. Cao, “Computational thermodynamics aided high-entropy alloy design,” JOM, 64, 839-845 (2012).CrossRef
6.
go back to reference C. Jiang and B.P. Uberuaga, “Efficient Ab initio modeling of random multicomponent alloys,” Physical Review Letters, 116, 105501(2016). C. Jiang and B.P. Uberuaga, “Efficient Ab initio modeling of random multicomponent alloys,” Physical Review Letters, 116, 105501(2016).
7.
go back to reference Y. Lederer, C. Toher, K.S. Vecchio, and S. Curtarolo, “The search for high entropy alloys: a high throughput ab-initio approach,” Acta Materialia, 159, 364-383 (2018).CrossRef Y. Lederer, C. Toher, K.S. Vecchio, and S. Curtarolo, “The search for high entropy alloys: a high throughput ab-initio approach,” Acta Materialia, 159, 364-383 (2018).CrossRef
8.
go back to reference O. N. Senkov, J. D. Miller, D. B. Miracle, and C. Woodward, “Accelerated exploration of multiprincipal element alloys with solid solution phases,” Nature Communications, 6, 6529 (2015).CrossRef O. N. Senkov, J. D. Miller, D. B. Miracle, and C. Woodward, “Accelerated exploration of multiprincipal element alloys with solid solution phases,” Nature Communications, 6, 6529 (2015).CrossRef
9.
go back to reference C. Varvenne, A. Luque, and W. A. Curtin, “Theory of strengthening in fcc high entropy alloys,” Acta Materialia, 118, 164-176 (2016).CrossRef C. Varvenne, A. Luque, and W. A. Curtin, “Theory of strengthening in fcc high entropy alloys,” Acta Materialia, 118, 164-176 (2016).CrossRef
10.
go back to reference F. Thiel, D. Utt, A. Kauffmann, et al., “Breakdown of Varvenne scaling in (AuNiPdPt)1−xCux high-entropy alloys,” Scripta Materialia, 18, 15-18 (2020).CrossRef F. Thiel, D. Utt, A. Kauffmann, et al., “Breakdown of Varvenne scaling in (AuNiPdPt)1−xCux high-entropy alloys,” Scripta Materialia, 18, 15-18 (2020).CrossRef
11.
go back to reference G. Bracq, M. Laurent-Brocq, C. Varvenne, et al., “Combining experiments and modelling to explore the solid solution strengthening of high and medium entropy alloys,” Acta Materialia, 177, 266-279 (2019).CrossRef G. Bracq, M. Laurent-Brocq, C. Varvenne, et al., “Combining experiments and modelling to explore the solid solution strengthening of high and medium entropy alloys,” Acta Materialia, 177, 266-279 (2019).CrossRef
12.
go back to reference M. L. Brocq, L. Perrière, R. Pirès, F. Prima, P. Vermaut, Y. Champion, “From diluted solid solutions to high entropy alloys: on the evolution of properties with composition of multi-components alloys,” Materials Science and Engineering A, 696, 228-235 (2017).CrossRef M. L. Brocq, L. Perrière, R. Pirès, F. Prima, P. Vermaut, Y. Champion, “From diluted solid solutions to high entropy alloys: on the evolution of properties with composition of multi-components alloys,” Materials Science and Engineering A, 696, 228-235 (2017).CrossRef
13.
go back to reference D. R. Askeland, P. P. Fulay, and W. J. Wright, The Science and Engineering of Materials, Cengage Learning, Stamford, CT (2011), p. 266. D. R. Askeland, P. P. Fulay, and W. J. Wright, The Science and Engineering of Materials, Cengage Learning, Stamford, CT (2011), p. 266.
14.
go back to reference B. C. Peters and A. Hendrickson, “The strength of tantalum columbium alloy single crystals”, Acta Metallurgica, 14 (9), 1121-1122 (1966).CrossRef B. C. Peters and A. Hendrickson, “The strength of tantalum columbium alloy single crystals”, Acta Metallurgica, 14 (9), 1121-1122 (1966).CrossRef
15.
go back to reference J. R. Stephens and W. R. Witzke, “Alloy hardening and softening in binary molybdenum alloys as related to electron concentration,” Journal of the Less Common Metals, 29, 371-388 (1972).CrossRef J. R. Stephens and W. R. Witzke, “Alloy hardening and softening in binary molybdenum alloys as related to electron concentration,” Journal of the Less Common Metals, 29, 371-388 (1972).CrossRef
16.
go back to reference W. Fang, R. Chang, X. Zhang, et al., “Effects of cobalt on the structure and mechanical behavior of non-equal molar CoxFe50−xCr25Ni25 high entropy alloys,” Materials Science and Engineering A, 723, 221-228 (2018).CrossRef W. Fang, R. Chang, X. Zhang, et al., “Effects of cobalt on the structure and mechanical behavior of non-equal molar CoxFe50−xCr25Ni25 high entropy alloys,” Materials Science and Engineering A, 723, 221-228 (2018).CrossRef
17.
go back to reference K. G. Pradeep, C. C. Tasan, M. J. Yao, et al., “Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design,” Materials Science and Engineering A, 648, 183-192 (2015).CrossRef K. G. Pradeep, C. C. Tasan, M. J. Yao, et al., “Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design,” Materials Science and Engineering A, 648, 183-192 (2015).CrossRef
18.
go back to reference M. P. Agustianingrum, I. Ondicho, D. E. Jodi, et al., “Theoretical evaluation of solid solution interaction in Fex(CoCrMnNi)100–x medium- and high-entropy alloys,” Materials Science & Engineering A, 759, 633-639 (2019).CrossRef M. P. Agustianingrum, I. Ondicho, D. E. Jodi, et al., “Theoretical evaluation of solid solution interaction in Fex(CoCrMnNi)100–x medium- and high-entropy alloys,” Materials Science & Engineering A, 759, 633-639 (2019).CrossRef
19.
go back to reference Y. Zhou, X. Jin, X. Y. Du, et al., “Comparison of the structure and properties of equiatomic and non-equiatomic multicomponent alloys,” Materials Science and Technology, 34 (8), 988-991 (2018).CrossRef Y. Zhou, X. Jin, X. Y. Du, et al., “Comparison of the structure and properties of equiatomic and non-equiatomic multicomponent alloys,” Materials Science and Technology, 34 (8), 988-991 (2018).CrossRef
20.
go back to reference M. Tian, C. Wu, Y. Liu, H. Peng, et al., “Phase stability and microhardness of CoCrFeMnxNi2–x high entropy alloys,” Journal of Alloys and Compounds, 811, 152025 (2019). M. Tian, C. Wu, Y. Liu, H. Peng, et al., “Phase stability and microhardness of CoCrFeMnxNi2–x high entropy alloys,” Journal of Alloys and Compounds, 811, 152025 (2019).
21.
go back to reference M. Laurent-Brocq, L. Perrière, R. Pirès, et al., “Combining tensile tests and nanoindentation to explore the strengthening of high and medium entropy alloys,” Materialia, 7, 100404 (2019). M. Laurent-Brocq, L. Perrière, R. Pirès, et al., “Combining tensile tests and nanoindentation to explore the strengthening of high and medium entropy alloys,” Materialia, 7, 100404 (2019).
22.
go back to reference F. Gil Coury, P. Wilson, K. D. Clarke, et al., “High-throughput solid solution strengthening characterization in high entropy alloys,” Acta Materialia, 167, 1-11 (2019).CrossRef F. Gil Coury, P. Wilson, K. D. Clarke, et al., “High-throughput solid solution strengthening characterization in high entropy alloys,” Acta Materialia, 167, 1-11 (2019).CrossRef
23.
go back to reference K. Jin, Y. F. Gao, and H. Bei, “Intrinsic properties and strengthening mechanism of monocrystalline Ni containing ternary concentrated solid solutions,” Materials Science & Engineering A, 695, 74-79 (2017).CrossRef K. Jin, Y. F. Gao, and H. Bei, “Intrinsic properties and strengthening mechanism of monocrystalline Ni containing ternary concentrated solid solutions,” Materials Science & Engineering A, 695, 74-79 (2017).CrossRef
24.
go back to reference Z. Wu, H. Bei, G. M. Pharr, and E. P. George, “Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures,” Acta Materialia, 81, 428-441 (2014).CrossRef Z. Wu, H. Bei, G. M. Pharr, and E. P. George, “Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures,” Acta Materialia, 81, 428-441 (2014).CrossRef
25.
go back to reference Y. Y. Zhao and T. G. Nieh, “Correlation between lattice distortion and friction stress in Ni-based equiatomic alloys,” Intermetallics, 86, 45-50 (2017).CrossRef Y. Y. Zhao and T. G. Nieh, “Correlation between lattice distortion and friction stress in Ni-based equiatomic alloys,” Intermetallics, 86, 45-50 (2017).CrossRef
26.
go back to reference X. Liu, Z. Pei, and M. Eisenbach, “Dislocation core structures and Peierls stresses of the high-entropy alloy NiCoFeCrMn and its subsystemssubsystems,” Materials and Design, 180, 107955 (2019). X. Liu, Z. Pei, and M. Eisenbach, “Dislocation core structures and Peierls stresses of the high-entropy alloy NiCoFeCrMn and its subsystemssubsystems,” Materials and Design, 180, 107955 (2019).
27.
go back to reference S. S. Sohn, A. K. Silva, Y. Ikeda, et al. “Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion,” Advanced Materials, 31 (8), 1807142 (2019).CrossRef S. S. Sohn, A. K. Silva, Y. Ikeda, et al. “Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion,” Advanced Materials, 31 (8), 1807142 (2019).CrossRef
28.
go back to reference L. Zhang, Y. Xiang, J. Han, and D. J. Srolovitz, “The effect of randomness on the strength of high-entropy alloys,” Acta Materialia, 166, 424-434 (2019).CrossRef L. Zhang, Y. Xiang, J. Han, and D. J. Srolovitz, “The effect of randomness on the strength of high-entropy alloys,” Acta Materialia, 166, 424-434 (2019).CrossRef
29.
go back to reference R. Chen, G. Qin, H. Zheng, et al. “Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility,” Acta Materialia, 144, 129-137 (2018).CrossRef R. Chen, G. Qin, H. Zheng, et al. “Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility,” Acta Materialia, 144, 129-137 (2018).CrossRef
30.
go back to reference F. G. Coury, K. D. Clarke, C. S. Kiminami, et al., “High throughput discovery and design of strong multicomponent metallic solid solutions,” Scientific Reports, 8, 8600 (2018).CrossRef F. G. Coury, K. D. Clarke, C. S. Kiminami, et al., “High throughput discovery and design of strong multicomponent metallic solid solutions,” Scientific Reports, 8, 8600 (2018).CrossRef
31.
go back to reference H. S. Oh, S. J. Kim, K. Odbadrakh, et al., “Engineering atomic-level complexity in high-entropy and complex concentrated alloys,” Nature Communications, 10, 2090 (2019).CrossRef H. S. Oh, S. J. Kim, K. Odbadrakh, et al., “Engineering atomic-level complexity in high-entropy and complex concentrated alloys,” Nature Communications, 10, 2090 (2019).CrossRef
32.
go back to reference Q. J. Li, H. Sheng, and E. Ma, “Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways,” Nature Communications, 10, 3563 (2019).CrossRef Q. J. Li, H. Sheng, and E. Ma, “Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways,” Nature Communications, 10, 3563 (2019).CrossRef
33.
go back to reference C. Niu, C. R. LaRosa, J. Miao, et al., “Magnetically-driven phase transformation strengthening in high entropy alloys,” Nature Communications, 9, 1363 (2018).CrossRef C. Niu, C. R. LaRosa, J. Miao, et al., “Magnetically-driven phase transformation strengthening in high entropy alloys,” Nature Communications, 9, 1363 (2018).CrossRef
34.
go back to reference Y. Zeng, X. Cai, and M. Koslowski, “Effects of the stacking fault energy fluctuations on the strengthening of alloys,” Acta Materialia, 164, 1-11 (2019).CrossRef Y. Zeng, X. Cai, and M. Koslowski, “Effects of the stacking fault energy fluctuations on the strengthening of alloys,” Acta Materialia, 164, 1-11 (2019).CrossRef
35.
go back to reference M. C. Gao, J. W. Yeh, P. K. Liaw, and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer Publishing Co., New York, NY (2016). M. C. Gao, J. W. Yeh, P. K. Liaw, and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer Publishing Co., New York, NY (2016).
36.
go back to reference A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element,” Materials Transactions, 46 (12), 2817-2829 (2005).CrossRef A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element,” Materials Transactions, 46 (12), 2817-2829 (2005).CrossRef
37.
go back to reference S. S. Sohn, A. K. Silva, Y. Ikeda, et al., “Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion,” Advanced Materials, 31 (8), 1807142 (2019).CrossRef S. S. Sohn, A. K. Silva, Y. Ikeda, et al., “Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion,” Advanced Materials, 31 (8), 1807142 (2019).CrossRef
38.
go back to reference A. R. Miedema, P. F. de Châtel, and F. R.de Boer, “Cohesion in alloys - fundamentals of a semi-empirical model,” Physica B+C, 100 (1), 1-28 (1980). A. R. Miedema, P. F. de Châtel, and F. R.de Boer, “Cohesion in alloys - fundamentals of a semi-empirical model,” Physica B+C, 100 (1), 1-28 (1980).
39.
go back to reference L. Zhang, Y. Xiang, J. Han, and D. J. Srolovitz, “The effect of randomness on the strength of high-entropy alloys,” Acta Materialia, 2019, 166, 424-434.CrossRef L. Zhang, Y. Xiang, J. Han, and D. J. Srolovitz, “The effect of randomness on the strength of high-entropy alloys,” Acta Materialia, 2019, 166, 424-434.CrossRef
40.
go back to reference P. Singh, A. V. Smirnov, and D. D. Johnson, “Atomic short-range order and incipient long-range order in high entropy alloys”, Physical Review B, 91, 224204 (2015). P. Singh, A. V. Smirnov, and D. D. Johnson, “Atomic short-range order and incipient long-range order in high entropy alloys”, Physical Review B, 91, 224204 (2015).
41.
go back to reference A. Tamm, A. Aabloo, M. Klintenberg, et al., “Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys,” Acta Materiali, 99, 307-312 (2015). A. Tamm, A. Aabloo, M. Klintenberg, et al., “Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys,” Acta Materiali, 99, 307-312 (2015).
42.
go back to reference A. Sharma, P. Singh, D. D. Johnson, et al. “Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy”, Scientific Reports, 6, 31028 (2016).CrossRef A. Sharma, P. Singh, D. D. Johnson, et al. “Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy”, Scientific Reports, 6, 31028 (2016).CrossRef
43.
go back to reference Y. Ma, Q. Wang, C. Li, L. et al.,“Chemical short-range orders and the induced structural transition in high-entropy alloys,” Scripta Materialia, 144, 64-68 (2018). Y. Ma, Q. Wang, C. Li, L. et al.,“Chemical short-range orders and the induced structural transition in high-entropy alloys,” Scripta Materialia, 144, 64-68 (2018).
44.
go back to reference F. Pettinari-Sturmel, M. Jouiad, H. O. K. Kirchner, et al., “Local disordering and reordering phenomena induced by mobile dislocations in short-range-ordered solid solutions,” Philosophical Magazine A, 82, 3045-3054 (2022).CrossRef F. Pettinari-Sturmel, M. Jouiad, H. O. K. Kirchner, et al., “Local disordering and reordering phenomena induced by mobile dislocations in short-range-ordered solid solutions,” Philosophical Magazine A, 82, 3045-3054 (2022).CrossRef
45.
go back to reference F. Pettinari, M. Prem, G. Krexner, et al., “Local order in industrial and model γ phases of superalloys,” Acta Materialia, 13 (1), 2549-2556 (2001).CrossRef F. Pettinari, M. Prem, G. Krexner, et al., “Local order in industrial and model γ phases of superalloys,” Acta Materialia, 13 (1), 2549-2556 (2001).CrossRef
46.
go back to reference J. R. Stephens and W. R. Witzke, “The role of electron concentration in softening and hardening of ternary molybdenum alloys,” Journal of the Less Common Metals, 41 (2), 265-282 (1975).CrossRef J. R. Stephens and W. R. Witzke, “The role of electron concentration in softening and hardening of ternary molybdenum alloys,” Journal of the Less Common Metals, 41 (2), 265-282 (1975).CrossRef
47.
go back to reference Y. Hiraoka, T. Ogusu, and N. Yoshizawa, “Decrease of yield strength in molybdenum by adding small amounts of Group VIII elements,” Journal of Alloys and Compounds, 381 (1-2), 192-196 (2004). Y. Hiraoka, T. Ogusu, and N. Yoshizawa, “Decrease of yield strength in molybdenum by adding small amounts of Group VIII elements,” Journal of Alloys and Compounds, 381 (1-2), 192-196 (2004).
Metadata
Title
Simple Approach to Model the Strength of Solid-Solution High Entropy Alloys in Co-Cr-Fe-Mn-Ni System
Author
A. Shafiei
Publication date
21-11-2022
Publisher
Springer US
Published in
Strength of Materials / Issue 4/2022
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00448-6

Other articles of this Issue 4/2022

Strength of Materials 4/2022 Go to the issue

Premium Partners