Skip to main content
Top

2019 | OriginalPaper | Chapter

2. Simple Compartmental Models for Disease Transmission

Authors : Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng

Published in: Mathematical Models in Epidemiology

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Communicable diseases that are endemic (always present in a population ) cause many deaths). For example, in 2011 tuberculosis caused an estimated 1,400,000 deaths and HIV/AIDS caused an estimated 1,200,000 deaths worldwide. According to the World Health Organization there were 627,000 deaths caused by malaria, but other estimates put the number of malaria deaths at 1,2000,000. Measles, which is easily treated in the developed world, caused 160,000 deaths in 2011, but in 1980 there were 2,600,000 measles deaths. The striking reduction in measles deaths is due to the availability of a measles vaccine. Other diseases such as typhus, cholera, schistosomiasis, and sleeping sickness are endemic in many parts of the world. The effects of high disease mortality on mean life span and of disease debilitation and mortality on the economy in afflicted countries are considerable. Most of these disease deaths are in less developed countries, especially in Africa, where endemic diseases are a huge barrier to development.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agur,Z.L., G. Mazor, R. Anderson, and Y. Danon (1993) Pulse mass measles vaccination across age cohorts, Proc. Nat. Acad. Sci., 90:11698–11702.CrossRef Agur,Z.L., G. Mazor, R. Anderson, and Y. Danon (1993) Pulse mass measles vaccination across age cohorts, Proc. Nat. Acad. Sci., 90:11698–11702.CrossRef
2.
go back to reference Anderson, R.M. & R.M. May (1991) Infectious Diseases of Humans. Oxford University Press (1991) Anderson, R.M. & R.M. May (1991) Infectious Diseases of Humans. Oxford University Press (1991)
3.
go back to reference Arreola R., A. Crossa, and M.C. Velasco (2000) Discrete-time SEIS models with exogenous re-infection and dispersal between two patches, Department of Biometrics, Cornell University, Technical Report Series, BU-1533-M. Arreola R., A. Crossa, and M.C. Velasco (2000) Discrete-time SEIS models with exogenous re-infection and dispersal between two patches, Department of Biometrics, Cornell University, Technical Report Series, BU-1533-M.
4.
go back to reference Castillo-Chavez, C., K. Cooke, W. Huang, and S.A. Levin (1989a) The role of long incubation periods in the dynamics of HIV/AIDS. Part 1: Single Populations Models, J. Math. Biol.,27:373-98.MathSciNetCrossRef Castillo-Chavez, C., K. Cooke, W. Huang, and S.A. Levin (1989a) The role of long incubation periods in the dynamics of HIV/AIDS. Part 1: Single Populations Models, J. Math. Biol.,27:373-98.MathSciNetCrossRef
5.
go back to reference Castillo-Chavez, C., W. Huang, and J. Li (1996a) Competitive exclusion in gonorrhea models and other sexually-transmitted diseases, SIAM J. Appl. Math, 56: 494–508.MathSciNetCrossRef Castillo-Chavez, C., W. Huang, and J. Li (1996a) Competitive exclusion in gonorrhea models and other sexually-transmitted diseases, SIAM J. Appl. Math, 56: 494–508.MathSciNetCrossRef
6.
go back to reference Castillo-Chavez, C., W. Huang, and J. Li (1997) The effects of females’ susceptibility on the coexistence of multiple pathogen strains of sexually-transmitted diseases, Journal of Mathematical Biology, 35:503–522.MathSciNetCrossRef Castillo-Chavez, C., W. Huang, and J. Li (1997) The effects of females’ susceptibility on the coexistence of multiple pathogen strains of sexually-transmitted diseases, Journal of Mathematical Biology, 35:503–522.MathSciNetCrossRef
7.
go back to reference Castillo-Chavez C., and A.A. Yakubu (2000) Epidemics models on attractors, Contemporary Mathematics, AMS, 284: 23–42. John Wiley & Sons, New York, 2000. Castillo-Chavez C., and A.A. Yakubu (2000) Epidemics models on attractors, Contemporary Mathematics, AMS, 284: 23–42. John Wiley & Sons, New York, 2000.
8.
go back to reference Dietz, K. (1982) Overall patterns in the transmission cycle of infectious disease agents. In: R.M. Anderson, R.M. May (eds) Population Biology of Infectious Diseases. Life Sciences Research Report 25, Springer-Verlag, Berlin-Heidelberg-New York, pp. 87–102 (1982) Dietz, K. (1982) Overall patterns in the transmission cycle of infectious disease agents. In: R.M. Anderson, R.M. May (eds) Population Biology of Infectious Diseases. Life Sciences Research Report 25, Springer-Verlag, Berlin-Heidelberg-New York, pp. 87–102 (1982)
9.
go back to reference Engbert, R. and F. Drepper (1994) Chance and chaos in population biology-models of recurrent epidemics and food chain dynamics, Chaos, Solutions & Fractals, 4(7):1147–1169.CrossRef Engbert, R. and F. Drepper (1994) Chance and chaos in population biology-models of recurrent epidemics and food chain dynamics, Chaos, Solutions & Fractals, 4(7):1147–1169.CrossRef
10.
go back to reference Evans, A.S. (1982) Viral Infections of Humans, 2nd ed., Plenum Press, New York.CrossRef Evans, A.S. (1982) Viral Infections of Humans, 2nd ed., Plenum Press, New York.CrossRef
11.
go back to reference Heesterbeek, J.A.P. and J.A.J Metz (1993) The saturating contact rate in marriage and epidemic models. J. Math. Biol., 31: 529–539.MathSciNetCrossRef Heesterbeek, J.A.P. and J.A.J Metz (1993) The saturating contact rate in marriage and epidemic models. J. Math. Biol., 31: 529–539.MathSciNetCrossRef
12.
go back to reference Hethcote, H.W. (1976) Qualitative analysis for communicable disease models, Math. Biosc., 28:335–356.CrossRef Hethcote, H.W. (1976) Qualitative analysis for communicable disease models, Math. Biosc., 28:335–356.CrossRef
13.
go back to reference Hethcote, H.W. (1989) Three basic epidemiological models. In Applied Mathematical Ecology, S. A. Levin, T.G. Hallam and L.J. Gross, eds., Biomathematics 18, 119–144, Springer-Verlag, Berlin-Heidelberg-New York. Hethcote, H.W. (1989) Three basic epidemiological models. In Applied Mathematical Ecology, S. A. Levin, T.G. Hallam and L.J. Gross, eds., Biomathematics 18, 119–144, Springer-Verlag, Berlin-Heidelberg-New York.
14.
go back to reference Hethcote, H.W. and S.A. Levin (1989) Periodicity in epidemic models. In : S.A. Levin, T.G. Hallam & L.J. Gross (eds) Applied Mathematical Ecology, Biomathematics 18, Springer-Verlag, Berlin-Heidelberg-New York: pp. 193–211.CrossRef Hethcote, H.W. and S.A. Levin (1989) Periodicity in epidemic models. In : S.A. Levin, T.G. Hallam & L.J. Gross (eds) Applied Mathematical Ecology, Biomathematics 18, Springer-Verlag, Berlin-Heidelberg-New York: pp. 193–211.CrossRef
15.
go back to reference Hethcote, H.W., H.W. Stech and P. van den Driessche (1981) Periodicity and stability in epidemic models: a survey. In: S. Busenberg & K.L. Cooke (eds.) Differential Equations and Applications in Ecology, Epidemics and Population Problems, Academic Press, New York: 65–82.CrossRef Hethcote, H.W., H.W. Stech and P. van den Driessche (1981) Periodicity and stability in epidemic models: a survey. In: S. Busenberg & K.L. Cooke (eds.) Differential Equations and Applications in Ecology, Epidemics and Population Problems, Academic Press, New York: 65–82.CrossRef
16.
go back to reference Hurwitz, A. (1895) Über die Bedingungen unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen bezizt, Math. Annalen 46: 273–284.CrossRef Hurwitz, A. (1895) Über die Bedingungen unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen bezizt, Math. Annalen 46: 273–284.CrossRef
17.
go back to reference Kermack, W.O. & A.G. McKendrick (1927) A contribution to the mathematical theory of epidemics. Proc. Royal Soc. London. 115: 700–721.CrossRef Kermack, W.O. & A.G. McKendrick (1927) A contribution to the mathematical theory of epidemics. Proc. Royal Soc. London. 115: 700–721.CrossRef
18.
go back to reference Kermack, W.O. & A.G. McKendrick (1932) Contributions to the mathematical theory of epidemics, part. II. Proc. Roy. Soc. London, 138: 55–83.CrossRef Kermack, W.O. & A.G. McKendrick (1932) Contributions to the mathematical theory of epidemics, part. II. Proc. Roy. Soc. London, 138: 55–83.CrossRef
19.
go back to reference Kermack, W.O. & A.G. McKendrick (1932) Contributions to the mathematical theory of epidemics, part. III. Proc. Roy. Soc. London, 141: 94–112.CrossRef Kermack, W.O. & A.G. McKendrick (1932) Contributions to the mathematical theory of epidemics, part. III. Proc. Roy. Soc. London, 141: 94–112.CrossRef
20.
go back to reference Mena-Lorca, J. & H.W. Hethcote (1992) Dynamic models of infectious diseases as regulators of population size. J. Math. Biol., 30: 693–716.MathSciNetMATH Mena-Lorca, J. & H.W. Hethcote (1992) Dynamic models of infectious diseases as regulators of population size. J. Math. Biol., 30: 693–716.MathSciNetMATH
21.
go back to reference Raggett, G.F. (1982) Modeling the Eyam plague, IMA Journal, 18:221–226.MATH Raggett, G.F. (1982) Modeling the Eyam plague, IMA Journal, 18:221–226.MATH
22.
go back to reference Routh, E.J. (1877) A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion, MacMillan. Routh, E.J. (1877) A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion, MacMillan.
23.
go back to reference Sánchez B.N., P.A. Gonzalez, R.A. Saenz (2000) The influence of dispersal between two patches on the dynamics of a disease, Department of Biometrics, Cornell University, Technical Report Series, BU-1531-M. Sánchez B.N., P.A. Gonzalez, R.A. Saenz (2000) The influence of dispersal between two patches on the dynamics of a disease, Department of Biometrics, Cornell University, Technical Report Series, BU-1531-M.
24.
go back to reference Shulgin, B., L. Stone, and Z. Agur (1998) Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol., 60:1123–1148.CrossRef Shulgin, B., L. Stone, and Z. Agur (1998) Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol., 60:1123–1148.CrossRef
25.
go back to reference Stone, L., B. Shulgin, Z. Agur (2000) Theoretical examination of the pulse vaccination in the SIR epidemic model, Math. and Computer Modeling, 31:207–215.MathSciNetCrossRef Stone, L., B. Shulgin, Z. Agur (2000) Theoretical examination of the pulse vaccination in the SIR epidemic model, Math. and Computer Modeling, 31:207–215.MathSciNetCrossRef
Metadata
Title
Simple Compartmental Models for Disease Transmission
Authors
Fred Brauer
Carlos Castillo-Chavez
Zhilan Feng
Copyright Year
2019
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-9828-9_2

Premium Partner