Skip to main content
Top
Published in:

20-04-2023

Simple Data Analytics Approach Coupled with Larson–Miller Parameter Analysis for Improved Prediction of Creep Rupture Life

Authors: Changho Lee, Taejoo Lee, Yoon Suk Choi

Published in: Metals and Materials International | Issue 11/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Machine learning of the creep rupture life dataset, which consists of test temperatures, stresses and rupture lives, received less attention in the community due to numerous physics-based and empirical models already available for the prediction of the creep rupture life, and a limited number (typically about 10 to 40) of available creep rupture life data points considered to be too small to be trained for the reliable prediction. A simple data analytics approach was developed for the quick and reliable assessment of the creep rupture life. The proposed approach involves linear regression as a major algorithm and the four features [two generic features (temperature (T) and stress (σ)) and two physics-informed features (ln σ and −1/T)], and exhibited superior creep rupture life predictions (validated by the 41 creep datasets of ferritic Cr steels) without any violation of creep phenomenology and data overfitting. In particular, the proposed approach was extremely useful to assess the fidelity of the Laron–Miller relation for a given creep rupture life dataset and to find an optimum Larson–Miller constant that minimizes a deviation from the ideal Larson–Miller relation. An analytical model was also developed based on curve fitting of Larson–Miller parameters calibrated by the optimum Larson–Miller constant. The proposed analytical model gave additional improvement in creep rupture life prediction, particularly for creep datasets, of which creep rupture lives were slightly less predicted by the data analytics approach. The two proposed models provided a synergistic effect in creep rupture life prediction when interactively used.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F.C. Monkman, An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. Proc. ASTM 56, 593–620 (1956) F.C. Monkman, An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. Proc. ASTM 56, 593–620 (1956)
3.
go back to reference E.I. Samuel, B. Choudhary, D.R. Palaparti, M. Mathew, Proc. Eng. 55, 64–69 (2013)CrossRef E.I. Samuel, B. Choudhary, D.R. Palaparti, M. Mathew, Proc. Eng. 55, 64–69 (2013)CrossRef
4.
go back to reference F.R. Larson, J. Miller, Trans. Am. Soc. Mech. Eng. 74, 765–771 (1952) F.R. Larson, J. Miller, Trans. Am. Soc. Mech. Eng. 74, 765–771 (1952)
5.
6.
go back to reference K.-H. Grote, H. Hefazi (eds.), Springer Handbook of Mechanical Engineering, 2nd edn. (Springer Nature, Switzerland, 2021), p. 174 K.-H. Grote, H. Hefazi (eds.), Springer Handbook of Mechanical Engineering, 2nd edn. (Springer Nature, Switzerland, 2021), p. 174
7.
go back to reference S.S. Manson, A.M. Haferd, A Linear Time-Temperature Relation for Extrapolation of Creep and Stress-Rupture Data (NACA, Washinton, 1953) S.S. Manson, A.M. Haferd, A Linear Time-Temperature Relation for Extrapolation of Creep and Stress-Rupture Data (NACA, Washinton, 1953)
8.
go back to reference J. Zhao, D.-M. Li, Y.-Y. Fang, J. Pressure Vessel Technol. 132, 064502 (2010)CrossRef J. Zhao, D.-M. Li, Y.-Y. Fang, J. Pressure Vessel Technol. 132, 064502 (2010)CrossRef
9.
go back to reference R.L. Orr, O.D. Sherby, J.E. Dorn, Correlations of Rupture Data for Metals at Elevated Temperatures (Institue of Engineering Research University of California, Berkeley, 1953)CrossRef R.L. Orr, O.D. Sherby, J.E. Dorn, Correlations of Rupture Data for Metals at Elevated Temperatures (Institue of Engineering Research University of California, Berkeley, 1953)CrossRef
10.
go back to reference K. Kimura, K. Sawada, H. Kushima, Creep deformation, rupture strength, and rupture ductility of grades T/P92 steels, in Proceedings of the ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. Seattle, 25-27 March 2014 (ASME, New York, 2014), pp. 193–201 K. Kimura, K. Sawada, H. Kushima, Creep deformation, rupture strength, and rupture ductility of grades T/P92 steels, in Proceedings of the ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. Seattle, 25-27 March 2014 (ASME, New York, 2014), pp. 193–201
11.
go back to reference M.E. Kassner, M.-T. Pérez-Prado, Prog. Mater Sci. 45, 1–102 (2000) M.E. Kassner, M.-T. Pérez-Prado, Prog. Mater Sci. 45, 1–102 (2000)
12.
13.
go back to reference M. Yang, Q. Wang, X.-L. Song, J. Jia, Z.-D. Xiang, Int. J. Mater. Res. 107, 133–138 (2016)CrossRef M. Yang, Q. Wang, X.-L. Song, J. Jia, Z.-D. Xiang, Int. J. Mater. Res. 107, 133–138 (2016)CrossRef
14.
go back to reference Q. Wang, M. Yang, X. Song, J. Jia, Z. Xiang, Metall. Mater. Trans. A. 47, 3479–3487 (2016)CrossRef Q. Wang, M. Yang, X. Song, J. Jia, Z. Xiang, Metall. Mater. Trans. A. 47, 3479–3487 (2016)CrossRef
15.
go back to reference S.C. Kim, J.-H. Shim, W.-S. Jung, Y.S. Choi, Met. Mater. Int. 25, 713–722 (2019)CrossRef S.C. Kim, J.-H. Shim, W.-S. Jung, Y.S. Choi, Met. Mater. Int. 25, 713–722 (2019)CrossRef
17.
go back to reference P.F. Tortorelli, H. Wang, K.A. Unocic, M.L. Santella, J.P. Shingledecker, V. Cedro III, Long-term creep-rupture behavior of Inconel® 740 and Haynes® 282, in Proceedings of the ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. Seattle, 25–27 (ASME, New York, 2014), pp. 29–36 P.F. Tortorelli, H. Wang, K.A. Unocic, M.L. Santella, J.P. Shingledecker, V. Cedro III, Long-term creep-rupture behavior of Inconel® 740 and Haynes® 282, in Proceedings of the ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. Seattle, 25–27 (ASME, New York, 2014), pp. 29–36
18.
19.
20.
21.
go back to reference S. Williams, M. Bache, B. Wilshire, Mater. Sci. Technol. 26, 1332–1337 (2010)CrossRef S. Williams, M. Bache, B. Wilshire, Mater. Sci. Technol. 26, 1332–1337 (2010)CrossRef
22.
23.
go back to reference Y. Liu, J. Wu, Z. Wang, X.-G. Lu, M. Avdeev, S. Shi, C. Wang, T. Yu, Acta Mater. 195, 454–467 (2020)CrossRef Y. Liu, J. Wu, Z. Wang, X.-G. Lu, M. Avdeev, S. Shi, C. Wang, T. Yu, Acta Mater. 195, 454–467 (2020)CrossRef
24.
go back to reference S. Xiang, X. Chen, Z. Fan, T. Chen, X. Lian, J. Market. Res. 18, 268–281 (2022) S. Xiang, X. Chen, Z. Fan, T. Chen, X. Lian, J. Market. Res. 18, 268–281 (2022)
25.
go back to reference Y. Tan, X. Wang, Z. Kang, F. Ye, Y. Chen, D. Zhou, X. Zhang, J. Gong, J. Market. Res. 21, 4745–4760 (2022) Y. Tan, X. Wang, Z. Kang, F. Ye, Y. Chen, D. Zhou, X. Zhang, J. Gong, J. Market. Res. 21, 4745–4760 (2022)
27.
go back to reference D. Shin, Y. Yamamoto, M.P. Brady, S. Lee, J.A. Haynes, Acta Mater. 168, 321–330 (2019)CrossRef D. Shin, Y. Yamamoto, M.P. Brady, S. Lee, J.A. Haynes, Acta Mater. 168, 321–330 (2019)CrossRef
28.
go back to reference J. Wang, Y. Fa, Y. Tian, X. Yu, J. Market. Res. 13, 635–650 (2021) J. Wang, Y. Fa, Y. Tian, X. Yu, J. Market. Res. 13, 635–650 (2021)
29.
30.
31.
32.
go back to reference A.K. Verma, J.A. Hawk, L.S. Bruckman, R.H. French, V. Romanov, J.L. Carter, Metall. Mater. Trans. A 50, 3106–3120 (2019) A.K. Verma, J.A. Hawk, L.S. Bruckman, R.H. French, V. Romanov, J.L. Carter, Metall. Mater. Trans. A 50, 3106–3120 (2019)
34.
go back to reference Y.S. Yoo, I.S. Kim, D.H. Kim, C.Y. Jo, H.M. Kim, C.N. Jones, The application of neural network to the development of single crystal superalloys, in Proceedings of the 10th International Symposium on Superalloys, ed. by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S, Walston. Superalloys 2004, Seven Springs, 19-23 September 2004 (TMS, Pittsburgh, 2004), pp. 942–950 Y.S. Yoo, I.S. Kim, D.H. Kim, C.Y. Jo, H.M. Kim, C.N. Jones, The application of neural network to the development of single crystal superalloys, in Proceedings of the 10th International Symposium on Superalloys, ed. by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S, Walston. Superalloys 2004, Seven Springs, 19-23 September 2004 (TMS, Pittsburgh, 2004), pp. 942–950
35.
go back to reference Z. Abdallah, V. Gray, M. Whittaker, K. Perkins, Materials 7, 3371–3398 (2014)CrossRef Z. Abdallah, V. Gray, M. Whittaker, K. Perkins, Materials 7, 3371–3398 (2014)CrossRef
36.
go back to reference X.W. Zhu, H.H. Cheng, M.H. Shen, J.P. Pan, Adv. Mater. Res. 791–793, 374–377 (2013) X.W. Zhu, H.H. Cheng, M.H. Shen, J.P. Pan, Adv. Mater. Res. 791–793, 374–377 (2013)
37.
38.
go back to reference P. Wan, H. Yu, F. Li, P. Gao, L. Zhang, Z. Zhao, Met. Mater. Int. 28, 2498–2512 (2022) P. Wan, H. Yu, F. Li, P. Gao, L. Zhang, Z. Zhao, Met. Mater. Int. 28, 2498–2512 (2022)
40.
go back to reference J. Yu, I.Y. Moon, H.W. Jeong, H.W. Lee, J.H. Kim, S.-H. Kang, Met. Mater. Int. 28, 3016–3032 (2022) J. Yu, I.Y. Moon, H.W. Jeong, H.W. Lee, J.H. Kim, S.-H. Kang, Met. Mater. Int. 28, 3016–3032 (2022)
41.
go back to reference S. Dutta, P.S. Robi, Met. Mater. Int. 28, 2884–2897 (2022) S. Dutta, P.S. Robi, Met. Mater. Int. 28, 2884–2897 (2022)
Metadata
Title
Simple Data Analytics Approach Coupled with Larson–Miller Parameter Analysis for Improved Prediction of Creep Rupture Life
Authors
Changho Lee
Taejoo Lee
Yoon Suk Choi
Publication date
20-04-2023
Publisher
The Korean Institute of Metals and Materials
Published in
Metals and Materials International / Issue 11/2023
Print ISSN: 1598-9623
Electronic ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-023-01445-3

Other articles of this Issue 11/2023

Metals and Materials International 11/2023 Go to the issue

Premium Partners