Skip to main content
Top
Published in: Steel in Translation 7/2019

01-07-2019

Simulating the Electrical Parameters of an AC Arc Furnace in Electrosmelting

Authors: B. S. Dmitrievskii, A. V. Bashkatova

Published in: Steel in Translation | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A mathematical model is proposed for an arc furnace in electrosmelting. So that the model will describe furnace behavior as accurately as possible, research on this topic is analyzed, and basic design principles are formulated. Specifically, the starting point is to derive the equivalent circuit of the furnace. Cassie’s nonlinear differential equation for the conductivity, which has been widely adopted by researchers, is employed in formulating the mathematical model of the arc. In the model, we use calculations of the circuit parameters on the low-voltage secondary side of the transformer and also draw on literature data. To investigate furnace behavior at different times, different values are adopted for the time constant of arc conductivity. By that means, the nonsteady state of the regions close to the electrodes under the influence of external perturbations may be taken into account. The variation in temperature, variation, and pressure of the gas in the furnace during the electrosmelting process is also taken into account. This approach permits realistic description of the furnace behavior with nonsteady arc combustion at different stages of the process; assessment of the possible control parameters; and determination of the requirements on the control system. The basic structure of the model of a three-phase ac arc furnace is derived. MATLAB Simulink software is used in all the calculations of the circuit components and in modeling. The structure includes an ac voltage source; the resistances and inductances on the secondary side of the transformer; the corresponding short-circuit resistances and inductances; and a model of the ac arc. The model is used for dynamic analysis of the arc as an electrical object. Specifically, the dependence of the voltage on the current (the volt–ampere characteristic) is determined. The shape of the volt–ampere characteristic determines the arc combustion, the regions where the arc exists and is stable, and correspondingly the quality of control. The volt–ampere characteristic is investigated with different voltages on the secondary side of the transformer and different arc lengths and also for different values of the time constant of arc conductivity. The model also permits analysis of the static characteristics. The current dependence of the arc length is nonlinear at various voltage stages of the transformer. Recommendations are made regarding the selection of the control signals. Control systems are devised for different stages of smelting. For example, in the initial stage (melting), the control system must minimize the number of disruptions when the region of arc existence is small and must limit the power introduced. Simulation shows that, when the process is nonsteady, adaptive control signals must be used, because they are able to adjust to the continuously changing state of the arc furnace.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Svenchanskii, A.D., Zherdev, I.T., Kruchinin, A.M., et al., Elektricheskie promyshlennye pechi: Dugovye pechi i ustanovki spetsal’nogo nagreva (Electric Industrial Furnaces: Arc Furnaces and Special Heating Installations), Svenchanskii, A.D., Ed., Moscow: Energoizdat, 1981. Svenchanskii, A.D., Zherdev, I.T., Kruchinin, A.M., et al., Elektricheskie promyshlennye pechi: Dugovye pechi i ustanovki spetsal’nogo nagreva (Electric Industrial Furnaces: Arc Furnaces and Special Heating Installations), Svenchanskii, A.D., Ed., Moscow: Energoizdat, 1981.
2.
go back to reference Gelada, J., Electrical analysis of the steel melting arc furnace, Iron Steel Eng., 1993, vol. 70, no. 5, pp. 35–39. Gelada, J., Electrical analysis of the steel melting arc furnace, Iron Steel Eng., 1993, vol. 70, no. 5, pp. 35–39.
3.
go back to reference Kornilov, G.P., Nikolaev, A.A., and Khramshin, T.R., Modelirovanie elektrotekhnicheskikh kompleksov metallurgicheskikh predpriyatii (Modeling of Electrical Systems of Metallurgical Enterprises), Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ. im. G.I. Nosova, 2012. Kornilov, G.P., Nikolaev, A.A., and Khramshin, T.R., Modelirovanie elektrotekhnicheskikh kompleksov metallurgicheskikh predpriyatii (Modeling of Electrical Systems of Metallurgical Enterprises), Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ. im. G.I. Nosova, 2012.
4.
go back to reference Cherednichenko, V.S., An’shakov, A.S., and Kuz’min, M.G., Plazmennye elektrotekhnologicheskie ustanovki (Plasma Electrotechnological Installations), Cherednichenko, V.S., Ed., Novosibirsk: Novosib. Gos. Tekh. Univ., 2011. Cherednichenko, V.S., An’shakov, A.S., and Kuz’min, M.G., Plazmennye elektrotekhnologicheskie ustanovki (Plasma Electrotechnological Installations), Cherednichenko, V.S., Ed., Novosibirsk: Novosib. Gos. Tekh. Univ., 2011.
5.
go back to reference Ozgun, O. and Abur, A., Development of an arc furnace model for power quality studies, Proc. 1999 IEEE Power Engineering Society Summer Meeting, Piscataway, NJ: Inst. Electr. Electron. Eng., 1999, no 1, pp. 507–511. Ozgun, O. and Abur, A., Development of an arc furnace model for power quality studies, Proc. 1999 IEEE Power Engineering Society Summer Meeting, Piscataway, NJ: Inst. Electr. Electron. Eng., 1999, no 1, pp. 507–511.
6.
go back to reference Dantsis, Ya.B., Katsevich, L.S, Zhilov, G.M., et al., Korotkie seti i elektricheskie parametry dugovykh elektropechei: Spravochnik (Short Networks and Electrical Parameters of Electric Arc Furnaces: Handbook), Moscow: Metallurgiya, 1987. Dantsis, Ya.B., Katsevich, L.S, Zhilov, G.M., et al., Korotkie seti i elektricheskie parametry dugovykh elektropechei: Spravochnik (Short Networks and Electrical Parameters of Electric Arc Furnaces: Handbook), Moscow: Metallurgiya, 1987.
7.
go back to reference Egorov, A.V., Elektroplavil’nye pechi chernoi metallurgii (Electrical Melting Furnaces for Ferrous Metallurgy), Moscow: Metallurgiya, 1985. Egorov, A.V., Elektroplavil’nye pechi chernoi metallurgii (Electrical Melting Furnaces for Ferrous Metallurgy), Moscow: Metallurgiya, 1985.
8.
go back to reference Bessonov, L.A., Teoreticheskie osnovy elektrotekhniki. Elektricheskie tsepi (Theoretical Foundations of Electrical Engineering. Electrical Circuits), Moscow: Yurait, 2014. Bessonov, L.A., Teoreticheskie osnovy elektrotekhniki. Elektricheskie tsepi (Theoretical Foundations of Electrical Engineering. Electrical Circuits), Moscow: Yurait, 2014.
9.
go back to reference Cassie, A.M., Arc Rupture and Circuit Severity: A New Theory, CIGRE Report no. 102, Paris: Int. Grands Res. Electr. Haute Tension, 1939, pp. 1–14. Cassie, A.M., Arc Rupture and Circuit Severity: A New Theory, CIGRE Report no. 102, Paris: Int. Grands Res. Electr. Haute Tension, 1939, pp. 1–14.
10.
go back to reference Bowman, B. and Krüger, K., Arc Furnace Physics, Düsseldorf: Stahleisen Verlag, 2009. Bowman, B. and Krüger, K., Arc Furnace Physics, Düsseldorf: Stahleisen Verlag, 2009.
11.
go back to reference Katsevich, L.S., Raschet i konstruirovanie elektricheskikh pechei (Calculation and Design of Electric Furnaces), Moscow: Gosenergoizdat, 1959. Katsevich, L.S., Raschet i konstruirovanie elektricheskikh pechei (Calculation and Design of Electric Furnaces), Moscow: Gosenergoizdat, 1959.
12.
go back to reference Aliferov, A.I., Bikeev, R.A., Goreva, L.P., et al., Dugovye elektropechi: uchebnoe posobie dlya vuzov (Electric Arc Furnaces: Manual for Higher Education Institutions), Novosibirsk: Novosib. Gos. Tekh. Univ., 2018. Aliferov, A.I., Bikeev, R.A., Goreva, L.P., et al., Dugovye elektropechi: uchebnoe posobie dlya vuzov (Electric Arc Furnaces: Manual for Higher Education Institutions), Novosibirsk: Novosib. Gos. Tekh. Univ., 2018.
13.
go back to reference Kolcheganov, R.V., Kupova, A.V., and Deryuzhkova, N.E., MatLab model of electric arc furnace, Sovrem. Naukoemkie Tekhnol., 2014, no. 5-1, pp. 50–51. Kolcheganov, R.V., Kupova, A.V., and Deryuzhkova, N.E., MatLab model of electric arc furnace, Sovrem. Naukoemkie Tekhnol., 2014, no. 5-1, pp. 50–51.
14.
go back to reference Pentegov, I.V., Mathematical model of a dynamic electric arc post, Avtom. Svarka, 1976, no. 6, pp. 8–12. Pentegov, I.V., Mathematical model of a dynamic electric arc post, Avtom. Svarka, 1976, no. 6, pp. 8–12.
15.
go back to reference Richardson, G.D., Physical Chemistry of Melts in Metallurgy, New York: Academic, 1974, vols. 1–2. Richardson, G.D., Physical Chemistry of Melts in Metallurgy, New York: Academic, 1974, vols. 1–2.
16.
go back to reference Ting, W., Wennan, S., and Yao, Z., A new frequency domain method for the harmonic analysis of power systems with arc furnace, Proc. Fourth Int. Conf. on Advances in Power System Control, Operation and Management, APSCOM-97, Piscataway, NJ: Inst. Electr. Electron. Eng., 1997, pp. 552–555. Ting, W., Wennan, S., and Yao, Z., A new frequency domain method for the harmonic analysis of power systems with arc furnace, Proc. Fourth Int. Conf. on Advances in Power System Control, Operation and Management, APSCOM-97, Piscataway, NJ: Inst. Electr. Electron. Eng., 1997, pp. 552–555.
17.
go back to reference Cavallini, A., Montanari, G.C., Pitti, L., and Zaninelli, D., ATP simulation for arc furnace flicker investigation, Eur. Trans. Electr. Power, 1995, vol. 5, no. 3, pp. 235–241. Cavallini, A., Montanari, G.C., Pitti, L., and Zaninelli, D., ATP simulation for arc furnace flicker investigation, Eur. Trans. Electr. Power, 1995, vol. 5, no. 3, pp. 235–241.
18.
go back to reference Collantes-Bellido, R. and Gomez, T., Identification and modeling of a three phase arc furnace for voltage disturbance simulation, IEEE Trans. Power Delivery, 1997, vol. 12, no. 4, pp. 1812–1817.CrossRef Collantes-Bellido, R. and Gomez, T., Identification and modeling of a three phase arc furnace for voltage disturbance simulation, IEEE Trans. Power Delivery, 1997, vol. 12, no. 4, pp. 1812–1817.CrossRef
19.
go back to reference Heydt, G.T., O’Neill-Carrillo, E., and Zhao, R.Y., The modeling of nonlinear loads as chaotic systems in electric power engineering, Proc. IEEE/PEC Int. Conf. on Harmonics and Quality of Power, Las Vegas, 1996, pp. 704–711. Heydt, G.T., O’Neill-Carrillo, E., and Zhao, R.Y., The modeling of nonlinear loads as chaotic systems in electric power engineering, Proc. IEEE/PEC Int. Conf. on Harmonics and Quality of Power, Las Vegas, 1996, pp. 704–711.
20.
go back to reference Higgs, R.W., Sonic signature analysis for arc furnace diagnostics and control, Proc. Ultrasonics Symp., Milwaukee, 1974, pp. 653–663. Higgs, R.W., Sonic signature analysis for arc furnace diagnostics and control, Proc. Ultrasonics Symp., Milwaukee, 1974, pp. 653–663.
Metadata
Title
Simulating the Electrical Parameters of an AC Arc Furnace in Electrosmelting
Authors
B. S. Dmitrievskii
A. V. Bashkatova
Publication date
01-07-2019
Publisher
Pleiades Publishing
Published in
Steel in Translation / Issue 7/2019
Print ISSN: 0967-0912
Electronic ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091219070039

Other articles of this Issue 7/2019

Steel in Translation 7/2019 Go to the issue

Premium Partners