Skip to main content
Top

2023 | OriginalPaper | Chapter

Simulating Tumor Evolution from scDNA-Seq as an Accumulation of both SNVs and CNAs

Authors : Zahra Tayebi, Akshay Juyal, Alexander Zelikovsky, Murray Patterson

Published in: Bioinformatics Research and Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ever since single-cell sequencing (scDNA-seq) was coined ‘method of the year’ in 2013, it has provided many insights into the evolution of tumors, viewed as a branching process of accumulating cancerous mutations that initiated with a single driver mutation — a model of clonal evolution which has been theorized almost half a century ago (Nowell, 1976). With this, is seen an explosion of methods for inferring the histories of such evolution, often in the form of a phylogenetic tree, from single-cell sequencing data. While the first methods modeled such evolution as an accumulation of point mutations (SNVs), copy number aberrations (CNAs, i.e., duplications or deletions of large genomic regions) are an important factor to consider. As a result, later methods began to bolster cancer phylogeny inference with bulk sequencing data, to account for CNAs. Despite the dozens of such inference methods available, there still does not exist much in the form of a unified benchmark for all such methods.
This paper moves to initiate such a benchmark, which can be built upon, by proposing a simulator which models both SNVs and CNAs jointly in generating an evolutionary scenario which can be interpreted as a scDNA-seq/matched bulk sample pair. The simulator models the accumulations of SNVs, and the duplication or deletion of chromosomal segments. We test this simulation on three methods: (a) a method which accounts for SNVs only, and under the infinite sites assumption (ISA), (b) a second more general method which models only SNVs, but allows for relaxations to the ISA, and (c) a third most general method which accounts for both SNVs and CNAs (and violations to the ISA). Results are consistent with the generality of these methods. This work is a step in the direction of developing a de-facto benchmark for cancer phylogeny inference methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Anderson, K., Lutz, C., et al.: Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469(7330), 356–361 (2011)CrossRefPubMed Anderson, K., Lutz, C., et al.: Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469(7330), 356–361 (2011)CrossRefPubMed
3.
go back to reference Beroukhim, R., Mermel, C.H., Porter, D., et al.: The landscape of somatic copy-number alteration across human cancers. Nature 463(7283), 899–905 (2010)CrossRefPubMedPubMedCentral Beroukhim, R., Mermel, C.H., Porter, D., et al.: The landscape of somatic copy-number alteration across human cancers. Nature 463(7283), 899–905 (2010)CrossRefPubMedPubMedCentral
4.
go back to reference Bollen, Y., Stelloo, E., van Leenen, P., et al.: Reconstructing single-cell karyotype alterations in colorectal cancer identifies punctuated and gradual diversification patterns. Nat. Genet. 53(8), 1187–1195 (2021)CrossRefPubMedPubMedCentral Bollen, Y., Stelloo, E., van Leenen, P., et al.: Reconstructing single-cell karyotype alterations in colorectal cancer identifies punctuated and gradual diversification patterns. Nat. Genet. 53(8), 1187–1195 (2021)CrossRefPubMedPubMedCentral
5.
go back to reference Chan, K.A., et al.: Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin. Chem. 59(1), 211–224 (2013)CrossRefPubMed Chan, K.A., et al.: Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin. Chem. 59(1), 211–224 (2013)CrossRefPubMed
7.
go back to reference Ciccolella, S., et al.: Inferring cancer progression from single-cell sequencing while allowing mutation losses. Bioinformatics 37(3), 326–333 (2021)CrossRefPubMed Ciccolella, S., et al.: Inferring cancer progression from single-cell sequencing while allowing mutation losses. Bioinformatics 37(3), 326–333 (2021)CrossRefPubMed
9.
11.
go back to reference Fischer, A., Vázquez-García, I., Illingworth, C.J., Mustonen, V.: High-definition reconstruction of clonal composition in cancer. Cell Rep. 7(5), 1740–1752 (2014)CrossRefPubMedPubMedCentral Fischer, A., Vázquez-García, I., Illingworth, C.J., Mustonen, V.: High-definition reconstruction of clonal composition in cancer. Cell Rep. 7(5), 1740–1752 (2014)CrossRefPubMedPubMedCentral
12.
go back to reference Giguere, C., Dubey, H.V., Sarsani, V.K., Saddiki, H., He, S., Flaherty, P.: SCSIM: jointly simulating correlated single-cell and bulk next-generation DNA sequencing data. BMC Bioinform. 21(1), 1–10 (2020)CrossRef Giguere, C., Dubey, H.V., Sarsani, V.K., Saddiki, H., He, S., Flaherty, P.: SCSIM: jointly simulating correlated single-cell and bulk next-generation DNA sequencing data. BMC Bioinform. 21(1), 1–10 (2020)CrossRef
14.
go back to reference Gupta, R.G., et al.: Intratumor heterogeneity: novel approaches for resolving genomic architecture and clonal evolution. Mol. Cancer Res. 15(9), 1127–1137 (2017)CrossRefPubMed Gupta, R.G., et al.: Intratumor heterogeneity: novel approaches for resolving genomic architecture and clonal evolution. Mol. Cancer Res. 15(9), 1127–1137 (2017)CrossRefPubMed
15.
go back to reference Huang, W., Skanderup, A.J., Lee, C.G.: Advances in genomic hepatocellular carcinoma research. Gigascience 7(12), giy135 (2018) Huang, W., Skanderup, A.J., Lee, C.G.: Advances in genomic hepatocellular carcinoma research. Gigascience 7(12), giy135 (2018)
17.
go back to reference Jahn, K., Kuipers, J., Beerenwinkel, N.: Tree inference for single-cell data. Genome Biol. 17(1), 1–17 (2016)CrossRef Jahn, K., Kuipers, J., Beerenwinkel, N.: Tree inference for single-cell data. Genome Biol. 17(1), 1–17 (2016)CrossRef
18.
go back to reference Jolly, C., Van Loo, P.: Timing somatic events in the evolution of cancer. Genome Biol. 19(1), 1–9 (2018)CrossRef Jolly, C., Van Loo, P.: Timing somatic events in the evolution of cancer. Genome Biol. 19(1), 1–9 (2018)CrossRef
19.
go back to reference Kang, S., et al.: SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data. Genome Biol. 23(1), 248 (2022)CrossRefPubMedPubMedCentral Kang, S., et al.: SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data. Genome Biol. 23(1), 248 (2022)CrossRefPubMedPubMedCentral
20.
go back to reference Khalil, A.I.S., Khyriem, C., Chattopadhyay, A., Sanyal, A.: Hierarchical discovery of large-scale and focal copy number alterations in low-coverage cancer genomes. BMC Bioinform. 21, 1–22 (2020)CrossRef Khalil, A.I.S., Khyriem, C., Chattopadhyay, A., Sanyal, A.: Hierarchical discovery of large-scale and focal copy number alterations in low-coverage cancer genomes. BMC Bioinform. 21, 1–22 (2020)CrossRef
21.
go back to reference Kuipers, J., et al.: Single-cell sequencing data reveal widespread recurrence and loss of mutational hits in the life histories of tumors. Genome Res. 27, 1885–1894 (2017)CrossRefPubMedPubMedCentral Kuipers, J., et al.: Single-cell sequencing data reveal widespread recurrence and loss of mutational hits in the life histories of tumors. Genome Res. 27, 1885–1894 (2017)CrossRefPubMedPubMedCentral
23.
go back to reference Malikic, S., Jahn, K., Kuipers, J., Sahinalp, S.C., Beerenwinkel, N.: Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data. Nat. Commun. 10(1), 2750 (2019)CrossRefPubMedPubMedCentral Malikic, S., Jahn, K., Kuipers, J., Sahinalp, S.C., Beerenwinkel, N.: Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data. Nat. Commun. 10(1), 2750 (2019)CrossRefPubMedPubMedCentral
25.
go back to reference Mallory, X.F., Nakhleh, L.: SimSCSnTree: a simulator of single-cell DNA sequencing data. Bioinformatics 38(10), 2912–2914 (2022)CrossRefPubMed Mallory, X.F., Nakhleh, L.: SimSCSnTree: a simulator of single-cell DNA sequencing data. Bioinformatics 38(10), 2912–2914 (2022)CrossRefPubMed
26.
go back to reference McGranahan, N., Swanton, C.: Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27(1), 15–26 (2015)CrossRefPubMed McGranahan, N., Swanton, C.: Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27(1), 15–26 (2015)CrossRefPubMed
27.
go back to reference Michor, F., Iwasa, Y., Nowak, M.A.: Dynamics of cancer progression. Nat. Rev. Cancer 4(3), 197–205 (2004)CrossRefPubMed Michor, F., Iwasa, Y., Nowak, M.A.: Dynamics of cancer progression. Nat. Rev. Cancer 4(3), 197–205 (2004)CrossRefPubMed
28.
go back to reference Mölder, F., et al.: Sustainable data analysis with snakemake. F1000 Res. 10 (2021). pMCID: PMC8114187 Mölder, F., et al.: Sustainable data analysis with snakemake. F1000 Res. 10 (2021). pMCID: PMC8114187
29.
go back to reference Nowell, P.C.: The clonal evolution of tumor cell populations: acquired genetic lability permits stepwise selection of variant sublines and underlies tumor progression. Science 194(4260), 23–28 (1976)CrossRefPubMed Nowell, P.C.: The clonal evolution of tumor cell populations: acquired genetic lability permits stepwise selection of variant sublines and underlies tumor progression. Science 194(4260), 23–28 (1976)CrossRefPubMed
30.
31.
go back to reference Ren, X., Kang, B., Zhang, Z.: Understanding tumor ecosystems by single-cell sequencing: promises and limitations. Genome Biol. 19(1), 1–14 (2018)CrossRef Ren, X., Kang, B., Zhang, Z.: Understanding tumor ecosystems by single-cell sequencing: promises and limitations. Genome Biol. 19(1), 1–14 (2018)CrossRef
32.
go back to reference Sashittal, P., Zhang, H., Iacobuzio-Donahue, C.A., Raphael, B.: ConDoR: tumor phylogeny inference with a copy-number constrained mutation loss model. bioRxiv, version 1 (2023) Sashittal, P., Zhang, H., Iacobuzio-Donahue, C.A., Raphael, B.: ConDoR: tumor phylogeny inference with a copy-number constrained mutation loss model. bioRxiv, version 1 (2023)
33.
34.
go back to reference Sperelakis, N.: Cell physiology sourcebook: a molecular approach. Elsevier (2001) Sperelakis, N.: Cell physiology sourcebook: a molecular approach. Elsevier (2001)
36.
go back to reference Vergara, I.A., et al.: Evolution of late-stage metastatic melanoma is dominated by aneuploidy and whole genome doubling. Nat. Commun. 12(1), 1434 (2021)CrossRefPubMedPubMedCentral Vergara, I.A., et al.: Evolution of late-stage metastatic melanoma is dominated by aneuploidy and whole genome doubling. Nat. Commun. 12(1), 1434 (2021)CrossRefPubMedPubMedCentral
37.
go back to reference Yu, Z., Du, F., Sun, X., Li, A.: SCSsim: an integrated tool for simulating single-cell genome sequencing data. Bioinformatics 36(4), 1281–1282 (2020)CrossRefPubMed Yu, Z., Du, F., Sun, X., Li, A.: SCSsim: an integrated tool for simulating single-cell genome sequencing data. Bioinformatics 36(4), 1281–1282 (2020)CrossRefPubMed
38.
go back to reference Zaccaria, S., Raphael, B.J.: Characterizing allele-and haplotype-specific copy numbers in single cells with chisel. Nat. Biotechnol. 39(2), 207–214 (2021)CrossRefPubMed Zaccaria, S., Raphael, B.J.: Characterizing allele-and haplotype-specific copy numbers in single cells with chisel. Nat. Biotechnol. 39(2), 207–214 (2021)CrossRefPubMed
Metadata
Title
Simulating Tumor Evolution from scDNA-Seq as an Accumulation of both SNVs and CNAs
Authors
Zahra Tayebi
Akshay Juyal
Alexander Zelikovsky
Murray Patterson
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-7074-2_43

Premium Partner