Skip to main content
Top
Published in: Flow, Turbulence and Combustion 4/2019

10-10-2019

Simulation of methane/air non-premixed turbulent flames based on REDIM simplified chemistry

Authors: Felipe Minuzzi, Chunkan Yu, Ulrich Maas

Published in: Flow, Turbulence and Combustion | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Combustion simulations involve the modeling of chemical kinetics, and due to the complexity of detailed mechanisms, chemistry reduction techniques are necessary. One model reduction strategy is the reaction-diffusion manifold (REDIM) method, and to obtain the REDIM, an evolution equation must be solved till its stationary solution and a gradient estimation is needed, provided e.g. from flamelet solutions with detailed chemistry. In this work, the REDIM technique is applied to simulate methane/air turbulent flames based on a simplified gradient estimation. This strategy uses less information in constructing the REDIM, increasing computational efficiency while reducing computational costs. Validation is performed for non-premixed laminar flames. A RANS/transported-PDF framework for the simulation of turbulent reacting flows is presented and used to validate the proposed model. Results show that the simplified gradient estimation is enough to simulate turbulent flames at moderate Reynolds number, which demonstrates the suitability of REDIM as reduced kinetic model in reactive flows.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Vervisch, L.: Numerical modeling of nonpremixed turbulent combustion. Institut National des Sciences Appliquees de Rouen (1999) Vervisch, L.: Numerical modeling of nonpremixed turbulent combustion. Institut National des Sciences Appliquees de Rouen (1999)
2.
go back to reference Kuo, K., Acharya, R.: Fundamentals of Turbulent and Multi-Phase Combustion. Wiley, New York (2012)CrossRef Kuo, K., Acharya, R.: Fundamentals of Turbulent and Multi-Phase Combustion. Wiley, New York (2012)CrossRef
4.
5.
go back to reference Warnatz, J., Maas, U., Dibble, R.: Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 4th edn. Springer, Berlin (2006)MATH Warnatz, J., Maas, U., Dibble, R.: Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 4th edn. Springer, Berlin (2006)MATH
6.
go back to reference Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn. Inc, RT Edwards (2011) Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn. Inc, RT Edwards (2011)
7.
go back to reference Echekki, T., Mastorakos, E.: Turbulent Combustion Modeling: Advances, New Trends and Perspectives, vol. 95. Springer, Berlin (2010)MATH Echekki, T., Mastorakos, E.: Turbulent Combustion Modeling: Advances, New Trends and Perspectives, vol. 95. Springer, Berlin (2010)MATH
9.
go back to reference Spalding, D.: Mixing and chemical reaction in steady confined turbulent flames. In: Symposium (International) on Combustion, vol. 13, pp 649–657. Elsevier (1971) Spalding, D.: Mixing and chemical reaction in steady confined turbulent flames. In: Symposium (International) on Combustion, vol. 13, pp 649–657. Elsevier (1971)
10.
go back to reference Pope, S.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11(2), 119–192 (1985)CrossRef Pope, S.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11(2), 119–192 (1985)CrossRef
11.
go back to reference Haworth, D.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36(2), 168–259 (2010)CrossRef Haworth, D.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36(2), 168–259 (2010)CrossRef
12.
go back to reference Turányi, T., Tomlin, A.S.: Analysis of kinetic reaction mechanisms. Springer, Berlin (2014)MATHCrossRef Turányi, T., Tomlin, A.S.: Analysis of kinetic reaction mechanisms. Springer, Berlin (2014)MATHCrossRef
13.
go back to reference Lu, T., Law, C.K.: On the applicability of directed relation graphs to the reduction of reaction mechanisms. Combust. Flame 146(3), 472–483 (2006)CrossRef Lu, T., Law, C.K.: On the applicability of directed relation graphs to the reduction of reaction mechanisms. Combust. Flame 146(3), 472–483 (2006)CrossRef
14.
go back to reference Lu, T., Law, C.K.: A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30(1), 1333–1341 (2005)CrossRef Lu, T., Law, C.K.: A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30(1), 1333–1341 (2005)CrossRef
15.
go back to reference Pepiot-Desjardins, P., Pitsch, H.: An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust. Flame 154(1), 67–81 (2008)MATHCrossRef Pepiot-Desjardins, P., Pitsch, H.: An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust. Flame 154(1), 67–81 (2008)MATHCrossRef
16.
go back to reference Bodenstein, M.: Eine theorie der photochemischen reaktionsgeschwindigkeiten. Zeitschrift für Physikalische Chemie 85(1), 329–397 (1913)MATH Bodenstein, M.: Eine theorie der photochemischen reaktionsgeschwindigkeiten. Zeitschrift für Physikalische Chemie 85(1), 329–397 (1913)MATH
17.
go back to reference Maas, U., Pope, S.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88(3), 239–264 (1992)CrossRef Maas, U., Pope, S.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88(3), 239–264 (1992)CrossRef
18.
go back to reference Gicquel, O., Darabiha, N., Thévenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000)CrossRef Gicquel, O., Darabiha, N., Thévenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000)CrossRef
19.
go back to reference Lam, S.: Using CSP to understand complex chemical kinetics. Combust. Sci. Technol. 89(5-6), 375–404 (1993)CrossRef Lam, S.: Using CSP to understand complex chemical kinetics. Combust. Sci. Technol. 89(5-6), 375–404 (1993)CrossRef
20.
go back to reference Williams, F.: Recent advances in theoretical descriptions of turbulent diffusion flames. In: Turbulent Mixing in Nonreactive and Reactive Flows, pp 189–208. Springer (1975) Williams, F.: Recent advances in theoretical descriptions of turbulent diffusion flames. In: Turbulent Mixing in Nonreactive and Reactive Flows, pp 189–208. Springer (1975)
21.
go back to reference Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)MathSciNetMATHCrossRef Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)MathSciNetMATHCrossRef
22.
go back to reference Oijen, J.V., Goey, L.D.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)CrossRef Oijen, J.V., Goey, L.D.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)CrossRef
23.
go back to reference Goussis, D.A., Maas, U.: Model reduction for combustion chemistry. In: Turbulent Combustion Modeling, pp 193–220. Springer (2011) Goussis, D.A., Maas, U.: Model reduction for combustion chemistry. In: Turbulent Combustion Modeling, pp 193–220. Springer (2011)
24.
go back to reference Griffiths, J.: Reduced kinetic models and their application to practical combustion systems. Prog. Energy Combust. Sci. 21(1), 25–107 (1995)MathSciNetCrossRef Griffiths, J.: Reduced kinetic models and their application to practical combustion systems. Prog. Energy Combust. Sci. 21(1), 25–107 (1995)MathSciNetCrossRef
25.
go back to reference Løvås, T.: Model reduction techniques for chemical mechanisms. INTECH Open Access Publisher (2012) Løvås, T.: Model reduction techniques for chemical mechanisms. INTECH Open Access Publisher (2012)
26.
go back to reference Tomlin, A.S., Turányi, T., Pilling, M.J.: Mathematical tools for the construction, investigation and reduction of combustion mechanisms. Comprehensive Chemical Kinetics 35, 293–437 (1997)CrossRef Tomlin, A.S., Turányi, T., Pilling, M.J.: Mathematical tools for the construction, investigation and reduction of combustion mechanisms. Comprehensive Chemical Kinetics 35, 293–437 (1997)CrossRef
27.
go back to reference Bykov, V., Maas, U.: The extension of the ILDM concept to reaction–diffusion manifolds. Combust. Theor. Model. 11(6), 839–862 (2007)MATHCrossRef Bykov, V., Maas, U.: The extension of the ILDM concept to reaction–diffusion manifolds. Combust. Theor. Model. 11(6), 839–862 (2007)MATHCrossRef
28.
go back to reference Bykov, V., Neagos, A., Maas, U.: On transient behavior of non-premixed counterflow diffusion flames within the REDIM based model reduction concept. Proc. Combust. Inst. 34(1), 197–203 (2013)CrossRef Bykov, V., Neagos, A., Maas, U.: On transient behavior of non-premixed counterflow diffusion flames within the REDIM based model reduction concept. Proc. Combust. Inst. 34(1), 197–203 (2013)CrossRef
29.
go back to reference Bykov, V., Maas, U.: Problem adapted reduced models based on reaction–diffusion manifolds (REDIMs). Proc. Combust. Inst. 32(1), 561–568 (2009)CrossRef Bykov, V., Maas, U.: Problem adapted reduced models based on reaction–diffusion manifolds (REDIMs). Proc. Combust. Inst. 32(1), 561–568 (2009)CrossRef
30.
go back to reference Fischer, S., Markus, D., Ghorbani, A., Maas, U.: PDF simulations of the ignition of hydrogen/air, ethylene/air and propane/air mixtures by hot transient jets. Zeitschrift für Physikalische Chemie 231(10), 1773–1796 (2017)CrossRef Fischer, S., Markus, D., Ghorbani, A., Maas, U.: PDF simulations of the ignition of hydrogen/air, ethylene/air and propane/air mixtures by hot transient jets. Zeitschrift für Physikalische Chemie 231(10), 1773–1796 (2017)CrossRef
31.
go back to reference Wang, P., Platova, N., Fröhlich, J., Maas, U.: Large eddy simulation of the PRECCINSTA burner. Int. J. Heat Mass Transf. 70, 486–495 (2014)CrossRef Wang, P., Platova, N., Fröhlich, J., Maas, U.: Large eddy simulation of the PRECCINSTA burner. Int. J. Heat Mass Transf. 70, 486–495 (2014)CrossRef
32.
go back to reference Wang, P., Zieker, F., Schießl, R., Platova, N., Fröhlich, J., Maas, U.: Large eddy simulations and experimental studies of turbulent premixed combustion near extinction. Proc. Combust. Inst. 34(1), 1269–1280 (2013)CrossRef Wang, P., Zieker, F., Schießl, R., Platova, N., Fröhlich, J., Maas, U.: Large eddy simulations and experimental studies of turbulent premixed combustion near extinction. Proc. Combust. Inst. 34(1), 1269–1280 (2013)CrossRef
33.
go back to reference Steinhilber, G., Bykov, V., Maas, U.: REDIM reduced modeling of flame-wall-interactions: quenching of a premixed methane/air flame at a cold inert wall. Proc. Combust. Inst. 36(1), 655–661 (2017)CrossRef Steinhilber, G., Bykov, V., Maas, U.: REDIM reduced modeling of flame-wall-interactions: quenching of a premixed methane/air flame at a cold inert wall. Proc. Combust. Inst. 36(1), 655–661 (2017)CrossRef
34.
go back to reference Schießl, R., Bykov, V., Maas, U., Abdelsamie, A., Thévenin, D.: Implementing multi-directional molecular diffusion terms into reaction diffusion manifolds (REDIMs). Proc. Combust. Inst. 36(1), 673–679 (2017)CrossRef Schießl, R., Bykov, V., Maas, U., Abdelsamie, A., Thévenin, D.: Implementing multi-directional molecular diffusion terms into reaction diffusion manifolds (REDIMs). Proc. Combust. Inst. 36(1), 673–679 (2017)CrossRef
35.
go back to reference Benzinger, M.S., Schießl, R., Maas, U.: A versatile coupled progress variable/REDIM, model for auto-ignition and combustion. Proc. Combust. Inst. 36(3), 3613–3621 (2017)CrossRef Benzinger, M.S., Schießl, R., Maas, U.: A versatile coupled progress variable/REDIM, model for auto-ignition and combustion. Proc. Combust. Inst. 36(3), 3613–3621 (2017)CrossRef
36.
go back to reference Pope, S.: A Monte Carlo method for the PDF equations of turbulent reactive flow. Progress Combust. Energy Sci. 25 (1981)CrossRef Pope, S.: A Monte Carlo method for the PDF equations of turbulent reactive flow. Progress Combust. Energy Sci. 25 (1981)CrossRef
37.
go back to reference Yu, C., Minuzzi, F., Maas, U.: Numerical simulation of turbulent flames based on a hybrid RANS/Transported-PDF method and REDIM method. Eurasian Chem. Technol. J. 20(1), 23–31 (2018)CrossRef Yu, C., Minuzzi, F., Maas, U.: Numerical simulation of turbulent flames based on a hybrid RANS/Transported-PDF method and REDIM method. Eurasian Chem. Technol. J. 20(1), 23–31 (2018)CrossRef
38.
go back to reference Jenny, P., Pope, S., Muradoglu, M., Caughey, D.: A hybrid algorithm for the joint PDF equation of turbulent reactive flows. J. Comput. Phys. 166(2), 218–252 (2001)MathSciNetMATHCrossRef Jenny, P., Pope, S., Muradoglu, M., Caughey, D.: A hybrid algorithm for the joint PDF equation of turbulent reactive flows. J. Comput. Phys. 166(2), 218–252 (2001)MathSciNetMATHCrossRef
39.
go back to reference Curl, R.: Dispersed phase mixing: i. theory and effects in simple reactors. AIChE J. 9(2), 175–181 (1963)CrossRef Curl, R.: Dispersed phase mixing: i. theory and effects in simple reactors. AIChE J. 9(2), 175–181 (1963)CrossRef
40.
go back to reference Cao, R.R., Wang, H., Pope, S.B.: The effect of mixing models in PDF calculations of piloted jet flames. Proc. Combust. Inst. 31(1), 1543–1550 (2007)CrossRef Cao, R.R., Wang, H., Pope, S.B.: The effect of mixing models in PDF calculations of piloted jet flames. Proc. Combust. Inst. 31(1), 1543–1550 (2007)CrossRef
41.
go back to reference Rembold, B., Jenny, P.: A multiblock joint PDF finite-volume hybrid algorithm for the computation of turbulent flows in complex geometries. J. Comput. Phys. 220 (1), 59–87 (2006)MathSciNetMATHCrossRef Rembold, B., Jenny, P.: A multiblock joint PDF finite-volume hybrid algorithm for the computation of turbulent flows in complex geometries. J. Comput. Phys. 220 (1), 59–87 (2006)MathSciNetMATHCrossRef
42.
go back to reference Muradoglu, M., Jenny, P., Pope, S.B., Caughey, D.A.: A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows. J. Comput. Phys. 154(2), 342–371 (1999)MathSciNetMATHCrossRef Muradoglu, M., Jenny, P., Pope, S.B., Caughey, D.A.: A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows. J. Comput. Phys. 154(2), 342–371 (1999)MathSciNetMATHCrossRef
44.
go back to reference Barlow, R., Frank, J.: Effects of turbulence on species mass fractions in methane/air jet flames. In: Symposium (International) on Combustion, vol. 27, pp 1087–1095. Elsevier (1998) Barlow, R., Frank, J.: Effects of turbulence on species mass fractions in methane/air jet flames. In: Symposium (International) on Combustion, vol. 27, pp 1087–1095. Elsevier (1998)
45.
go back to reference Magagnato, F.: SPARC: structured parallel research code. Task Quarterly 2(2), 215–270 (1998) Magagnato, F.: SPARC: structured parallel research code. Task Quarterly 2(2), 215–270 (1998)
46.
go back to reference Maas, U.: Mathematische Modellierung Instationärer Verbrennungsprozesse Unter Verwendung Detaillierter Reaktionsmechanismen. Ph.D. Thesis, Ruprecht-Karls-Universität, Heidelberg, Germany (1988) Maas, U.: Mathematische Modellierung Instationärer Verbrennungsprozesse Unter Verwendung Detaillierter Reaktionsmechanismen. Ph.D. Thesis, Ruprecht-Karls-Universität, Heidelberg, Germany (1988)
49.
go back to reference Ge, Y., Cleary, M., Klimenko, A.: A comparative study of Sandia flame series (D–F) using sparse-lagrangian MMC modelling. Proc. Combust. Inst. 34(1), 1325–1332 (2013)CrossRef Ge, Y., Cleary, M., Klimenko, A.: A comparative study of Sandia flame series (D–F) using sparse-lagrangian MMC modelling. Proc. Combust. Inst. 34(1), 1325–1332 (2013)CrossRef
50.
go back to reference Cao, R.R., Pope, S.B.: The influence of chemical mechanisms on PDF calculations of nonpremixed piloted jet flames. Combust. Flame 143(4), 450–470 (2005)CrossRef Cao, R.R., Pope, S.B.: The influence of chemical mechanisms on PDF calculations of nonpremixed piloted jet flames. Combust. Flame 143(4), 450–470 (2005)CrossRef
51.
go back to reference Xu, J., Pope, S.B.: PDF calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123(3), 281–307 (2000)CrossRef Xu, J., Pope, S.B.: PDF calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123(3), 281–307 (2000)CrossRef
52.
go back to reference Yu, C., Bykov, V., Maas, U.: Coupling of simplified chemistry with mixing processes in PDF simulations of turbulent flames. Proc. Combust. Inst. 37(2), 2183–2190 (2019)CrossRef Yu, C., Bykov, V., Maas, U.: Coupling of simplified chemistry with mixing processes in PDF simulations of turbulent flames. Proc. Combust. Inst. 37(2), 2183–2190 (2019)CrossRef
Metadata
Title
Simulation of methane/air non-premixed turbulent flames based on REDIM simplified chemistry
Authors
Felipe Minuzzi
Chunkan Yu
Ulrich Maas
Publication date
10-10-2019
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 4/2019
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-019-00059-3

Other articles of this Issue 4/2019

Flow, Turbulence and Combustion 4/2019 Go to the issue

Premium Partners